JPH0523016B2 - - Google Patents

Info

Publication number
JPH0523016B2
JPH0523016B2 JP59155983A JP15598384A JPH0523016B2 JP H0523016 B2 JPH0523016 B2 JP H0523016B2 JP 59155983 A JP59155983 A JP 59155983A JP 15598384 A JP15598384 A JP 15598384A JP H0523016 B2 JPH0523016 B2 JP H0523016B2
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
electrode
composition
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59155983A
Other languages
Japanese (ja)
Other versions
JPS6132952A (en
Inventor
Satoru Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP59155983A priority Critical patent/JPS6132952A/en
Publication of JPS6132952A publication Critical patent/JPS6132952A/en
Publication of JPH0523016B2 publication Critical patent/JPH0523016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非水電解液二次電池用負極によるもの
であり、あらゆるコードレス機器用電源として
の、軽量、高出力の二次電池を得ることを目的と
するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is based on a negative electrode for a non-aqueous electrolyte secondary battery, and its purpose is to obtain a lightweight, high-output secondary battery that can be used as a power source for all cordless devices. That is.

従来の技術 現在のところ、リチウムを負極とする非水電解
液電池は、一次電池のみが商品として開発されて
いるが、完全な二次電池は得られていない。リチ
ウムを負極に使用した二次電池は、正極や電解
液、セパレータ等にも解決すべき問題点が残され
てはいるものの、負極であるリチウムの特性の改
善が最大の課題となつている。すなわち、満足す
べき充放電サイクル特性を示すリチウム負極は得
られていない。負極に金属リチウムを使用した場
合には、充電時にリチウム電極表面にデンドライ
トが生じ、これがセパレータをつき破つて、電池
の内部短絡の原因となる。
BACKGROUND TECHNOLOGY At present, only primary batteries of non-aqueous electrolyte batteries using lithium as a negative electrode have been developed as commercial products, but perfect secondary batteries have not yet been obtained. For secondary batteries that use lithium as the negative electrode, although there are still problems to be solved with the positive electrode, electrolyte, separator, etc., the biggest challenge is to improve the characteristics of lithium, which is the negative electrode. That is, a lithium negative electrode that exhibits satisfactory charge-discharge cycle characteristics has not been obtained. When metallic lithium is used for the negative electrode, dendrites are formed on the surface of the lithium electrode during charging, which pierce the separator and cause an internal short circuit in the battery.

この問題解決のためには種々の方法が検討され
ているが、その中では合金を使用すること、特に
リチウムとアルミニウムの合金を使用することが
有望だといわれている。しかし負極にリチウム−
アルミニウム合金を使用する場合も充放電中に極
板表面から電着物が脱落するという問題があり、
未解決となつている。(M.Hughes et.al.,J.
Power Sources 12 83(1984))。
Various methods are being considered to solve this problem, and among them, the use of alloys, particularly alloys of lithium and aluminum, is said to be promising. However, lithium-
When using aluminum alloy, there is also the problem that electrodeposit falls off the electrode plate surface during charging and discharging.
It remains unresolved. (M.Hughes et.al., J.
Power Sources 12 83 (1984)).

発明が解決しようとする問題点 本発明はリチウム−アルミニウム合金の充放電
中の電極表面から電着物の脱落を防止することに
よつて、充放電サイクル特性を改善し、すぐれた
特性の非水電解液二次電池用負極を得ようとする
ものである。
Problems to be Solved by the Invention The present invention improves charge/discharge cycle characteristics by preventing electrodeposit from falling off the electrode surface of a lithium-aluminum alloy during charging and discharging, and provides excellent non-aqueous electrolytic The purpose is to obtain a negative electrode for liquid secondary batteries.

問題点を解決するための手段 本発明は、非水電解液二次電池用負極に、組成
が原子数比で充電完了時にはリチウム30パーセン
ト未満、放電終了時にはリチウム10パーセント以
上であり、直径0.2ミクロン以下のリチウム−ア
ルミニウム合金の繊維を加圧成型した極板を使用
するものである。
Means for Solving the Problems The present invention provides a negative electrode for a non-aqueous electrolyte secondary battery with a composition of less than 30% lithium at the end of charging and 10% or more of lithium at the end of discharging in terms of atomic ratio, and a diameter of 0.2 microns. An electrode plate made of pressure-molded fibers of the following lithium-aluminum alloy is used.

作 用 本発明になる負極板を使用した場合、従来の極
板にくらべ表面積が飛躍的に増大することにな
る。リチウム−アルミニウム合金におけるリチウ
ム電着時の表面からの電着物の脱落は、充電時の
電流密度と大きな関係をもつ。充電時の電流密度
が50μA/cell以上の場合には、リチウムの電着
速度が、電着したリチウムの極板内部への拡散速
度より大きいために、電着したリチウムが極板表
面に蓄積されることになり、極板表面にリチウム
の組成が50パーセント以上の部分が形成されて脱
落し、極板の容量減少やサイクル特性の悪化がも
たらされる。一方、充電時の電流密度が20μA/
cell以下の場合には、リチウムの電着速度より
も、リチウムの極板内部への拡散速度の方が大き
く、電着したリチウムは極板表面に蓄積されずに
極板内部へ均一に拡散していく。
Effect When the negative electrode plate of the present invention is used, the surface area is dramatically increased compared to conventional electrode plates. The amount of electrodeposited material removed from the surface of a lithium-aluminum alloy during lithium electrodeposition has a large relationship with the current density during charging. When the current density during charging is 50 μA/cell or more, the rate of electrodeposition of lithium is higher than the rate of diffusion of electrodeposited lithium into the electrode plate, so the electrodeposited lithium is accumulated on the plate surface. As a result, a portion with a lithium composition of 50% or more is formed on the surface of the electrode plate and falls off, resulting in a decrease in the capacity of the electrode plate and deterioration of cycle characteristics. On the other hand, the current density during charging is 20μA/
cell, the diffusion rate of lithium into the electrode plate is faster than the electrodeposition rate of lithium, and the electrodeposited lithium is not accumulated on the electrode plate surface but diffuses uniformly into the electrode plate. To go.

いま、同一重量のリチウム−アルミニウム合金
を比較した場合、板状極板にくらべ、直径0.2ミ
クロン以下の繊維を使用して場合、表面積が1000
倍以上となる。そのため電池を充放電する場合、
リチウム−アルミニウム合金電極の真の電流密度
は、みかけの電流密度の1/1000以下となる。たと
えば、みかけの電流密度が10mA/cm2の場合にお
いても真の電流密度は10μA/cm2以下となるので、
充電に際してのリチウム−アルミニウム電極表面
からの電着物の脱落は防止できるようになる。
Now, when comparing lithium-aluminum alloys of the same weight, compared to a plate-shaped electrode plate, if fibers with a diameter of 0.2 microns or less are used, the surface area is 1000
This will be more than double. Therefore, when charging and discharging batteries,
The true current density of a lithium-aluminum alloy electrode is less than 1/1000 of the apparent current density. For example, even if the apparent current density is 10 mA/cm 2 , the true current density is less than 10 μA/cm 2 , so
Falling off of electrodeposit from the surface of the lithium-aluminum electrode during charging can be prevented.

さらに、本発明になるリチウム−アルミニウム
合金負極は、充電完了時の組成が原子数比でリチ
ウム30パーセント未満であり、放電終了時の組成
が10パーセント以上である。リチウム−アルミニ
ウム合金は、リチウム組成が原子数比で0〜7パ
ーセントでα相、47〜56パーセント間でβ相を形
成し、7〜47パーセント間ではα相とβ相の混合
相となつている。このうちα相は固溶体で、この
相中ではリチウムの拡散が非常に遅いが、α+β
相内ではリチウムの拡散が速い。
Furthermore, the lithium-aluminum alloy negative electrode according to the present invention has a composition of less than 30% lithium in atomic ratio at the end of charging, and a composition of 10% or more at the end of discharging. Lithium-aluminum alloys form an α phase when the lithium composition is between 0 and 7% in terms of atomic ratio, a β phase when it is between 47 and 56%, and a mixed phase of α and β phases when the lithium composition is between 7 and 47%. There is. Among these, the α phase is a solid solution, and lithium diffusion is very slow in this phase, but α + β
Lithium diffuses rapidly within the phase.

そこで充放電に際し、完全充電状態および完全
放電状態における組成がつねにα+β相となつて
おり、極板中のリチウムの拡散が速い状態に保た
れていることになり、極板表面にリチウムが蓄積
されるようなことはなく、電着物が脱落すること
はない。
Therefore, during charging and discharging, the composition in the fully charged state and fully discharged state is always α + β phase, which means that the diffusion of lithium in the electrode plate is maintained at a fast rate, and lithium is accumulated on the surface of the electrode plate. There is no chance of the electrodeposit falling off.

本発明になるリチウム−アルミニウム合金負極
の組成は、つねにα+β相となつているので、充
放電サイクル中における電着物の脱落は防止でき
る。
Since the composition of the lithium-aluminum alloy negative electrode according to the present invention is always in the α+β phase, it is possible to prevent electrodeposit from falling off during charge/discharge cycles.

実施例 本発明になる電池の実施例として、正極に硫化
チタン(TiS2)、負極に本発明になるリチウム−
アルミニウム合金電極を使用した電池について説
明する。
Example As an example of the battery according to the present invention, titanium sulfide (TiS 2 ) is used as the positive electrode, and lithium sulfide according to the present invention is used as the negative electrode.
A battery using an aluminum alloy electrode will be explained.

正極板は、硫化チタン(TiS2)の粉末500mg
をステンレス網上に加圧成型したもので、大きさ
は10mm×10mm、厚さは2mmとした。この電極は、
電池に組み込む前に、1mol/過塩素酸リチウ
ム−プロピレンカ−ボネート電解液中で、対極に
リチウム電極を使用し、硫化チタン電極にリチウ
ムが電着してその組成がLi0.5TiS2(完全充電状
態)となるまで通電しておく。
The positive electrode plate is made of 500mg of titanium sulfide (TiS 2 ) powder.
was pressure molded onto a stainless steel mesh, and the size was 10 mm x 10 mm and the thickness was 2 mm. This electrode is
Before assembly into a battery, lithium was electrodeposited on a titanium sulfide electrode using a lithium electrode as a counter electrode in a 1 mol/lithium perchlorate-propylene carbonate electrolyte, so that the composition was Li 0.5 TiS 2 (fully charged). Keep the power on until the condition is reached.

つぎに、組成が原子数比でアルミニウム75パー
セント、リチウム25パーセントであるリチウム−
アルミニウム合金の直径0.2ミクロン以下の繊維
約120mgをステンレス網上に加圧成型し、大きさ
10mm×10mm、厚さ1mmの多孔性極板とした。
Next, lithium whose composition is 75% aluminum and 25% lithium in atomic ratio
Approximately 120 mg of aluminum alloy fibers with a diameter of 0.2 microns or less are pressure-molded onto a stainless steel mesh, and the size
The porous electrode plate was 10 mm x 10 mm and 1 mm thick.

第1図は本発明になる電池の構造を示す断面図
であり、図において1はLi0.5TiS2を含む正極板、
2はリチウムを原子数比で25パーセント含む、リ
チウム−アルミニウム負極板、3はポリプロピレ
ン不織布からなるセパレータである。4は電解液
でここでは1mol/過塩素酸リチウムのプロピ
レンカーボネート容液を使用した。5は正極集電
体であるステンレス網、6は正極端子、7は負極
集電体であるステンレス網、8は負極端子、9は
電池ケースである。
FIG. 1 is a cross-sectional view showing the structure of the battery according to the present invention, in which 1 is a positive electrode plate containing Li 0.5 TiS 2 ;
2 is a lithium-aluminum negative electrode plate containing 25% lithium in terms of atomic ratio, and 3 is a separator made of polypropylene nonwoven fabric. 4 is an electrolytic solution, in which a propylene carbonate solution containing 1 mol/lithium perchlorate was used. 5 is a stainless steel mesh that is a positive electrode current collector, 6 is a positive electrode terminal, 7 is a stainless steel mesh that is a negative electrode current collector, 8 is a negative electrode terminal, and 9 is a battery case.

第2図は本発明になる電池を1mA/cellの電流
で充放電をおこなつた場合の特性を示す。図にお
いて曲線A→Bは充電、曲線C→Dは放電を示
す。AおよびDでは、電池は完全放電状態にあ
り、この場合の正極の組成はLi0.7TiS2、負極の
組成は原数比でリチウム10パーセント、アルミニ
ウム90パーセントとなつている。また、Bおよび
Cでは、電池は完全充電状態にあり、この場合の
正極の組成はLi0.5TiS2、負極の組成は原子数比
でリチウム25パーセント、アルミニウム5パーセ
ントである。なお、第2図においては充放電のク
ーロン効率は約84パーセントとなつており、充電
時間3.6hに対し放電時間は約3.0hであつた。この
充放電特性は、300サイクル後もほとんど変化し
なかつた。
FIG. 2 shows the characteristics when the battery according to the present invention is charged and discharged at a current of 1 mA/cell. In the figure, the curve A→B indicates charging, and the curve C→D indicates discharging. In A and D, the battery is in a fully discharged state, in which case the composition of the positive electrode is Li 0.7 TiS 2 and the composition of the negative electrode is 10% lithium and 90% aluminum in original ratio. In addition, in B and C, the battery is in a fully charged state, the composition of the positive electrode in this case is Li 0.5 TiS 2 and the composition of the negative electrode is 25% lithium and 5% aluminum in atomic ratio. In addition, in FIG. 2, the coulombic efficiency of charging and discharging was about 84%, and the charging time was 3.6 hours, while the discharging time was about 3.0 hours. This charge-discharge characteristic remained almost unchanged even after 300 cycles.

以上の実施例においては正極に硫化チタン、電
解液に過塩素酸リチウムのプロピレンカーボネー
ト容液を使用したが、本発明になる負極はその他
の正極や非水電解液と組み合せて使用できること
はいうまでもない。例えば正極活物質にはVSe2
やNbSe3などのカルコゲン層間化合物や、V2O5
MnO2,TiO2,MoO3,WO2などの酸化物などが
使用できるし、電解液としては、リチウムと反応
する水溶液系をのぞけばγ−ブチロラクトンやジ
メトキシエタンなどの非プロトン性溶媒に
LiClO4,LiBF4,LiAsF6などのリチウム塩を溶
解させた非水電解液はすべて使用可能である。
In the above examples, titanium sulfide was used as the positive electrode and a propylene carbonate solution of lithium perchlorate was used as the electrolyte, but it goes without saying that the negative electrode of the present invention can be used in combination with other positive electrodes or non-aqueous electrolytes. Nor. For example, the positive electrode active material is VSe 2
and chalcogen intercalation compounds such as NbSe 3 and V 2 O 5 ,
Oxides such as MnO 2 , TiO 2 , MoO 3 , and WO 2 can be used, and as the electrolyte, aprotic solvents such as γ-butyrolactone and dimethoxyethane can be used, except for aqueous solutions that react with lithium.
All nonaqueous electrolytes in which lithium salts such as LiClO 4 , LiBF 4 , and LiAsF 6 are dissolved can be used.

発明の効果 実施例に示したごとく、本発明になるリチウム
−アルミニウム合金負極を使用した電池はすぐれ
た充放電サイクル特性を示す。その理由は、充放
電の際の負極の真の電流密度が10μA/cm2程度と
小さく、しかも充放電中の負極の組成の範囲がす
べてα+β相にはいつているため、負極板中のリ
チウムの拡散が速く、極板表面にリチウムが蓄積
されずに表面からの脱落を防止することができる
ものである。
Effects of the Invention As shown in the Examples, the battery using the lithium-aluminum alloy negative electrode of the present invention exhibits excellent charge-discharge cycle characteristics. The reason for this is that the true current density of the negative electrode during charging and discharging is as small as about 10μA/ cm2 , and the composition range of the negative electrode during charging and discharging is all in the α+β phase, so the lithium in the negative electrode plate is The diffusion of lithium is fast, and lithium is not accumulated on the surface of the electrode plate and can be prevented from falling off from the surface.

以上のように、本発明になる負極を使用するこ
とによつて、充放電サイクル特性の安定した、軽
量でかつ高出力の非水電解液二次電池が得られる
ものである。
As described above, by using the negative electrode of the present invention, a lightweight, high-output nonaqueous electrolyte secondary battery with stable charge/discharge cycle characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施電池の断面図、第2図は本
発明実施電池の充放電特性を示した図である。 1……正極板、2……負極板、3……セパレー
タ、4……電解液。
FIG. 1 is a sectional view of a battery according to the present invention, and FIG. 2 is a diagram showing the charging and discharging characteristics of the battery according to the present invention. 1...Positive electrode plate, 2...Negative electrode plate, 3...Separator, 4...Electrolyte solution.

Claims (1)

【特許請求の範囲】[Claims] 1 組成が原子数比で充電完了時にはリチウム30
パーセント未満、放電完了時にはリチウム10パー
セント以上である、直径0.2ミクロン以下のリチ
ウム−アルミニウム合金の繊維を加圧成型して板
状にした、非水電解液二次電池用負極。
1 Composition is atomic ratio: Lithium 30 when charging is complete
This is a negative electrode for non-aqueous electrolyte secondary batteries, which is made by pressure-molding lithium-aluminum alloy fibers with a diameter of 0.2 microns or less into a plate shape, which contains less than 10% lithium at the end of discharge.
JP59155983A 1984-07-25 1984-07-25 Negative electrode for nonaqueous electrolyte secondary battery Granted JPS6132952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59155983A JPS6132952A (en) 1984-07-25 1984-07-25 Negative electrode for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59155983A JPS6132952A (en) 1984-07-25 1984-07-25 Negative electrode for nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS6132952A JPS6132952A (en) 1986-02-15
JPH0523016B2 true JPH0523016B2 (en) 1993-03-31

Family

ID=15617786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59155983A Granted JPS6132952A (en) 1984-07-25 1984-07-25 Negative electrode for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS6132952A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123660A (en) * 1985-11-25 1987-06-04 Hitachi Maxell Ltd Lithium secondary cell
JP2521909B2 (en) * 1986-04-30 1996-08-07 ソニー株式会社 Lithium / manganese dioxide secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525423A (en) * 1975-07-01 1977-01-17 Exxon Research Engineering Co Rechargeable chemical battery having lithiummaluminum anode
JPS5547244U (en) * 1978-09-21 1980-03-27

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525423A (en) * 1975-07-01 1977-01-17 Exxon Research Engineering Co Rechargeable chemical battery having lithiummaluminum anode
JPS5547244U (en) * 1978-09-21 1980-03-27

Also Published As

Publication number Publication date
JPS6132952A (en) 1986-02-15

Similar Documents

Publication Publication Date Title
JPS63102173A (en) Lithium secondary battery
JP2964732B2 (en) Rechargeable battery
JP2003242964A (en) Non-aqueous electrolyte secondary battery
GB2060242A (en) Rechargeable nonaqueous silver alloy anode cell
JPH05151995A (en) Nonaqueous electrolyte secondary battery
JPH06196169A (en) Nonaqueous electrolyte secondary battery
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
JPH06310126A (en) Nonaquous electrolytic secondary battery
JPH01204361A (en) Secondary battery
JPH06196170A (en) Nonaqueous electrolyte secondary battery
JP2001068143A (en) Flat nonaqueous electrolyte secondary battery
JP3404929B2 (en) Non-aqueous electrolyte battery
JPH0523016B2 (en)
JPH0470744B2 (en)
JP2001023615A (en) Flat nonaqueous electrolyte secondary battery
JP3795614B2 (en) Non-aqueous electrolyte secondary battery charge / discharge method
JP2001313024A (en) Lithium secondary battery
JPH0564429B2 (en)
JPS62150657A (en) Secondary cell
JP2754563B2 (en) Non-aqueous electrolyte secondary battery
JPS62123651A (en) Lithium secondary battery
JPH0684545A (en) Manufacture of thin type nonaqueous electrolyte secondary battery
JPS59146157A (en) Nonaqueous electrolyte secondary cell
JP4656698B2 (en) Flat non-aqueous electrolyte secondary battery
JP2762730B2 (en) Nickel-cadmium storage battery