JPH0564429B2 - - Google Patents

Info

Publication number
JPH0564429B2
JPH0564429B2 JP58188954A JP18895483A JPH0564429B2 JP H0564429 B2 JPH0564429 B2 JP H0564429B2 JP 58188954 A JP58188954 A JP 58188954A JP 18895483 A JP18895483 A JP 18895483A JP H0564429 B2 JPH0564429 B2 JP H0564429B2
Authority
JP
Japan
Prior art keywords
pyrrole
electrode
electrolytic solution
present
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58188954A
Other languages
Japanese (ja)
Other versions
JPS6079677A (en
Inventor
Shinichi Tobishima
Junichi Yamaki
Takeshi Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58188954A priority Critical patent/JPS6079677A/en
Publication of JPS6079677A publication Critical patent/JPS6079677A/en
Publication of JPH0564429B2 publication Critical patent/JPH0564429B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 本発明はリチウム電池に用いる電解液に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolyte for use in lithium batteries.

リチウムを負極活物質として用いる電池は小
型・高エネルギ密度を有する電池として研究され
ているが、その二次化が大きな問題となつてい
る。
Batteries using lithium as a negative electrode active material are being researched as small-sized batteries with high energy density, but secondaryization has become a major problem.

二次化が可能な正極活物質として、V2O5
V6O13等の金属酸化物、TiS2、VS2等の層状化合
物が、Liとの間でトポケミカルな反応をする化合
物として知られており、現在までチタン、ジルコ
ニウム、ハフニウム、ニオビウム、タンタル、バ
ナジウムの硫化物、セレン化物、テルル化物を用
いた電池(米国特許第4089052号明細書参照)等
が開示されている。
As a positive electrode active material that can be secondaryized, V 2 O 5 ,
Metal oxides such as V 6 O 13 and layered compounds such as TiS 2 and VS 2 are known as compounds that undergo topochemical reactions with Li. Batteries using vanadium sulfide, selenide, telluride (see US Pat. No. 4,089,052), etc. have been disclosed.

しかしながら、このような二次電池用正極活物
質の研究に比して、Li極の充放電特性に関する研
究は充分とはいえず、リチウム二次電池実現のた
めには、充放電効率及びサイクル寿命等の充放電
特性の良好な電解液の探査が重大な問題となつて
いる。Li極の充放電効率を向上させる試みとして
はLiC104/プロピレンカーボネイトにニトロメ
タン、SO2等の添加剤を加える試み
〔Electrochimica Acta.vol.22、第75頁〜85頁
(1977)〕等が行われているが、必ずしも充分とは
言えず、さらに特性の優れたリチウム二次電池用
電解液が求められている。
However, compared to such research on positive electrode active materials for secondary batteries, research on the charging and discharging characteristics of Li electrodes is not sufficient, and in order to realize lithium secondary batteries, charging and discharging efficiency and cycle life are The search for electrolytes with good charge-discharge characteristics has become a serious issue. Attempts to improve the charging and discharging efficiency of Li electrodes include adding additives such as nitromethane and SO 2 to LiC10 4 /propylene carbonate [Electrochimica Acta.vol. 22, pp. 75-85 (1977)]. However, this is not necessarily sufficient, and there is a need for an electrolyte for lithium secondary batteries with even better characteristics.

本発明は、このような現状に鑑みてなされたも
のであり、その目的は、Li極の充放電特性の優れ
たリチウム二次電池用電解液を提供することにあ
る。
The present invention has been made in view of the current situation, and its purpose is to provide an electrolytic solution for a lithium secondary battery that has excellent charging and discharging characteristics of Li electrodes.

したがつて、本発明によるリチウム二次電池用
電解液は、リチウム塩を有機溶媒に溶解させてリ
チウム電池用電解液において、前記電解液の添加
材として最大0.2モル/のピロールを用いたこ
とを特徴とするものである。
Therefore, the electrolytic solution for lithium secondary batteries according to the present invention is an electrolytic solution for lithium batteries in which a lithium salt is dissolved in an organic solvent, and a maximum of 0.2 mol/pyrrole is used as an additive in the electrolytic solution. This is a characteristic feature.

本発明によれば、リチウム塩を有機溶媒に溶解
した電解液に、ピロールを添加することにより、
Li極の充放電特性が良好なリチウム二次電池を実
現しえる。
According to the present invention, by adding pyrrole to an electrolytic solution in which a lithium salt is dissolved in an organic solvent,
It is possible to realize a lithium secondary battery with good charge/discharge characteristics of the Li electrode.

本発明を更に詳しく説明する。 The present invention will be explained in more detail.

リチウム電池はリチウムを負極活物質とし、電
気化学的に活性で、かつLi+イオンと可逆的な電
気化学反応を行う物質を正極活物質とする電池で
あるが、本発明のよれば、リチウム塩を有機溶媒
に溶解した電解液の添加剤としてピロールを用い
る。
A lithium battery is a battery that uses lithium as a negative electrode active material and a positive electrode active material that is electrochemically active and undergoes a reversible electrochemical reaction with Li + ions.According to the present invention, lithium salt is used as a positive electrode active material. Pyrrole is used as an additive in an electrolytic solution prepared by dissolving pyrrole in an organic solvent.

ピロールの構造式を下記の式()に示す。 The structural formula of pyrrole is shown in the following formula ().

本発明によるリチウム二次電池の非水電解液に
用いられる有機溶媒は、従来、この種の電解液に
用いられるものであればいかなるものでもよい。
例えば、プロピレンカーボネイト、テトラハイド
ロフラン、ジメチルスルホキシド、γ−ブチロラ
クトン、ジオキソラン、1,2−ジメトキシエタ
ン、2−メチルテトラハイドロフランから選択さ
れた1種以上の有機溶媒であることができる。
The organic solvent used in the non-aqueous electrolyte of the lithium secondary battery according to the present invention may be any organic solvent conventionally used in this type of electrolyte.
For example, one or more organic solvents selected from propylene carbonate, tetrahydrofuran, dimethyl sulfoxide, γ-butyrolactone, dioxolane, 1,2-dimethoxyethane, and 2-methyltetrahydrofuran can be used.

さらに、溶質であるリチウム塩は前述の有機溶
媒と同様限定されない。例えば、LiC104
LiBF4、LiAsF6、LiPF6、LiAlCl4、CF3SO3Li、
CF3CO2Liから選択された1種以上のような、一
般に非水電解液の溶質として用いられるリチウム
塩を有効に用いることができる。
Furthermore, the lithium salt that is the solute is not limited to the above-mentioned organic solvent. For example, LiC104 ,
LiBF 4 , LiAsF 6 , LiPF 6 , LiAlCl 4 , CF 3 SO 3 Li,
Lithium salts commonly used as solutes in nonaqueous electrolytes, such as one or more selected from CF 3 CO 2 Li, can be effectively used.

本発明において前記非水電解液に添加される添
加剤はピロールである。
In the present invention, the additive added to the non-aqueous electrolyte is pyrrole.

ピロールを添加することにより、Li表面に吸着
し、このことが電解液構成物質とLiとの間の自己
放電的反応やLiの析出形態を変化させ、充放電効
率の向上が期待される。非水電解液に添加するピ
ロールの添加量は0.2モル/を上限とする。0.2
モル/を超えると、Liの充放電特性が劣化する
おそれがあるからである。
By adding pyrrole, it is adsorbed on the Li surface, which changes the self-discharge reaction between the electrolyte constituents and Li and the precipitation form of Li, and is expected to improve charge and discharge efficiency. The upper limit of the amount of pyrrole added to the non-aqueous electrolyte is 0.2 mol/. 0.2
This is because if the amount exceeds mol/, the charge/discharge characteristics of Li may deteriorate.

次ぎに、本発明の実施例を説明する。 Next, examples of the present invention will be described.

実施例 1 Pt極を作用極、対極にLiを参照電極としてLi
を用いた電池を組み、pt極上にLiを析出させるこ
とにより、Li極の充放電特性を測定した。電解液
には1.モル/のLiC104および0.1モル/1のピ
ロールをプロピレンカーボネイトに溶解させたも
のを用いた。
Example 1 Pt electrode is used as a working electrode, Li is used as a counter electrode and Li is used as a reference electrode.
The charge and discharge characteristics of the Li electrode were measured by assembling a battery using the PT electrode and depositing Li on the PT electrode. The electrolytic solution used was one in which 1. mol/mol of LiC10 4 and 0.1 mol/1 pyrrole were dissolved in propylene carbonate.

測定は、まず0.5mA/cm2の定電流で20分間、
Pt極上にLiを析出させ充電した後、0.5mA/cm2
の定電流でPt極上に析出したLiをLi+イオンとし
て放電するサイクル試験を行つた。充放電効率は
Pt極の電位の変化より求め、Pt極上に析出した
LiをLi+イオンとして放電させるのに要した電気
量との比から算出した。
The measurement was first carried out for 20 minutes at a constant current of 0.5 mA/ cm2 .
After depositing Li on Pt electrode and charging, 0.5mA/cm 2
A cycle test was performed in which Li deposited on the Pt electrode was discharged as Li + ions at a constant current of . The charge/discharge efficiency is
Determined from the change in potential of the Pt electrode and deposited on the Pt electrode.
It was calculated from the ratio to the amount of electricity required to discharge Li as Li + ions.

第1図はLi極の充放電効率とサイクル数の関係
を示す図であり、図中、aは本発明の上記電解液
を用いた場合であり、bは参考例の1MLiC104
プロピレンカーボネイト中でのLi極の充放電特性
を示したものである。
FIG. 1 is a diagram showing the relationship between the charging and discharging efficiency of Li electrodes and the number of cycles. In the figure, a shows the case where the above-mentioned electrolyte of the present invention is used, and b shows the case where the above-mentioned electrolyte of the present invention is used, and b shows the case where the reference example 1MLiC10 4 /
This shows the charging and discharging characteristics of Li electrodes in propylene carbonate.

第1図から判る様に、ピロールを添加した電解
液を使用することにより、Li極の充放電特性は著
しく向上している。
As can be seen from FIG. 1, the use of an electrolytic solution containing pyrrole significantly improves the charging and discharging characteristics of the Li electrode.

実施例 2 電解液として、LiC104および0.1Mピロールを
γ−ブチロラクトンにに溶解させたものを用いた
以外は実施例1と同様にしてLiの充放電特性を測
定した。
Example 2 The charging and discharging characteristics of Li were measured in the same manner as in Example 1, except that LiC10 4 and 0.1M pyrrole dissolved in γ-butyrolactone were used as the electrolyte.

第2図はLi極の充放電効率とサイクル数の関係
を示す図であり、図中、aは本発明の上記電解液
を用いた場合である。また、bは本発明の効果を
示すための参考例であり、1M LiC104/γ−ブ
チロラクトンを用いた場合の充放電特性を示した
ものである。
FIG. 2 is a diagram showing the relationship between the charge/discharge efficiency of Li electrodes and the number of cycles, and in the figure, a represents the case where the above-mentioned electrolytic solution of the present invention is used. Moreover, b is a reference example for demonstrating the effect of the present invention, and shows the charge/discharge characteristics when 1M LiC10 4 /γ-butyrolactone is used.

第2図から判る様に、ピロールを添加した電解
液を使用することにより、Li極の充放電特性は著
しく向上している。
As can be seen from FIG. 2, the use of an electrolytic solution containing pyrrole significantly improves the charging and discharging characteristics of the Li electrode.

以上の説明から明らかなように、本発明によれ
ば、リチウム塩を有機溶媒に溶解させた非水電解
液において、ピロールを添加剤として用いること
により、Li極の充放電特性の優れたリチウム二次
電池用非水電解液を提供する事ができる。
As is clear from the above description, according to the present invention, by using pyrrole as an additive in a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent, a lithium dielectric with excellent charge and discharge characteristics of a Li electrode can be obtained. It is possible to provide a non-aqueous electrolyte for next-generation batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明による電解液を用い
た場合のLi極の充放電効率とサイクル数の関係を
示す図である。
FIGS. 1 and 2 are diagrams showing the relationship between the charging/discharging efficiency of Li electrodes and the number of cycles when using the electrolytic solution according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 リチウム塩を有機溶媒に溶解させてリチウム
電池用電解液において、前記電解液の添加材とし
て最大0.2モル/のピロールを用いたことを特
徴とするリチウム二次電池用電解液。
1. An electrolytic solution for a lithium secondary battery, characterized in that a lithium salt is dissolved in an organic solvent, and a maximum of 0.2 mol/pyrrole is used as an additive in the electrolytic solution.
JP58188954A 1983-10-07 1983-10-07 Electrolyte for lithium secondary battery Granted JPS6079677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58188954A JPS6079677A (en) 1983-10-07 1983-10-07 Electrolyte for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58188954A JPS6079677A (en) 1983-10-07 1983-10-07 Electrolyte for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPS6079677A JPS6079677A (en) 1985-05-07
JPH0564429B2 true JPH0564429B2 (en) 1993-09-14

Family

ID=16232824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58188954A Granted JPS6079677A (en) 1983-10-07 1983-10-07 Electrolyte for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPS6079677A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3636528A1 (en) * 1986-10-27 1988-04-28 Basf Ag ELECTROLYT FOR ELECTROCHEMICAL CELLS
JPH09204932A (en) * 1996-01-25 1997-08-05 Fujitsu Ltd Electrolyte for lithium secondary battery, and lithium secondary battery
CN102569896B (en) * 2010-12-10 2015-01-14 比亚迪股份有限公司 Lithium ion secondary battery and preparation method thereof
CN102881862B (en) * 2011-07-12 2015-03-25 中国科学院上海硅酸盐研究所 Protective metal anode structure and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778310A (en) * 1972-05-01 1973-12-11 Du Pont High energy density battery having unsaturated heterocyclic solvent containing electrolyte

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778310A (en) * 1972-05-01 1973-12-11 Du Pont High energy density battery having unsaturated heterocyclic solvent containing electrolyte

Also Published As

Publication number Publication date
JPS6079677A (en) 1985-05-07

Similar Documents

Publication Publication Date Title
US7247404B2 (en) Electrolyte for lithium secondary batteries and lithium secondary battery comprising the same
US20090169992A1 (en) Lithium Secondary Battery Using Ionic Liquid
US10003103B2 (en) Additive having cyano group for non-aqueous electrolyte and electrochemical device using the same
RU2330354C1 (en) Non-aquatic electrolyte containing oxyanions, and lithium battery using it
JPH11339850A (en) Lithium-ion secondary battery
JP2003203674A (en) Nonaqueous electrolyte secondary cell
JPS59134568A (en) Electrolyte for lithium battery
US7422827B2 (en) Nonaqueous electrolyte
JPH0636370B2 (en) Electrolyte for lithium secondary battery
JPH053112B2 (en)
JP7301449B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JPH0351068B2 (en)
JP2965674B2 (en) Lithium secondary battery
JPH0564429B2 (en)
JP3831599B2 (en) Lithium secondary battery
JPH0477426B2 (en)
JPH08162154A (en) Secondary battery having nonaqueous solvent electrolyt
JPH0377626B2 (en)
JP4076748B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JPH0226345B2 (en)
JP2886331B2 (en) Lithium secondary battery
JPH0722068A (en) Secondary battery having nonaqueous solvent electrolyte
JPH0351061B2 (en)
JPS59130073A (en) Electrolyte for lithic battery
JP4076726B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery