JPH0636370B2 - Electrolyte for lithium secondary battery - Google Patents

Electrolyte for lithium secondary battery

Info

Publication number
JPH0636370B2
JPH0636370B2 JP59010783A JP1078384A JPH0636370B2 JP H0636370 B2 JPH0636370 B2 JP H0636370B2 JP 59010783 A JP59010783 A JP 59010783A JP 1078384 A JP1078384 A JP 1078384A JP H0636370 B2 JPH0636370 B2 JP H0636370B2
Authority
JP
Japan
Prior art keywords
electrolytic solution
charge
electrode
electrolyte
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59010783A
Other languages
Japanese (ja)
Other versions
JPS60154478A (en
Inventor
真一 鳶島
準一 山木
武司 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59010783A priority Critical patent/JPH0636370B2/en
Publication of JPS60154478A publication Critical patent/JPS60154478A/en
Publication of JPH0636370B2 publication Critical patent/JPH0636370B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はリチウム電池に用いる電解液に関するものであ
る。
TECHNICAL FIELD OF THE INVENTION The present invention relates to an electrolytic solution used in a lithium battery.

〔発明の背景〕[Background of the Invention]

リチウムを負極活物質として用いる電池は小型・高エネ
ルギ密度を有する電池として研究されているが、その二
次化が大きな問題となっている。
A battery using lithium as a negative electrode active material has been studied as a battery having a small size and a high energy density, but its secondary formation has become a serious problem.

二次化が可能な正極活物質として、V、V13
等の金属酸化物、TiS、VS等の層状化合物が、
Liとの間でトポケミカルな反応をする化合物として知
られており、現在までチタン、ジルコニウム、ハフニウ
ム、ニオビウム、タンタル、バナジウムの硫化物、セレ
ン化物、テルル化物を用いた電池(米国特許第4,08
9,052号明細書参照)等が開示されている。
Examples of the positive electrode active material that can be used as a secondary material include V 2 O 5 and V 6 O 13
Metal oxides such as, and layered compounds such as TiS 2 and VS 2 ,
It is known as a compound that undergoes a topochemical reaction with Li, and up to the present, batteries using sulfides, selenides and tellurides of titanium, zirconium, hafnium, niobium, tantalum and vanadium (US Pat.
No. 9,052) are disclosed.

しかしながら、このような二次電池用正極活物質の研究
に比して、Li極の充放電特性に関する研究は充分とはい
えず、リチウム二次電池実現のためには、充放電効率及
びサイクル寿命等の充放電特性の良好な電解液の探査が
重大な問題となっている。Li極の充放電効率を向上させ
る試みとしては LiClO/プロピレンカーボネイトにニ
トロメタン、SOなどの添加剤を加える試み〔Electoro
chimica.Acta. Vol.22,第75頁〜第83時(1977)〕等が
行われているが、必ずしも充分とは言えず、さらに特性
の優れたリチウム二次電池用電解液が求められている。
However, research on the charge and discharge characteristics of the Li electrode is not sufficient compared to research on such positive electrode active materials for secondary batteries, and in order to realize a lithium secondary battery, charge and discharge efficiency and cycle life are required. The search for an electrolytic solution having a good charge / discharge characteristic such as is a serious problem. As an attempt to improve the charge / discharge efficiency of the Li electrode, an attempt to add additives such as nitromethane and SO 2 to LiClO 4 / propylene carbonate [Electoro
chimica.Acta. Vol.22, pp. 75-83 (1977)] has been conducted, but it is not always sufficient, and an electrolytic solution for lithium secondary batteries with further excellent characteristics is demanded. There is.

〔発明の概要〕[Outline of Invention]

本発明は、このような現状に鑑みてなされたものであ
り、その目的は、導電率が高く、かつLi極の充放電特性
の優れたリチウム二次電池用電解液を提供することにあ
る。
The present invention has been made in view of such a current situation, and an object thereof is to provide an electrolytic solution for a lithium secondary battery, which has high conductivity and excellent charge / discharge characteristics of a Li electrode.

したがって、本発明によるリチウム二次電池用電解液
は、リチウム塩を有機溶媒に溶解させたリチウム電池用
電解液において、前記有機溶媒として、テトラハライド
ロフラン又は1,2−ジメトキシエタンと、ジメチルス
ルホキシドの混合比1;9〜9:1の混合溶媒を用いた
ことを特徴とするものである。
Therefore, the electrolytic solution for a lithium secondary battery according to the present invention is a lithium battery electrolytic solution in which a lithium salt is dissolved in an organic solvent, and the organic solvent is tetrahalidorofuran or 1,2-dimethoxyethane, and dimethyl sulfoxide. A mixed solvent having a mixing ratio of 1; 9 to 9: 1 is used.

本発明によれば、リチウム塩を有機溶媒に溶解した電解
液に、前記有機溶媒として、テトラハイドロフラン又は
1,2−ジメトキシエタンと、ジメチルスルホキシドの
混合溶媒を用いることにより、導電率が高く、Li極の充
放電特性が良好なリチウム二次電池用非水電解液を提供
することができる。
According to the present invention, in an electrolytic solution in which a lithium salt is dissolved in an organic solvent, by using a mixed solvent of tetrahydrofuran or 1,2-dimethoxyethane and dimethyl sulfoxide as the organic solvent, the conductivity is high, It is possible to provide a non-aqueous electrolyte solution for a lithium secondary battery, which has excellent charge and discharge characteristics of the Li electrode.

〔発明の具体的説明〕[Specific Description of the Invention]

本発明を更に詳しく説明する。 The present invention will be described in more detail.

リチウム電池はリチウムを負極活物質とし、電気化学的
に活性で、かつLi+ イオンを可逆的な電気化学反応を行
う物質を正極活物質とする電池であるが、本発明のよれ
ば、リチウム塩を有機溶媒に溶解した電解液の有機溶媒
として、テトラハイドロフラン又は1,2−ジメトキシ
エタンと、>S =0 基を有する高誘電率環状あるいは非
環状非プロトン性エステルの混合溶媒を用いる。
A lithium battery is a battery in which lithium is used as a negative electrode active material, and a material that is electrochemically active and that undergoes a reversible electrochemical reaction of Li + ions is used as a positive electrode active material. As an organic solvent for an electrolytic solution in which is dissolved in an organic solvent, a mixed solvent of tetrahydrofuran or 1,2-dimethoxyethane and a high dielectric constant cyclic or acyclic aprotic ester having a> S = 0 group is used.

テトラハイドロフラン又は1,2−ジメトキシエタンお
よびジメチルスルホキシドとの混合比は、好ましくは1
:9 〜9 :1 であるのがよい。この範囲を外れると、
すなわちエーテルが大すぎると、導電率が悪くなる虞を
生じ、またエーテルが少なすぎると、充放電効率が低下
する虞があるからである。最も好ましくは5 :5 付近で
ある。
The mixing ratio of tetrahydrofuran or 1,2-dimethoxyethane and dimethyl sulfoxide is preferably 1
: 9 to 9: 1 is preferable. Outside this range,
That is, if the amount of ether is too large, the conductivity may deteriorate, and if the amount of ether is too small, the charge / discharge efficiency may decrease. Most preferably, it is around 5: 5.

さらに、溶質であるリチウム塩は、従来この主の電解液
に用いられるものであれば、いかなるものでもよい。例
えば LiClO、LiBF、 LiAsF、LiPF、LiAlCl
CFSOLi、CFCOLiから選択された1種以上のよう
な、一般に非水電解液の溶質として用いられるリチウム
塩を有効に用いることができる。
Further, the lithium salt as a solute may be any one as long as it is conventionally used in the main electrolytic solution. For example, LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiAlCl 4 ,
A lithium salt generally used as a solute of a non-aqueous electrolyte, such as one or more selected from CF 3 SO 3 Li and CF 3 CO 2 Li, can be effectively used.

リチウム二次電池用電解液に要求される特性は導電率が
高く、かつLiの充放電効率が高いことである。上述した
ようなエーテルは、Liと比較的反応し難く、低電流にお
けるLiの充放電効率の向上には効果的であるが、誘電率
が低く、導電率は低い。また、>S =0 基を有するエス
テルは、>S =0 の分極によい誘電率が高く、誘電率が
高いが、二重結合を有するため、Liとの反応性が大きく
Liの充放電効率は低い。
The characteristics required for the electrolyte solution for a lithium secondary battery are high conductivity and high Li charging / discharging efficiency. The above-mentioned ether is relatively difficult to react with Li and is effective in improving the charge / discharge efficiency of Li at low current, but has a low dielectric constant and a low conductivity. Further, the ester having a> S = 0 group has a high dielectric constant which is good for the polarization of> S = 0 and has a high dielectric constant, but since it has a double bond, it has a large reactivity with Li.
The charge / discharge efficiency of Li is low.

ところが、後述の実施例に示すように、エーテルと>S
=0 基とを有するエステルを混合することにより、両者
の利点のみが加成され、導電率が高く、かつLiの充放電
効率も高くすることができる。
However, as shown in the examples below, ether and> S
By mixing the ester having a = 0 group, only the advantages of both are added, the conductivity is high, and the charging / discharging efficiency of Li can also be increased.

次ぎに、本発明の実施例を説明する。Next, examples of the present invention will be described.

実施例1 Pt極を作用極、対極にLiを参照電極としてLiを用いた電
池を組み、Pt極上にLiを析出させることにより、Li極の
充放電特性を測定した。
Example 1 A battery using a Pt electrode as a working electrode and Li as a counter electrode with Li as a reference electrode was assembled, and Li was deposited on the Pt electrode to measure the charge / discharge characteristics of the Li electrode.

電解液には1モル/1のLiClO4をテトラハイドロフラン
とジメチルスルホキシドの1:1体積比混合溶媒に溶解
したものを用いた。この電解液の導電率は15.1×10−3
ohm -1cm-1であり、1M LiClO−テトラハイドロフラン
単独溶媒系電解液の導電率(4.0 ×10−3ohm -1cm-1
より高かった。
The electrolyte used was 1 mol / 1 of LiClO 4 dissolved in a mixed solvent of tetrahydrofuran and dimethyl sulfoxide at a volume ratio of 1: 1. The conductivity of this electrolyte is 15.1 × 10 -3
ohm -1 cm -1, which is the conductivity of 1M LiClO 4 -tetrahydrofuran single solvent electrolyte (4.0 x 10 -3 ohm -1 cm -1 ).
It was higher.

測定は、まず0.5mA/cm2の定電流で20分間、Pt極上
にLiを析出させて充電した後、0.5mA/cm2の定電流で
Pt極上に析出したLiをLi+イオンとして放電するサイク
ル試験を行なった。充放電効率はPt極の電位の変化より
求め、Pt極上に析出したLiをLi+イオンとして放電させ
るのに要した電気量との比から算出した。
The measurement was performed by first depositing Li on the Pt electrode for 20 minutes at a constant current of 0.5 mA / cm 2 and charging it, and then at a constant current of 0.5 mA / cm 2.
A cycle test was performed in which Li deposited on the Pt electrode was discharged as Li + ions. The charging / discharging efficiency was obtained from the change in the potential of the Pt electrode, and was calculated from the ratio with the amount of electricity required to discharge Li deposited on the Pt electrode as Li + ions.

第1図はLi極の充放電効率とサイクル数の関係を示す図
であり、図中、(a)は本発明の、蒸気電解液を用いた
場合であり、(b)は本発明の効果を示す参考例として
1M LiClO/テトラハイドロフランを用いた場合のLi
の充放電特性を示したものである。
FIG. 1 is a diagram showing the relationship between the charge and discharge efficiency of the Li electrode and the number of cycles. In the figure, (a) is the case of using the vapor electrolyte of the present invention, and (b) is the effect of the present invention. In the case of using 1M LiClO 4 / tetrahydrofuran as a reference example showing
3 shows the charge / discharge characteristics of

第1図から判る様に、単独系(b )に比べて、本発明に
よる混合系(a )は明らかに充放電特性が向上してい
る。
As can be seen from FIG. 1, the mixed system (a) according to the present invention has clearly improved charge / discharge characteristics as compared with the single system (b).

実施例2 電解液として、1.モル/の LiClOを1,2−ジメト
キシエタンとジメチルスルホキシドの1 :1 体積比混合
溶媒に溶解したものを用いた以外は実施例1 と同様にし
てLiの充放電特性を測定した。
Example 2 The same procedure as in Example 1 was repeated except that 1 mol / mol of LiClO 4 was dissolved in a 1: 1 volume ratio mixed solvent of 1,2-dimethoxyethane and dimethylsulfoxide as an electrolytic solution. The charge / discharge characteristics were measured.

第2図は上記電解液を用いた場合のLiの充放電効率とサ
イクル数の関係を示す図である。第2図より明らかなよ
うに、本発明による電解液を用いることにより、良好な
充放電特性をえることができる。
FIG. 2 is a diagram showing the relationship between the charge / discharge efficiency of Li and the number of cycles when the above electrolytic solution is used. As is apparent from FIG. 2, good charge / discharge characteristics can be obtained by using the electrolytic solution of the present invention.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように、本発明によれば、リチ
ウム塩を溶質として有機溶媒に溶解させた非水電解液に
おいて、前記有機溶媒として、テトラハイドロフラン又
は1,2ジメトキシエタンと、ジメチルスルホキシドと
>S =0 基を有するエステルを混合したものを用いるこ
とにより、導電率が高く、かつLiの充放電特性の優れた
リチウム二次電池用非水電解液を提供することができ
る。
As is clear from the above description, according to the present invention, in the non-aqueous electrolytic solution obtained by dissolving a lithium salt as a solute in an organic solvent, the organic solvent is tetrahydrofuran or 1,2-dimethoxyethane, and dimethyl sulfoxide. By using a mixture of and an ester having> S = 0 group, it is possible to provide a non-aqueous electrolytic solution for a lithium secondary battery, which has high conductivity and excellent Li charge / discharge characteristics.

【図面の簡単な説明】[Brief description of drawings]

第1図から第2図は本発明による電解液を用いた場合の
Li極の充放電効率とサイクル数の関係を示す図である。
1 to 2 show the case where the electrolytic solution according to the present invention is used.
It is a figure which shows the relationship between the charging / discharging efficiency of a Li electrode, and the number of cycles.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 武司 茨城県那珂郡東海村大字白方字白根162番 地 日本電信電話公社茨城電気通信研究所 内 (56)参考文献 特開 昭58−87777(JP,A) 特開 昭57−187878(JP,A) 特開 昭56−7362(JP,A) 特開 昭57−80679(JP,A) 特開 昭57−152684(JP,A) 特公 昭54−17933(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Okada 162 Shirahone, Shirahoji, Tokai-mura, Naka-gun, Ibaraki Pref. JP, A) JP 57-187878 (JP, A) JP 56-7362 (JP, A) JP 57-80679 (JP, A) JP 57-152684 (JP, A) JP Showa 54-17933 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウム塩を有機溶媒に溶解させたリチウ
ム電池用電解液において、前記有機溶媒として、テトラ
ハイドロフラン又は1,2−ジメトキシエタンと、ジメ
チルスルホキシドの混合比1;9〜9:1の混合溶媒を
用いたことを特徴とするリチウム二次電池用電解液。
1. An electrolytic solution for a lithium battery in which a lithium salt is dissolved in an organic solvent, wherein the organic solvent is tetrahydrofuran or 1,2-dimethoxyethane and dimethyl sulfoxide in a mixing ratio of 1; 9 to 9: 1. An electrolytic solution for a lithium secondary battery, characterized by using a mixed solvent of.
JP59010783A 1984-01-24 1984-01-24 Electrolyte for lithium secondary battery Expired - Lifetime JPH0636370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59010783A JPH0636370B2 (en) 1984-01-24 1984-01-24 Electrolyte for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59010783A JPH0636370B2 (en) 1984-01-24 1984-01-24 Electrolyte for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPS60154478A JPS60154478A (en) 1985-08-14
JPH0636370B2 true JPH0636370B2 (en) 1994-05-11

Family

ID=11759932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59010783A Expired - Lifetime JPH0636370B2 (en) 1984-01-24 1984-01-24 Electrolyte for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0636370B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3637146A1 (en) * 1985-11-01 1987-05-07 Nippon Telegraph & Telephone LITHIUM SECONDARY BATTERY
JPH0616420B2 (en) * 1986-03-20 1994-03-02 日本電信電話株式会社 Lithium secondary battery
JPH0821429B2 (en) * 1986-10-31 1996-03-04 日本電信電話株式会社 Electrolyte for lithium secondary battery
JPH0665075B2 (en) * 1987-07-08 1994-08-22 富士電気化学株式会社 Non-aqueous electrolyte battery
JP4706807B2 (en) * 1999-04-02 2011-06-22 富山薬品工業株式会社 Non-aqueous electrolytic secondary battery
WO2001063686A1 (en) * 2000-02-22 2001-08-30 Sumitomo Seika Chemicals Co., Ltd. Electrolytic solution composition for lithium secondary battery
JP4618399B2 (en) 2002-06-11 2011-01-26 日本電気株式会社 Secondary battery electrolyte and secondary battery using the same
CN1993856B (en) 2004-11-04 2010-05-26 松下电器产业株式会社 Secondary battery with terminal for surface mounting
JP5169400B2 (en) 2008-04-07 2013-03-27 Necエナジーデバイス株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2730644A1 (en) * 1977-07-07 1979-01-25 Bayer Ag FLUORESCENT DYES
CA1143002A (en) * 1979-06-28 1983-03-15 George E. Blomgren Organic electrolyte for rechargeable lithium cells
JPS57187878A (en) * 1981-05-14 1982-11-18 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolyte solution for secondary lithium battery
JPS5887777A (en) * 1981-11-20 1983-05-25 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolytic solution for lithium secondary battery

Also Published As

Publication number Publication date
JPS60154478A (en) 1985-08-14

Similar Documents

Publication Publication Date Title
KR100389052B1 (en) Positive electrode active material, preparation method thereof and nonaqueous solvent secondary battery using the same
JP3187929B2 (en) Lithium secondary battery
JP2597091B2 (en) Lithium secondary battery
US4737424A (en) Secondary lithium battery
JP4320914B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
US7635542B2 (en) Non-aqueous electrolyte secondary battery
JPS59134568A (en) Electrolyte for lithium battery
JPH0636370B2 (en) Electrolyte for lithium secondary battery
JP3309719B2 (en) Non-aqueous electrolyte secondary battery
JP4359977B2 (en) Nonaqueous electrolyte secondary battery
JPS6362869B2 (en)
JPH053112B2 (en)
JPH0351068B2 (en)
JPH1027627A (en) Lithium secondary battery
JP2654553B2 (en) Electrolyte for lithium secondary battery
JPH0477426B2 (en)
JPH0564429B2 (en)
JPH08190932A (en) Secondary battery having nonaqueous solvent electrolyte
JP2000040524A (en) Electrolyte for lithium secondary battery and secondary battery
JPH0377626B2 (en)
JP2559055B2 (en) Lithium battery
JP3119928B2 (en) Non-aqueous solvent for battery electrolyte
JPH0226345B2 (en)
JPH0722068A (en) Secondary battery having nonaqueous solvent electrolyte

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term