JPS62290071A - Organic electrolyne secondary battery - Google Patents

Organic electrolyne secondary battery

Info

Publication number
JPS62290071A
JPS62290071A JP61133304A JP13330486A JPS62290071A JP S62290071 A JPS62290071 A JP S62290071A JP 61133304 A JP61133304 A JP 61133304A JP 13330486 A JP13330486 A JP 13330486A JP S62290071 A JPS62290071 A JP S62290071A
Authority
JP
Japan
Prior art keywords
chlorine
carbonate
organic electrolyte
lithium
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61133304A
Other languages
Japanese (ja)
Inventor
Yoshinori Toyoguchi
豊口 吉徳
Junichi Yamaura
純一 山浦
Toru Matsui
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61133304A priority Critical patent/JPS62290071A/en
Publication of JPS62290071A publication Critical patent/JPS62290071A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase current efficiency in charge-discharge of a negative electrode and cycle performance of a battery by using propylene carbonate whose hydrogen in third or fourth position is substituted with chlorine or fluorine as a solvent of organic electrolyte. CONSTITUTION:Propylene carbonate whose hydrogen in third or fourth position is substituted with chlorine or fluorine is used as a solvent of organic electrolyte. When LiClO4 is used as a solute or propylene carbonate (PC) as a solvent of organic electrolyte, C-O bond is broken by reaction with lithium. By substituting hydrogen in the C position with chlorine or fluorine, C-O bond is difficult to break because of strong electron attraction and current efficiency is increased. For example, 3-chloropropylene carbonate obtained by substituting hydrogen in third position with chlorine has structural formula shown in the formula I, 4-chloropropylene carbonate is shown in the formula II, and 3-chloro-4- fluoropropylene carbonate is shown in the formula III.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、負極にリチウムなどを用いた有機電解質二次
電池の改良に関するものであり、特に有機電解質の溶媒
を改良し、負極の充放電の電流効率を向上させるもので
ある。
[Detailed Description of the Invention] 3. Detailed Description of the Invention Industrial Field of Application The present invention relates to the improvement of organic electrolyte secondary batteries using lithium or the like in the negative electrode, and in particular to the improvement of organic electrolyte solvents. , which improves the current efficiency of charging and discharging the negative electrode.

従来の技術 リチウムなどのアルカリ金属を負極に用いた有機電解質
電池は、従来の鉛やニカド蓄電池に比べ、高エネルギー
密度になることが期待され、研究が活発に行われている
。その代表的な例として、負21\−。
Conventional Technology Organic electrolyte batteries that use alkali metals such as lithium as negative electrodes are expected to have higher energy density than conventional lead or nickel-cadmium storage batteries, and are being actively researched. A typical example is negative 21\-.

極にリチウム金属、正極に二硫化チタン(TiS2)を
用い、有機電解質の溶質として、過塩素酸リチウム(L
iCjl104 ) ヤ、ヘキサフロロアルシネート(
LiAsF6)、溶媒にプロピレンカーボネート(pc
)、や2−メチルテトラヒドロフラン(2−Me−TH
F )を用いたものがある。
Lithium metal is used as the electrode, titanium disulfide (TiS2) is used as the positive electrode, and lithium perchlorate (L) is used as the solute of the organic electrolyte.
iCjl104 ) Ya, hexafluoroarsinate (
LiAsF6), propylene carbonate (pc
), and 2-methyltetrahydrofuran (2-Me-TH
There is one using F).

発明が解決しようとする問題点 これらの電池では、負極の充放電の電流効率が60〜8
0チと低いために未だに実用化されていない。
Problems to be Solved by the Invention In these batteries, the current efficiency of charging and discharging the negative electrode is 60 to 8.
It has not been put into practical use yet because it is as low as 0.

問題点を解決するための手段 本発明では、従来の有機電解質の溶媒に代えて、少なく
とも3または4の位置の水素を塩素またはフッ素で置換
したプロピレンカーボネートを使用することを特徴とし
ている。
Means for Solving the Problems The present invention is characterized by the use of propylene carbonate in which hydrogen at at least 3 or 4 positions is replaced with chlorine or fluorine, in place of the conventional organic electrolyte solvent.

作用 従来のpcや2−Me−THFを溶媒として用いた有機
電解質中で負極リチウムを充電すると、活性なリチウム
のため、析出したリチウムの一部が溶媒と反応して、リ
チウムの塩が生成する。例えば3ベーi PC中では、次式のように 2Li+CH3−0H−CH2→Li2Co3+CH,
−CH=CH2析出したリチウムが炭酸リチウムになる
ことが報告されている。2−Me−THFの場合にも、
この溶媒がリチウムと反応すると考えられる。このため
負極の電流効率(充電に用した電荷量に対する、放電可
能な電荷量)は、60〜80%と低かった。
Effect: When negative electrode lithium is charged in an organic electrolyte using conventional PC or 2-Me-THF as a solvent, some of the precipitated lithium reacts with the solvent to form lithium salt because it is active lithium. . For example, in a 3Bai PC, 2Li+CH3-0H-CH2→Li2Co3+CH,
-CH=CH2 It has been reported that the precipitated lithium becomes lithium carbonate. Also in the case of 2-Me-THF,
It is believed that this solvent reacts with lithium. Therefore, the current efficiency of the negative electrode (the amount of charge that can be discharged relative to the amount of charge used for charging) was as low as 60 to 80%.

本発明者は、PCの場合C−00結合がLiとの反応に
より切れると考えて、とのCの位置の水素を、塩素また
はフッ素で置換することにより、これらの強い電子吸引
性のため、C−0の結合は切れにくくなり、これによシ
ミ流動率は向上すると考えた。例えば、3の位置を塩素
で置換した3−クロロプロピレンカーボネートは(1)
式のような同様に4−クロロプロピレンカーボネートの
構造ヲ(2)式に、また3−クロロ−470ロプロピレ
ンカーボネートの構造を(3)式に示す。
The present inventor believed that in the case of PC, the C-00 bond would be broken by the reaction with Li, and by replacing the hydrogen at the C position with chlorine or fluorine, due to their strong electron-withdrawing properties, It was thought that the bond of C-0 would be difficult to break and that this would improve the stain fluidity. For example, 3-chloropropylene carbonate with chlorine substituted at position 3 is (1)
Similarly, the structure of 4-chloropropylene carbonate is shown in formula (2), and the structure of 3-chloro-470ropropylene carbonate is shown in formula (3).

l ■ 実施例 以下本発明の詳細な説明する。l ■ Example The present invention will be explained in detail below.

実施例1 ビーカー形セル中で負極リチウムの電流効率を検討した
。大きさ2αX2ffiのニッケル板を負極の集電体と
し、これにリードとしてニッケルリボ5べ−7・ ンを付けた。対極には白金を用い、照合電極にはリチウ
ムを用いた。このセル中に各種有機電解質を入れ、4m
Aで2時間充電したのち、4mAで負極の電位が照合電
極に対して1、Ovになるまで放電した。この充電放電
をくり返した。電流効率は、充電した電荷量に対する放
電てきた電荷量で計算した。例えば放電が1.5時間で
あるならば、(1,ts hr X 4 mA)/(2
hr X 4 mA) x 100= 7 tsチとな
る。この充放電を50サイクルくり返して、平均の電流
効率を求めた。この値が大きい程、析出したリチウムは
溶媒と反応していないことになる。溶質は全て濃度0.
1モル/lのLiCIO4を用いた。結果を表に示す。
Example 1 The current efficiency of negative electrode lithium was investigated in a beaker-type cell. A nickel plate with a size of 2α×2ffi was used as the negative electrode current collector, and a 5-7 nickel ribbon was attached as a lead to this. Platinum was used for the counter electrode, and lithium was used for the reference electrode. Various organic electrolytes were put into this cell, and 4 m
After charging at A for 2 hours, it was discharged at 4 mA until the potential of the negative electrode became 1 Ov with respect to the reference electrode. This charging and discharging process was repeated. The current efficiency was calculated based on the amount of charge discharged relative to the amount of charge charged. For example, if the discharge is 1.5 hours, (1,ts hr X 4 mA)/(2
hr x 4 mA) x 100 = 7 ts. This charge/discharge cycle was repeated 50 times to determine the average current efficiency. The larger this value is, the less the precipitated lithium has reacted with the solvent. All solutes have a concentration of 0.
1 mol/l LiCIO4 was used. The results are shown in the table.

なお表中、本発明の溶媒の種類を次のように略式で示し
た。3の位置の水素を塩素で置換したものは、3−クロ
ロプロピレンカーボネートであるが、後のプロピレンカ
ーボネートを略し、3−クロロとした。同様に全て後の
プロピレンカーボネートを略した。
In the table, the types of solvents used in the present invention are shown in the following abbreviations. 3-chloropropylene carbonate is obtained by substituting hydrogen at position 3 with chlorine, but the latter propylene carbonate is abbreviated to 3-chloro. Similarly, the latter propylene carbonate was omitted in all cases.

これより、少なくとも3または4の位置の水素6ベー7 を塩素フッ素で置換することにより、充放電の電流効率
は増大することがわかる。また置換の度合は、3と4の
両方を塩素、フッ素で置換したものが良く、次に両方を
フッ化、塩化したものが良好であった。
From this, it can be seen that the current efficiency of charging and discharging is increased by replacing hydrogen 6be7 at at least the 3rd or 4th position with chlorine fluorine. Regarding the degree of substitution, it was better to substitute both 3 and 4 with chlorine or fluorine, and then to fluoride or chloride both.

7ベー7 実施例2 負極に直径17.5mm、厚さ0.6mの円板状リチウ
ムを用いた。この時の理論充填容量は、247mAhで
ある。正極にはTi82100重量部に導電剤としての
アセチレンブラック10重量部、結着剤としてポリ4フ
フ化工チレン樹脂10重量部を加えた合剤0.49を直
径17.6閣の円板状に圧縮成形したものを用いた。こ
の時の理論充填容量は80 mAhであった。これらの
正極、負極より扁平形電池を試作した。この電池の構造
を第1図に示す。
7Ba7 Example 2 A lithium disk having a diameter of 17.5 mm and a thickness of 0.6 m was used as a negative electrode. The theoretical filling capacity at this time is 247mAh. For the positive electrode, a 0.49% mixture of 100 parts by weight of Ti82, 10 parts by weight of acetylene black as a conductive agent, and 10 parts by weight of poly-4Fufu modified tyrene resin as a binder was compressed into a disk shape with a diameter of 17.6 mm. A molded one was used. The theoretical filling capacity at this time was 80 mAh. A flat battery was prototyped from these positive and negative electrodes. The structure of this battery is shown in FIG.

第1図において、1は電池ケース、2は封口板、3は負
極リチウム、4はセパレータ、6は正極、6はガスケッ
トである。
In FIG. 1, 1 is a battery case, 2 is a sealing plate, 3 is a negative electrode lithium, 4 is a separator, 6 is a positive electrode, and 6 is a gasket.

この電池を21+1Aの定電流で充放電をくり返した。This battery was repeatedly charged and discharged at a constant current of 21+1A.

放電は、電池電圧が1.2vになる時点で、充電は2.
8vになる時点でそれぞれ止めた。有機電解質の溶質に
は1モル/lのLiAsF6を用いた。
Discharge occurs when the battery voltage reaches 1.2V, and charge reaches 2.
I stopped each when it reached 8v. 1 mol/l LiAsF6 was used as the solute of the organic electrolyte.

各電池の有機電解質量は、全て200μlとした。The amount of organic electrolyte in each battery was 200 μl.

有機電解質の溶媒に、3−クロロ−4−クロロプロピレ
ンカーボネート、3−クロロプロピレンカーボネ−)1
4−クロロプロピレンカーボネート。
As the solvent for the organic electrolyte, 3-chloro-4-chloropropylene carbonate, 3-chloropropylene carbonate) 1
4-chloropropylene carbonate.

3−クロロプロピレンカーボネート、4−フロロプロピ
レンカーボネートを用いた電池を各々A。
Batteries using 3-chloropropylene carbonate and 4-fluoropropylene carbonate are labeled A.

B、C,D、にとし、従来のP C、2−Me−THF
令用いた電池を各々F、Gとする。第2図にはこれら電
池の各サイクルにおける放電電気量をプロットした。こ
れより少なくとも3または4の位置の水素を、塩素また
はフッ素で置換したプロピレンカーボネートを用いるこ
とにより、電池のサイクル特性が向上することがわかる
。これは、実施例1に示したように負極の充放電の電流
効率が向上したためである。
B, C, D, conventional PC, 2-Me-THF
The batteries used in the test are F and G, respectively. In FIG. 2, the amount of electricity discharged in each cycle of these batteries is plotted. This shows that the use of propylene carbonate in which hydrogen at at least the 3rd or 4th position is replaced with chlorine or fluorine improves the cycle characteristics of the battery. This is because the current efficiency of charging and discharging the negative electrode was improved as shown in Example 1.

以上は、リチウムを負極として用いた実施例について述
べたが、負極にリチウム−アルミニウム合金や、負極に
鉛、スズ、ビスマス、カドミウムなどの合金を用いて、
充電により負極中にリチウムを吸蔵させ、放電で吸蔵し
たリチウムを放出させる電極に対しても、本発明の溶媒
は、大きな効果を有した。
The above has described an example in which lithium was used as the negative electrode, but a lithium-aluminum alloy or an alloy of lead, tin, bismuth, cadmium, etc.
The solvent of the present invention also had a great effect on electrodes that occlude lithium in the negative electrode upon charging and release the occluded lithium upon discharging.

9べ一7゛ また正極については、TiS 2の場合のみを示したが
、本発明の溶媒が負極に対して大きな効果を有するので
あり、他の活物質を正極に用いても、電池の負極の充放
電効率は向上し、それに伴い電池のサイクル特性は向上
する。
Regarding the positive electrode, although only the case of TiS2 is shown, the solvent of the present invention has a great effect on the negative electrode, and even if other active materials are used for the positive electrode, the negative electrode of the battery will not be affected. The charging and discharging efficiency of the battery improves, and the cycle characteristics of the battery improve accordingly.

発明の効果 以上のように、本発明により、負極の充放電の電流効率
が向上し、電池のサイクル特性が向上する。
Effects of the Invention As described above, according to the present invention, the current efficiency of charging and discharging the negative electrode is improved, and the cycle characteristics of the battery are improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に用いた電池の縦断面図、第2図は各種
溶媒を用いた電池のサイクル特性を示す図である。 3・・・・・・負極、4・・・・・・セパレータ、6・
・・・・・正極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 フイフル牧
FIG. 1 is a longitudinal cross-sectional view of a battery used in an example, and FIG. 2 is a diagram showing cycle characteristics of batteries using various solvents. 3... Negative electrode, 4... Separator, 6...
...Positive electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure Huifuru Maki

Claims (1)

【特許請求の範囲】[Claims] 負極と正極と有機電解質とからなり、有機電解質の溶媒
に、少なくとも3または4の位置の水素を塩素またはフ
ッ素で置換したプロピレンカーボネートを用いたことを
特徴とする有機電解質二次電池。
An organic electrolyte secondary battery comprising a negative electrode, a positive electrode, and an organic electrolyte, characterized in that propylene carbonate in which hydrogen at at least the 3rd or 4th position is replaced with chlorine or fluorine is used as the solvent of the organic electrolyte.
JP61133304A 1986-06-09 1986-06-09 Organic electrolyne secondary battery Pending JPS62290071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61133304A JPS62290071A (en) 1986-06-09 1986-06-09 Organic electrolyne secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61133304A JPS62290071A (en) 1986-06-09 1986-06-09 Organic electrolyne secondary battery

Publications (1)

Publication Number Publication Date
JPS62290071A true JPS62290071A (en) 1987-12-16

Family

ID=15101533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61133304A Pending JPS62290071A (en) 1986-06-09 1986-06-09 Organic electrolyne secondary battery

Country Status (1)

Country Link
JP (1) JPS62290071A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0714148A1 (en) * 1994-11-09 1996-05-29 Furukawa Denchi Kabushiki Kaisha A lithium secondary battery
US5571635A (en) * 1994-04-15 1996-11-05 National Research Council Of Canada Electrolyte for a secondary cell
EP0775701A1 (en) * 1995-06-09 1997-05-28 Mitsui Petrochemical Industries, Ltd. Cyclic fluorinated carbonates and electrolyte solution and battery containing the carbonate
US5750730A (en) * 1996-01-10 1998-05-12 Sanyo Chemical Industries, Ltd. Fluorine-containing dioxolane compound, electrolytic solution composition, battery and capacitor
KR100686203B1 (en) 2004-08-27 2007-02-22 삼성정밀화학 주식회사 Process for preparing phenylthio-1,3-dioxolan-2-one derivatives
KR100686204B1 (en) 2004-08-27 2007-02-23 삼성정밀화학 주식회사 Process for preparing phenyloxo-1,3-dioxolan-2-one derivatives
EP2119715A1 (en) 2004-02-25 2009-11-18 Takeda Pharmaceutical Company Limited Benzimidazole derivative and its use as aii receptor antagonist
US7776476B2 (en) 2004-12-10 2010-08-17 Sony Corporation Battery
US8216726B2 (en) 2008-01-09 2012-07-10 Sony Corporation Battery
JP2012528116A (en) * 2009-05-28 2012-11-12 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング Process for preparing 4-fluoro-4-R-5-R'-1,3-dioxolan-2-one
US9000204B2 (en) 2009-07-16 2015-04-07 Solvay Flour Gmbh Process for the preparation of fluoroalkyl (fluoro)alkyl carbonates and carbamates

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571635A (en) * 1994-04-15 1996-11-05 National Research Council Of Canada Electrolyte for a secondary cell
US5714280A (en) * 1994-11-09 1998-02-03 Furukawa Denchi Kabushiki Kaisha Lithium secondary battery
EP0714148A1 (en) * 1994-11-09 1996-05-29 Furukawa Denchi Kabushiki Kaisha A lithium secondary battery
EP0775701A1 (en) * 1995-06-09 1997-05-28 Mitsui Petrochemical Industries, Ltd. Cyclic fluorinated carbonates and electrolyte solution and battery containing the carbonate
EP0775701A4 (en) * 1995-06-09 1997-09-17 Mitsui Petrochemical Ind Cyclic fluorinated carbonates and electrolyte solution and battery containing the carbonate
US5750730A (en) * 1996-01-10 1998-05-12 Sanyo Chemical Industries, Ltd. Fluorine-containing dioxolane compound, electrolytic solution composition, battery and capacitor
EP2119715A1 (en) 2004-02-25 2009-11-18 Takeda Pharmaceutical Company Limited Benzimidazole derivative and its use as aii receptor antagonist
KR100686203B1 (en) 2004-08-27 2007-02-22 삼성정밀화학 주식회사 Process for preparing phenylthio-1,3-dioxolan-2-one derivatives
KR100686204B1 (en) 2004-08-27 2007-02-23 삼성정밀화학 주식회사 Process for preparing phenyloxo-1,3-dioxolan-2-one derivatives
US7776476B2 (en) 2004-12-10 2010-08-17 Sony Corporation Battery
US8216726B2 (en) 2008-01-09 2012-07-10 Sony Corporation Battery
JP2012528116A (en) * 2009-05-28 2012-11-12 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング Process for preparing 4-fluoro-4-R-5-R'-1,3-dioxolan-2-one
US9000204B2 (en) 2009-07-16 2015-04-07 Solvay Flour Gmbh Process for the preparation of fluoroalkyl (fluoro)alkyl carbonates and carbamates

Similar Documents

Publication Publication Date Title
JPS62290072A (en) Organic electrolyte secondary battery
JP2964732B2 (en) Rechargeable battery
JPS62290071A (en) Organic electrolyne secondary battery
JPH10188977A (en) Lithium secondary battery
JPS62290069A (en) Organic electrolyte secondary battery
JPS62290073A (en) Organic electrolyte secondary battery
JPS62272472A (en) Nonaqueous solvent secondary battery
JPS60218766A (en) Nonaqueous electrolyte secondary battery
JPS62290074A (en) Organic electrolyte secondary battery
JPS62160671A (en) Nonaqueous solvent secondary battery
JPS6332870A (en) Organic electrolyte secondary cell
JPS6191868A (en) Nonaqueous electrolyte secondary battery
JP2579058B2 (en) Non-aqueous electrolyte secondary battery
JPS6332871A (en) Organic electrolyte secondary cell
JP4164607B2 (en) Lithium secondary battery electrode and lithium secondary battery
JP3582068B2 (en) How to charge lead storage batteries
JPH0523016B2 (en)
JPS59127382A (en) Organic electrolyte for lithium battery
JPS6280977A (en) Organic electrolyte battery
JPS634554A (en) Organic electrolyte secondary battery
JPH05290846A (en) Nonaqueous electrolytic secondary battery
JPS62123651A (en) Lithium secondary battery
JPS63298979A (en) Sealed lead-acid battery
JPS58111265A (en) Organic electrolyte secondary battery
JPS6158177A (en) Rechargeable electrochemical device