JPS6362869B2 - - Google Patents

Info

Publication number
JPS6362869B2
JPS6362869B2 JP56003647A JP364781A JPS6362869B2 JP S6362869 B2 JPS6362869 B2 JP S6362869B2 JP 56003647 A JP56003647 A JP 56003647A JP 364781 A JP364781 A JP 364781A JP S6362869 B2 JPS6362869 B2 JP S6362869B2
Authority
JP
Japan
Prior art keywords
tetrahydrofuran
propylene carbonate
electrolyte
lithium
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56003647A
Other languages
Japanese (ja)
Other versions
JPS57118375A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56003647A priority Critical patent/JPS57118375A/en
Publication of JPS57118375A publication Critical patent/JPS57118375A/en
Publication of JPS6362869B2 publication Critical patent/JPS6362869B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 本発明は、リチウム二次電池に用いる電解液に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolytic solution used in a lithium secondary battery.

リチウムを負極活物質として用いる電池は、小
型・高エネルギ密度を有する電池として研究され
ているが、その二次化が大きな問題点となつてい
る。
Batteries using lithium as a negative electrode active material are being researched as small-sized batteries with high energy density, but secondaryization has become a major problem.

二次化が可能な正極活物質として、V2O5
TiO2等の金属酸化物、TiS2、WS2等の層状化合
物が、Liとの間でインターカレーシヨンする化合
物として知られており現在までチタン、ジルコニ
ウム、ハフニウム、ニオビウム、タンタル、バナ
ジウムの硫化物、セレン化物、テルル化物を用い
た電池(米国特許第4089052号明細書参照)及び
セレン化ニオビウム等を用いた電池(J.
Electrochem Soc.vol.124、No.7第968頁及び第
325頁(1977年)参照)等が開示されている。
As a positive electrode active material that can be secondaryized, V 2 O 5 ,
Metal oxides such as TiO 2 and layered compounds such as TiS 2 and WS 2 are known to intercalate with Li, and to date, sulfides of titanium, zirconium, hafnium, niobium, tantalum, and vanadium have been used. , batteries using selenide, telluride (see US Pat. No. 4,089,052), and batteries using niobium selenide (J.
Electrochem Soc.vol.124, No.7, page 968 and
325 (1977)) etc. are disclosed.

しかしながら、このような二次電池用正極活物
質の研究に比して、Li極の充放電特性に関する研
究は充分とはいえず、Li二次電池実現のために
は、充放電効率及びサイクル寿命等の充放電特性
の良好な電解液の探査が重大な問題となつてい
る。Li極の充放電効率を向上させる試みとしては
LiClO4/プロピレンカーボネイトにニトロメタ
ン、SO2、等の添加剤を加える試み
〔Electrochimica.Acta.Vol.22、第75頁〜83頁
(1977)〕やLiClO4/メチルアセテートを用いる
試み〔Electrochimica Acta.Vol.22、第85頁〜91
頁(1977)〕等が行なわれているが、充放電特性
は40サイクルめで50%以下の効率になつてしま
い、充分とはいえず、さらに特性の優れた電解液
系が求められている。
However, compared to such research on positive electrode active materials for secondary batteries, research on the charging and discharging characteristics of Li electrodes is not sufficient, and in order to realize Li secondary batteries, charging and discharging efficiency and cycle life are The search for electrolytes with good charge-discharge characteristics has become a serious issue. As an attempt to improve the charging and discharging efficiency of Li electrodes,
There have been attempts to add additives such as nitromethane and SO 2 to LiClO 4 /propylene carbonate [Electrochimica.Acta.Vol.22, pp. 75-83 (1977)] and attempts to use LiClO 4 /methyl acetate [Electrochimica Acta. Vol.22, pages 85-91
Page (1977)], but the efficiency of the charge/discharge characteristics is less than 50% at the 40th cycle, which is not sufficient, and there is a need for an electrolyte system with even better characteristics.

本発明は、このような現状に鑑みてなされたも
のであり、その目的はLi極の充放電特性の優れた
リチウム二次電池用非水電解液を提供する事にあ
る。
The present invention has been made in view of the current situation, and its purpose is to provide a non-aqueous electrolyte for lithium secondary batteries that has excellent charging and discharging characteristics of Li electrodes.

したがつて、本発明によるリチウム二次電池用
非水電解液は、リチウムを負極活物質とし、リチ
ウムイオンに対して電気化学的に活性で、かつリ
チウムイオンと可逆的な電気化学的反応を行なう
物質を正極活物質とし、無機または有機塩を有機
溶媒に溶解させた非水電解液を用いた二次電池に
おいて、前記非水電解液の有機溶媒として、プロ
ピレンカーボネイトとテトラハイドロフランの混
合物を用いた事を特徴とするものである。
Therefore, the nonaqueous electrolyte for lithium secondary batteries according to the present invention uses lithium as a negative electrode active material, is electrochemically active toward lithium ions, and performs a reversible electrochemical reaction with lithium ions. In a secondary battery that uses a substance as a positive electrode active material and a non-aqueous electrolyte in which an inorganic or organic salt is dissolved in an organic solvent, a mixture of propylene carbonate and tetrahydrofuran is used as the organic solvent of the non-aqueous electrolyte. It is characterized by the fact that

Liの充放電効率は、主として充電時に析出した
活性化リチウムと溶媒の反応生成物であるリチウ
ム表面膜の物性に影響される。プロピレンカーボ
ネートにテトラヒドロフランを混合すると低粘度
化し、正極活物質内の電解液拡散を容易にする試
みが一次電池において行なわれている(特公昭49
−19052号)。しかし、この文献からはリチウムと
溶媒の相互作用、すなわちLiの充放電効率に与え
る上記混合溶媒の相互作用、すなわちLiの充放電
効率に与える上記混合溶媒の効果は、全く不明で
ある。また、プロピレンカーボネートに低粘度の
溶媒を混合して低粘度化しても、Liの充放電効率
は向上するわけではなく、例えばテトラハイドロ
ピランあるいはジメチルアセトアミドなどをプロ
ピレンカーボネートに混合すると、プロピレンカ
ーボネート単独に対して、Liの充放電効率は1/10
〜3/4に逆に低下してしまう。すなわち、電解液
の低粘度化と、Liの充放電効率との間には何ら相
関関係はない。
The charging and discharging efficiency of Li is mainly affected by the physical properties of the lithium surface film, which is a reaction product of activated lithium deposited during charging and a solvent. An attempt has been made in primary batteries to reduce the viscosity by mixing tetrahydrofuran with propylene carbonate and to facilitate the diffusion of the electrolyte within the positive electrode active material.
−19052). However, from this literature, the interaction between lithium and the solvent, that is, the interaction of the mixed solvent on the charging and discharging efficiency of Li, that is, the effect of the mixed solvent on the charging and discharging efficiency of Li, is completely unclear. Furthermore, even if a low viscosity solvent is mixed with propylene carbonate to lower the viscosity, the charge/discharge efficiency of Li does not improve. For example, if tetrahydropyran or dimethylacetamide is mixed with propylene carbonate, On the other hand, the charging/discharging efficiency of Li is 1/10
On the contrary, it decreases from ~3/4. That is, there is no correlation between lowering the viscosity of the electrolytic solution and Li charge/discharge efficiency.

一方、本発明者はLi表面の状態を検討した結
果、放電前のLi極表面状態はプロピレンカーボネ
ート及びプロピレンカーボネート/テトラハイド
ロフラン混合系で相違はないが、充電した後のLi
表面の状態は全く相違する(Li表面膜が異なる)
ことを見いだした。つまり、プロピレンカーボネ
ート単独系においては、樹枝状の析出状態とな
り、プロピレンカーボネート/テトラヒドロフラ
ン混合系では平滑性の良い粒子状のリチウムが析
出し、表面に滑らかな膜が形成していることがわ
かつた。
On the other hand, as a result of examining the state of the Li surface, the inventors found that the state of the Li electrode surface before discharge is the same for propylene carbonate and propylene carbonate/tetrahydrofuran mixed systems, but that the state of the Li electrode after charging is the same.
The surface conditions are completely different (the Li surface film is different)
I found out. In other words, it was found that in the propylene carbonate alone system, lithium was precipitated in a dendritic state, whereas in the propylene carbonate/tetrahydrofuran mixed system, lithium was precipitated in the form of particles with good smoothness, forming a smooth film on the surface.

この表面状態の相違が、後述の実施例より明ら
かなように、Liの充放電効率を向上させる原因と
なるのである。
This difference in surface state is the cause of improving the charging and discharging efficiency of Li, as will be clear from the examples described later.

但し、後述の実施例に示すように、プロピレン
カーボネートとテトラハイドロフランの混合溶媒
系電解液を一次電池に用いる場合には、プロピレ
ンカーボネートに対するテトラヒドロフランの体
積混合比が3:7〜2:8の範囲で良好な特性を
示す。
However, as shown in the examples below, when a mixed solvent electrolyte of propylene carbonate and tetrahydrofuran is used in a primary battery, the volume mixing ratio of tetrahydrofuran to propylene carbonate is in the range of 3:7 to 2:8. shows good characteristics.

しかしながら、二次電池に使用する場合の最適
条件は後述の実施例に示すように、プロピレンカ
ーボネートに対するテトラヒドロフランの体積混
合量が8:2〜3:7であり、この混合範囲よ
り、テトラヒドロフランが多くても、少なくても
充放電特性は良好でない。これは、上記に説明し
たように、一次電池と二次電池では利用する電解
液の特性が異なるためであり、特に二次電池の場
合、Li表面膜組成の細かい制御が必要である。
However, as shown in the examples below, the optimum conditions for use in secondary batteries are a volumetric mixing ratio of tetrahydrofuran to propylene carbonate of 8:2 to 3:7; However, the charging and discharging characteristics are not good. This is because, as explained above, the characteristics of the electrolyte used in primary batteries and secondary batteries are different, and especially in the case of secondary batteries, fine control of the Li surface film composition is required.

本発明によるリチウム電池用非水電解液によれ
ば、非水電解液の有機溶媒としてプロピレンカー
ボネイト及びテトラハイドロフランの混合物を用
いるので、形成されるリチウム電池の充放電効率
は著しく向上する。
According to the non-aqueous electrolyte for lithium batteries according to the present invention, since a mixture of propylene carbonate and tetrahydrofuran is used as the organic solvent of the non-aqueous electrolyte, the charge/discharge efficiency of the formed lithium battery is significantly improved.

本発明を更に詳しく説明する。 The present invention will be explained in more detail.

本発明による電解液の有機溶媒は前述のよう
に、プロピレンカーボネイト及びテトラハイドロ
フランであるが、これに溶解される溶質は従来こ
の種の電池に用いられる溶質を自由に用いること
ができる。たとえば、LiClO4、LiBF4、LiAsF6
LiPF6、LiAlCl4、等の無機塩及びCF3SO3Li、
CF3COOLi等の有機塩を用いることができる。
As mentioned above, the organic solvent of the electrolytic solution according to the present invention is propylene carbonate and tetrahydrofuran, but the solute dissolved therein can be any solute conventionally used in this type of battery. For example, LiClO 4 , LiBF 4 , LiAsF 6 ,
Inorganic salts such as LiPF 6 , LiAlCl 4 , and CF 3 SO 3 Li,
Organic salts such as CF 3 COOLi can be used.

これらの溶質は前記有機溶媒に、好ましくは
0.5〜2.5N溶解される。プロピレンカーボネイト
に溶解する溶質が0.5N未満であると、充放電特
性が著しく低下し、2.5Nを超えると、溶質は溶
解しないからである。またテトラハイドロフラン
に溶解する溶質の濃度が0.5N未満であると、充
放電特性が悪化し、2.5Nを超えると粘度が上昇
し、やはり充放電特性が低下する。最も好ましく
は、それぞれ2N前後である。
These solutes are preferably added to the organic solvent.
0.5-2.5N is dissolved. This is because if the amount of solute dissolved in propylene carbonate is less than 0.5N, the charge/discharge characteristics will be significantly reduced, and if it exceeds 2.5N, the solute will not dissolve. Furthermore, if the concentration of the solute dissolved in tetrahydrofuran is less than 0.5N, the charge-discharge characteristics will deteriorate, and if it exceeds 2.5N, the viscosity will increase, and the charge-discharge characteristics will also deteriorate. Most preferably, each is around 2N.

プロピレンカーボナイト及びテトラハイドロフ
ランの混合比は、前記溶質を0.5〜2.5N溶解した
プロピレンカーボナイト及び前記溶質を0.5〜
2.5N溶解したテトラハイドロフランの体積比で
好ましくは2:8〜7:3、最も好ましくは4:
6前後である。前記溶質を溶解したプロピレンカ
ーボナイトの混合比が2:8より少ないと、両者
を混合した意味が薄くなり、テトラハイドロフラ
ン単独系の充放電特性に近づくことになり、また
7:3より多いと、反対にプロピレンカーボナイ
ト単独系の充放電特性に近づき、いずれにしても
充放電特性が悪化するからである。
The mixing ratio of propylene carbonite and tetrahydrofuran is 0.5 to 2.5N of propylene carbonite dissolved in the solute and 0.5 to 2.5N of the solute dissolved in the propylene carbonite and tetrahydrofuran.
The volume ratio of 2.5N dissolved tetrahydrofuran is preferably 2:8 to 7:3, most preferably 4:
It is around 6. If the mixing ratio of propylene carbonite in which the solute is dissolved is less than 2:8, the meaning of mixing the two becomes weak, and the charge-discharge characteristics approach that of tetrahydrofuran alone, and if it is more than 7:3, On the contrary, the charging and discharging characteristics approach those of propylene carbonite alone, and the charging and discharging characteristics deteriorate in any case.

以下、本発明の実施例を説明する。 Examples of the present invention will be described below.

実施例 1 プロピレンカーボネイトは、市販品を減圧蒸留
(真空度4mmHg、蒸留温度109℃)した後、モレ
キユラシーブを添加し、真空加熱乾燥した
LiClO4と混合し、アルゴンドライボツクス中に
保存した。
Example 1 Propylene carbonate was obtained by distilling a commercially available product under reduced pressure (degree of vacuum: 4 mmHg, distillation temperature: 109°C), adding molecular sieve, and drying under vacuum heat.
Mixed with LiClO 4 and stored in an argon dry box.

テトラハイドロフランは、アルゴンガス気流
下、常圧蒸留(蒸留温度65℃)した後、モレキユ
ラシーブを添加し、真空加熱乾燥処理した
LiClO4と混合して電解液とし、アルゴンドライ
ボツクス中に保存した。
Tetrahydrofuran was distilled under normal pressure under a stream of argon gas (distillation temperature 65°C), then molecular sieves were added and vacuum heat dried.
The electrolyte was mixed with LiClO 4 and stored in an argon dry box.

混合溶媒は、上記の様に形成したプロピレンカ
ーボネイト/LiClO4とテトラハイドロフラン/
LiClO4を混合し、この混合溶媒系電解液にモレ
キユラシーブを添加し、アルゴンドライボツクス
中に保存した。
The mixed solvent is propylene carbonate/ LiClO4 formed as above and tetrahydrofuran/
LiClO 4 was mixed, molecular sieve was added to this mixed solvent electrolyte, and the mixture was stored in an argon dry box.

Pt極を作用極、対極にLiを、参照電極としてLi
を用いた電池を組み、Pt極上にLiを析出させる
事により、Li極の充放電特性を測定した。電解液
には2NLiClO4/プロピレンカーボネイトと
2NLiClO4/テトラハイドロフランを体積比4:
3で混合したものを用いた。この混合電解液系の
導電率は9×10-3Ω-1cm-1であつた。
P t electrode is the working electrode, Li is the counter electrode, and Li is the reference electrode.
The charge and discharge characteristics of the Li electrode were measured by assembling a battery using the Pt electrode and depositing Li on the Pt electrode. The electrolyte contains 2NLiClO 4 /propylene carbonate and
2NLiClO 4 /tetrahydrofuran at a volume ratio of 4:
The mixture in step 3 was used. The electrical conductivity of this mixed electrolyte system was 9×10 −3 Ω −1 cm −1 .

測定はまず5mA/cm2の定電流で1分間Pt極上
にLiを析出させ、充電した後、5mA/cm2で1分
間5mA/cm2の定電流でPt極上に析出したLiをLi+
イオンとして放電するサイクル試験を行なつた。
充放電効率はPt極の電位変化より求めPt極上に
析出したLiをLi+イオンとして放電させるのに要
した電気量とPt極上にLiを析出させるための充
電電気量との比から算出した。
In the measurement, Li was first deposited on the Pt electrode for 1 minute at a constant current of 5 mA/cm 2 , and after charging, the Li deposited on the Pt electrode was deposited on the Pt electrode at a constant current of 5 mA/cm 2 for 1 minute at 5 mA/cm 2 .
A cycle test was conducted in which the battery was discharged as ions.
The charge/discharge efficiency was determined from the potential change of the Pt electrode and calculated from the ratio of the amount of electricity required to discharge Li deposited on the Pt electrode as Li + ions and the amount of electricity charged to deposit Li on the Pt electrode.

第1図は、充放電効率とサイクル数の関係を示
す図であり、図中のaは上記電解液を用いた場合
であり、d及びeは、それぞれ、2NLiClO4/プ
ロピレンカーボネイト及び2NLiClO4/テトラハ
イドロフラン単独系の電解液を用いた場合の充放
電特性を参考例として示した。第1図から判るよ
うに、単独系d,eに比べて、混合系aは明らか
に充放電サイクル寿命が飛躍的に向上していた。
400サイクル以後の充放電効率は、500回目で72.5
%、1000回目で53.5%、2000回目で49%と極めて
良好な値を示した。
FIG. 1 is a diagram showing the relationship between charge/discharge efficiency and cycle number, in which a is the case when the above electrolyte is used, and d and e are 2NLiClO 4 /propylene carbonate and 2NLiClO 4 / The charging and discharging characteristics when using an electrolyte containing only tetrahydrofuran are shown as a reference example. As can be seen from FIG. 1, the charge/discharge cycle life of the mixed system a was clearly improved dramatically compared to the single systems d and e.
The charge/discharge efficiency after 400 cycles is 72.5 at the 500th cycle.
%, it showed extremely good values of 53.5% at the 1000th time and 49% at the 2000th time.

実施例 2 電解液として1.25NLiClO4/プロピレンカーボ
ネイトと1.25NLiClO4/テトラハイドロフランを
体積比4:6で混合したものを用いた以外は、実
施例1と同様にして、Li極の充放電特性の測定を
行なつた。この混合電解液系の導電率は9.8×
10-3Ω-1cm-1であつた。1.25NLiClO4/プロピレ
ンカーボネイトと1.25NLiClO4/テトラハイドロ
フランを体積比4:6で混合した電解液をLi極と
組み合わせてLi極の充放電サイクル試験を行なつ
た場合の充放電効率とサイクル数の関係を第1図
のbで示す。第1図のb及びd,eから判る様
に、単独系d,eに比べて上記電解液bを用いる
事により、充放電サイクル寿命を向上させること
ができた。
Example 2 The charging and discharging characteristics of the Li electrode were determined in the same manner as in Example 1, except that a mixture of 1.25NLiClO 4 /propylene carbonate and 1.25NLiClO 4 /tetrahydrofuran at a volume ratio of 4:6 was used as the electrolyte. Measurements were made. The conductivity of this mixed electrolyte system is 9.8×
It was 10 -3 Ω -1 cm -1 . Charging/discharging efficiency and number of cycles when performing a Li electrode charge/discharge cycle test using an electrolyte containing a mixture of 1.25NLiClO 4 /propylene carbonate and 1.25NLiClO 4 /tetrahydrofuran at a volume ratio of 4:6 in combination with a Li electrode. The relationship is shown by b in FIG. As can be seen from b, d, and e in FIG. 1, the charge/discharge cycle life could be improved by using the electrolyte b as compared to the single systems d and e.

実施例 3 電解液として1.25NLiClO4/プロピレンカーボ
ネイトと2NLiClO4/テトラハイドロフランを体
積比2:3で混合したものを用いた以外は、実施
例1と同様にして、Li極の充放電特性の測定を行
なつた。この混合電解液系の導電率は10.0×
10-3Ω-1cm-1であつた。1.25NLiClO4/プロピレ
ンカーボネイトと1.25NLiClO4/テトラハイドロ
フランを混合した電解液をLi極と組み合わせて、
Li極の充放電サイクル試験を行なつた場合の充放
電効率とサイクル数の関係を第1図のcに示す。
第1図のc及びd,eから判る様に単独系d,e
に比べて上記電解液cを用いる事により充放電サ
イクル寿命を向上させる事ができた。
Example 3 The charging and discharging characteristics of Li electrodes were determined in the same manner as in Example 1, except that a mixture of 1.25NLiClO 4 /propylene carbonate and 2NLiClO 4 /tetrahydrofuran at a volume ratio of 2:3 was used as the electrolyte. Measurement was carried out. The conductivity of this mixed electrolyte system is 10.0×
It was 10 -3 Ω -1 cm -1 . By combining an electrolyte containing a mixture of 1.25NLiClO 4 /propylene carbonate and 1.25NLiClO 4 /tetrahydrofuran with a Li electrode,
Figure 1c shows the relationship between the charge and discharge efficiency and the number of cycles when a Li electrode was subjected to a charge and discharge cycle test.
As can be seen from c, d, and e in Figure 1, the independent system d, e
By using the above electrolyte c, the charge/discharge cycle life could be improved compared to the above.

以上の説明から明らかな様に、本発明によれ
ば、無機塩を溶質に、プロピレンカーボネイトと
テトラハイドロフランの混合溶媒を溶媒に用いる
事により、Li極の充放電特性が良好で、かつ、高
いLi+イオン伝導性を有するリチウム二次電池用
非水電解液を実現する事ができる。
As is clear from the above explanation, according to the present invention, by using an inorganic salt as a solute and a mixed solvent of propylene carbonate and tetrahydrofuran as a solvent, the charge and discharge characteristics of the Li electrode are good and high. It is possible to realize a nonaqueous electrolyte for lithium secondary batteries that has Li + ion conductivity.

実施例 4 電解液として、1.5NLiAsF6あるいは1NLiPF6
をプロピレンカーボネイト(PC)とテトラヒド
ロフラン(THF)の混合溶媒(1/1)に溶解
したものを用いた以外は、実施例1と同様にし
て、Li極の充放電特性の測定を行つた。第2図に
結果を示す。第2図から判るように、本発明の電
解液を(第2図a,b)用いることにより、PC
単独系(第2図c,d)に比較して、充放電サイ
クル寿命を向上させることができた。
Example 4 1.5NLiAsF 6 or 1NLiPF 6 as electrolyte
The charging and discharging characteristics of the Li electrode were measured in the same manner as in Example 1, except that a mixture of propylene carbonate (PC) and tetrahydrofuran (THF) (1/1) was used. Figure 2 shows the results. As can be seen from Fig. 2, by using the electrolyte of the present invention (Fig. 2 a, b), PC
Compared to the single system (Fig. 2 c, d), the charge/discharge cycle life could be improved.

実施例 5 第3図は本発明の一具体例であるボタン型電池
の特性測定用電池セルの断面概略図であり、1は
Niメツキを施した黄銅製容器(以下容器とい
う)、2はリチウム負極、3は多孔質ポリプロピ
レン製隔膜(以下隔膜という)、4はカーボン繊
維よりなるフエルト(以下フエルトという)、5
は正極合剤、6はテフロン製容器、7はNiリー
ド線を示す。容器1の直径26mmの凹室内に正極合
剤5を挿入し、その上に電解液含浸用のフエルト
4を載せ隔膜3を介してリチウム負極2を載置
し、テフロン製容器6でしめつけた。リチウム負
極2は直径20mmの円板であり、フエルト4及び隔
膜3も円板形のものを用いた。
Example 5 FIG. 3 is a schematic cross-sectional view of a battery cell for measuring the characteristics of a button-type battery, which is a specific example of the present invention.
Ni-plated brass container (hereinafter referred to as the container); 2 is a lithium negative electrode; 3 is a porous polypropylene diaphragm (hereinafter referred to as the diaphragm); 4 is a felt made of carbon fiber (hereinafter referred to as the felt);
6 indicates a positive electrode mixture, 6 indicates a Teflon container, and 7 indicates a Ni lead wire. A positive electrode mixture 5 was inserted into a concave chamber with a diameter of 26 mm in a container 1, a felt 4 for impregnating an electrolytic solution was placed on top of the positive electrode mixture 5, a lithium negative electrode 2 was placed with a diaphragm 3 in between, and the container 6 made of Teflon was tightened. The lithium negative electrode 2 was a disk with a diameter of 20 mm, and the felt 4 and the diaphragm 3 were also disk-shaped.

正極合剤5はV2O50.1gとアセチレンブラツク
0.1gを混合して形成した。
Positive electrode mixture 5 consists of 0.1 g of V 2 O 5 and acetylene black.
It was formed by mixing 0.1 g.

電解液として、プロピレンカーボネート(以
下、PCと略記)とテトラヒドロフラン(以下、
THFと略記)の混合溶媒に1モル/のLiClO4
を溶解させたものを用いた。このようにして作成
した電池について、3mA/cm2の定電流放電をお
こなつたところ、電池の放電終止電圧が1Vにな
るまでのV2O5重量あたりの放電容量と溶媒混合
比の関係は第4図のようになつた。第4図から判
るように放電容量を増加させるためには、すなわ
ち一次電池用として、上記電解液を使用する最適
条件は、PCに対するTHFの体積混合比は3:7
〜2:8が望ましい。また、上記のように作製し
た別の電池について、3mA/cm2の定電流で150A
h/Kgの定容量で放電と充電をくり返す充放電サ
イクル試験をおこなつたところ、放電終止電圧が
1Vになるまでの充放電サイクル数と溶媒混合比
の関係は第5図のようになつた。PCに対する
THFの体積混合比8:2〜3:7の範囲におい
て、特に優れた充放電特性を示し、二次電池用に
上記電解液を使用する条件は、一次電池の場合と
大きく異なつていることが判つた。従つて、本発
明の上記電解液を二次電池に使用する場合、PC
に対するTHFの体積混合比が8:2〜3:7が
最適である。
Propylene carbonate (hereinafter abbreviated as PC) and tetrahydrofuran (hereinafter abbreviated as PC) are used as electrolytes.
1 mol/LiClO 4 in a mixed solvent of (abbreviated as THF)
A dissolved solution was used. When the battery thus created was subjected to constant current discharge at 3 mA/cm 2 , the relationship between the discharge capacity per 5 weight of V 2 O and the solvent mixture ratio until the battery's final discharge voltage reached 1 V was as follows: It looked like Figure 4. As can be seen from Figure 4, in order to increase the discharge capacity, that is, for primary batteries, the optimum conditions for using the above electrolyte are that the volumetric mixing ratio of THF to PC is 3:7.
~2:8 is desirable. In addition, for another battery made as above, the current was 150A at a constant current of 3mA/ cm2 .
When we conducted a charge/discharge cycle test that repeated discharging and charging at a constant capacity of h/Kg, we found that the final discharge voltage was
The relationship between the number of charge/discharge cycles until the voltage reached 1V and the solvent mixture ratio was as shown in Figure 5. against PC
Particularly excellent charging and discharging characteristics were exhibited in the THF volume mixing ratio range of 8:2 to 3:7, and the conditions for using the above electrolyte for secondary batteries are significantly different from those for primary batteries. I understand. Therefore, when using the electrolyte of the present invention in a secondary battery, PC
The optimum volumetric mixing ratio of THF to 8:2 to 3:7.

この範囲を超えると優れた充放電特性は得られ
ない。
If it exceeds this range, excellent charge-discharge characteristics cannot be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明の実施例における
リチウム極の充放電効率とサイクル数の関係を示
した図であり、第3図はボタン型電池の特性測定
用電池モルの断面概略図、第4図は放電容量と
PCとTHFの体積混合比との関係を示す図、第5
図は充放電サイクル数とPCとTHFの体積混合比
との関係を示す図である。 1……容器、2……リチウム負極、3……隔
膜、4……フエルト、5……正極合剤、6……テ
フロン製容器、7……Niリード線。
Figures 1 and 2 are diagrams showing the relationship between the charge/discharge efficiency of a lithium electrode and the number of cycles in an example of the present invention, and Figure 3 is a schematic cross-sectional diagram of a battery mole for measuring the characteristics of a button-type battery. , Figure 4 shows the discharge capacity and
Diagram showing the relationship between the volumetric mixing ratio of PC and THF, 5th
The figure shows the relationship between the number of charge/discharge cycles and the volumetric mixing ratio of PC and THF. 1... Container, 2... Lithium negative electrode, 3... Diaphragm, 4... Felt, 5... Positive electrode mixture, 6... Teflon container, 7... Ni lead wire.

Claims (1)

【特許請求の範囲】[Claims] 1 リチウムを負極活物質とし、リチウムイオン
に対して電気化学的に活性で、かつリチウムイオ
ンと可逆的な電気化学的反応を行なう物質を正極
活物質とし、無機または有機塩を有機溶媒に溶解
させた非水電解液を用いた二次電池において、前
記非水電解液の有機溶媒として、プロピレンカー
ボネートに対するテトラヒドロフランの体積混合
比が8:2〜3:7であるプロピレンカーボネイ
トとテトラヒドロフランの混合物を用いた事を特
徴とするリチウム二次電池用非水電解液。
1. Lithium is used as a negative electrode active material, a substance that is electrochemically active towards lithium ions and undergoes a reversible electrochemical reaction with lithium ions is used as a positive electrode active material, and an inorganic or organic salt is dissolved in an organic solvent. In a secondary battery using a nonaqueous electrolyte, a mixture of propylene carbonate and tetrahydrofuran is used as the organic solvent of the nonaqueous electrolyte, and the volume mixing ratio of tetrahydrofuran to propylene carbonate is 8:2 to 3:7. A non-aqueous electrolyte for lithium secondary batteries featuring:
JP56003647A 1981-01-13 1981-01-13 Electrolyte for lithium secondary battery Granted JPS57118375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56003647A JPS57118375A (en) 1981-01-13 1981-01-13 Electrolyte for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56003647A JPS57118375A (en) 1981-01-13 1981-01-13 Electrolyte for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPS57118375A JPS57118375A (en) 1982-07-23
JPS6362869B2 true JPS6362869B2 (en) 1988-12-05

Family

ID=11563264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56003647A Granted JPS57118375A (en) 1981-01-13 1981-01-13 Electrolyte for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPS57118375A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288880A (en) * 1990-04-05 1991-12-19 Matsushita Electric Ind Co Ltd Multicolor image recorder
JPH04130973U (en) * 1991-05-27 1992-12-01 株式会社リコー Image forming device using a belt-like image carrier

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041774A (en) * 1983-08-18 1985-03-05 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPS63148566A (en) * 1986-12-10 1988-06-21 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte cell
JPS63148565A (en) * 1986-12-10 1988-06-21 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte cell
JPS63148567A (en) * 1986-12-10 1988-06-21 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte cell
JPS63148568A (en) * 1986-12-10 1988-06-21 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte cell
JPH0362447A (en) * 1989-05-08 1991-03-18 Eastman Kodak Co Electrochemical cell module
JP3341524B2 (en) * 1995-04-04 2002-11-05 宇部興産株式会社 Electrolyte for lithium secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919052A (en) * 1972-06-12 1974-02-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919052A (en) * 1972-06-12 1974-02-20

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288880A (en) * 1990-04-05 1991-12-19 Matsushita Electric Ind Co Ltd Multicolor image recorder
JPH04130973U (en) * 1991-05-27 1992-12-01 株式会社リコー Image forming device using a belt-like image carrier

Also Published As

Publication number Publication date
JPS57118375A (en) 1982-07-23

Similar Documents

Publication Publication Date Title
US7468224B2 (en) Battery having improved positive electrode and method of manufacturing the same
TW385562B (en) Lithium ion electrochemical cell
JP3187929B2 (en) Lithium secondary battery
US5352548A (en) Secondary battery
JP4412778B2 (en) Polymer electrolyte battery
US5605772A (en) Composite carbon/polymer electrode for a rechargeable electrochemical lithium cell
Liu et al. Construction and destruction of passivating layer on LixC6 in organic electrolytes: an impedance study
JPH11135148A (en) Organic electrolyte and lithium secondary battery using the same
US6764791B2 (en) Rechargeable lithium battery
JPWO2019230322A1 (en) Negative electrode for lithium ion secondary battery
JPS59134568A (en) Electrolyte for lithium battery
JPS6362869B2 (en)
EP0810681B1 (en) Nonaqueous electrolyte secondary battery
JP3480764B2 (en) Non-aqueous electrolyte secondary battery
JP3398057B2 (en) Polymer electrolyte secondary battery
JPH0636370B2 (en) Electrolyte for lithium secondary battery
JPH0351068B2 (en)
JPH08124597A (en) Solid electrolytic secondary cell
JP3350114B2 (en) Non-aqueous electrolyte secondary battery
JPH0477426B2 (en)
JP3433079B2 (en) Lithium secondary battery
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
JPH0945328A (en) Lithium secondary battery
JPH0415584B2 (en)
JPH0564429B2 (en)