JPH01159971A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH01159971A
JPH01159971A JP62318109A JP31810987A JPH01159971A JP H01159971 A JPH01159971 A JP H01159971A JP 62318109 A JP62318109 A JP 62318109A JP 31810987 A JP31810987 A JP 31810987A JP H01159971 A JPH01159971 A JP H01159971A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
lithium secondary
carbonate
aqueous solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62318109A
Other languages
Japanese (ja)
Inventor
Nobuharu Koshiba
信晴 小柴
Kenichi Takada
高田 堅一
Keiko Takai
高井 啓子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62318109A priority Critical patent/JPH01159971A/en
Publication of JPH01159971A publication Critical patent/JPH01159971A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance the charging/discharging cycle lifetime by using niobium pentoxide to pos. electrode and Al alloy to neg. electrode, and by using a non- aqueous solvent in which lithium perchlorate is dissolved as an electrolyte. CONSTITUTION:Lithium perchlorate is dissolved in a non-aqueous solvent containing aliphatic hydrocarbon having carbonate radicals, that is used as electrolyte. Examples of the non-aqueous solvent are propylene carbonate(PC), butylene carbonate(BC), and ethylene carbonate(EC). Aid solvents may also be used such as 1,2-dimethixyethane(DME), 2,2-diethoxyethane(DEE), and 1,2- ethoxymethoxyethane(EME). The Al alloy mentioned shall be a one to which Mn, Ag, Mg, In, etc., are added in order to increase the strength of Al and enhance Al solid phase diffusion.

Description

【発明の詳細な説明】 産業上の利用分野 2・\−ノ 本発明は、移動用直流電源、バックアップ電源などに用
いるリチウム二次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application 2.\-The present invention relates to a lithium secondary battery used for a mobile DC power source, a backup power source, and the like.

従来の技術 リチウムを負極として用いる二次電池は、高密度エネル
ギー、高信頼性を有することが期待され、近年多くの研
究機関で開発されている。たとえば、正極としてクロム
酸化物、マンガン酸化物、あるいは2硫化チタン、2硫
化モリブデンなどのカルコゲン化合物、さらには、ポリ
アセチレン、ポリアニリンなどの導電性ポリマー々ど、
数多ぐの物質が検討されている。壕だ負極としては、ア
ルミニウム合金、あるいは鉛、ビスマス、カドミウム。
BACKGROUND OF THE INVENTION Secondary batteries using lithium as a negative electrode are expected to have high energy density and high reliability, and have been developed by many research institutes in recent years. For example, as a positive electrode, chromium oxide, manganese oxide, chalcogen compounds such as titanium disulfide and molybdenum disulfide, and conductive polymers such as polyacetylene and polyaniline, etc.
A large number of substances are being considered. For the negative electrode, use aluminum alloy, lead, bismuth, or cadmium.

インジウム、スズかどの可融合金が検討1れている。Fusible metals such as indium and tin are being considered.

発明が解決しようとする問題点 しかし、これらの材料は必ずしも十分に生かされておら
ず、リチウム二次電池の技術としては、まだまだこれか
らの段階であり、良い組み合わせが望まれている。
Problems to be Solved by the Invention However, these materials are not always fully utilized, and lithium secondary battery technology is still in its infancy, and a good combination is desired.

3・\−・ 本発明では、正極に五酸化ニオブを用いる系で、充放電
特性や、放電々圧々どから適切な電解液や負極合金々ど
の組み合わせ条件を選定するものである。
3.\-- In the present invention, the system uses niobium pentoxide for the positive electrode, and the combination conditions such as an appropriate electrolytic solution and negative electrode alloy are selected based on charge/discharge characteristics, discharge pressure, etc.

問題点全解決するだめの手段 正極に五酸化ニオブ、負極にアルミニウム合金を用い、
電解液として、過塩素酸リチウムを溶解した非水溶媒を
用いるものである。非水溶媒としては、プロピレンカー
ボネート(PC;)やプチレンカーボネー)(BC)、
エチレンカーボネート([;)などカーボネート基を有
する脂肪族炭化水素を用いる。さらに1,2−ジメトキ
シエタン(DME)、1.2−ジエトキシエタン(II
EE)1.2−エトキシメトキシエタン(EMK )な
どを補助溶媒として用いることができる。
The only way to solve all the problems is to use niobium pentoxide for the positive electrode and aluminum alloy for the negative electrode.
A non-aqueous solvent in which lithium perchlorate is dissolved is used as the electrolyte. Examples of non-aqueous solvents include propylene carbonate (PC) and butylene carbonate (BC),
An aliphatic hydrocarbon having a carbonate group such as ethylene carbonate ([;) is used. Furthermore, 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (II
EE) 1,2-ethoxymethoxyethane (EMK) etc. can be used as a co-solvent.

才だ、アルミニウム合金としては、アルミニウムの強度
やリチウムのアルミニウム固相拡散ケ向よさせるだめに
、マンガン、銀、マグネシウム。
However, as aluminum alloys, manganese, silver, and magnesium are used because they interfere with the strength of aluminum and the solid phase diffusion of lithium into aluminum.

インジウムなどを添加したものを用いることができる。A material to which indium or the like is added can be used.

作用 上記の組み合わせにより、五酸化ニオブの充放電性能を
向上はせることができる。種々横割したところ、たとえ
ば電解液として、LiG104f浴解したγブチロラク
トン(γBL)’75用いた場合や、ホウフッ化リチウ
ム(LIBF 4) f溶解したPCを用いた場合、良
好な充放電特性を得ることができず、上記した様に、電
解質にLiGg04i溶解したpcやECあるいはDM
EやDEE 、EMEを添加したもののみ良好な充放電
特性を示すことがわかった。理由はさだがではないが、
五酸化ニオブのような酸化物へのリチウムの充放電反応
に対して過塩素酸塩とカーボネート基を有する脂肪族炭
化水素やグライム類が副反応を起こさず、促進作用をも
つものと考えられる。
Effect: The above combination can improve the charging and discharging performance of niobium pentoxide. After various cross-sections, it was found that, for example, when using γ-butyrolactone (γBL) '75 dissolved in LiG104f as the electrolyte, or when using PC dissolved in lithium borofluoride (LIBF4), good charge-discharge characteristics were obtained. As mentioned above, PC, EC, or DM dissolved in LiGg04i in the electrolyte
It was found that only those to which E, DEE, and EME were added showed good charge/discharge characteristics. The reason is not Sadaga, but
It is thought that aliphatic hydrocarbons and glymes with perchlorate and carbonate groups have a promoting effect on the charging and discharging reaction of lithium to oxides such as niobium pentoxide without causing side reactions.

1だ、負極合金としてはB1−Pb −06合金などの
可融合金も可能であるが、純リチウムに対しo、By付
近の電位で、電池電圧がやや低く、さらに高温中で過放
電などをくり返した場合鉛、カドミウムイオンが電解液
中に溶解し充放電性能を劣5・\−/ 化させてし甘うことがある。これらの点でアルミニウム
合金の場合電位が純リチウムに対し0.3v付近で、電
池電圧がpb −ca金合金較べ約0.5V近く高くな
る土、耐腐食性に強く、高電位をかけても、アルミニウ
ムは、分解や溶解はせず安定である。これらのことよシ
アルミニウム合金負極ヲ対極とした場合、高い信頼性を
得ることができる。
1. B1-Pb-06 alloy and other fusible alloys are also possible as negative electrode alloys, but the battery voltage is somewhat low at potentials near o and By compared to pure lithium, and over-discharging at high temperatures is also possible. If this is repeated, lead and cadmium ions may dissolve in the electrolyte, resulting in poor charge/discharge performance. In these respects, in the case of aluminum alloy, the potential is around 0.3V compared to pure lithium, and the battery voltage is about 0.5V higher than that of PB-CA gold alloy. , aluminum is stable and does not decompose or dissolve. For these reasons, high reliability can be obtained when a sialuminium alloy negative electrode is used as the counter electrode.

実施例 実施例1 第1図は正極に五酸化ニオブ、負極にリチウム・アルミ
ニウム合金及び、過塩素酸リチウム全溶解した非水溶媒
を電解液として用いた本発明のリチウム二次電池の縦断
面図である。図中1は正極端子を兼ねたケース、2はケ
ースと同じ材料を打ち抜き加工した負極端子を兼ねた封
口板、3はケースと封口板とを絶縁するポリプロピレン
製ガスケットである。4は正極であり、五酸化ニオブ8
5重量部、導電剤であるカーボンブラック5重量部、フ
ッ素樹脂ディスバージョン固形分10重量部を混練し乾
燥したあと粉砕し、直径14゜0mm、厚さ6・・−7 0、s mmのペレットに成形したものである。6はカ
ーボン塗布層よりなる正極集電体である。6はり14.
0mm、厚さ○jmmの大きさである。7は負極集電体
であり、線径0.1mmで60メツシユのステンレス鋼
のネットヲ用いた。8はポリプロピレン製微孔膜からな
るセパレータテアル。
Examples Example 1 Figure 1 is a longitudinal cross-sectional view of a lithium secondary battery of the present invention using niobium pentoxide as a positive electrode, a lithium-aluminum alloy as a negative electrode, and a non-aqueous solvent in which lithium perchlorate is completely dissolved as an electrolyte. It is. In the figure, 1 is a case that also serves as a positive electrode terminal, 2 is a sealing plate that is punched out of the same material as the case and also serves as a negative electrode terminal, and 3 is a polypropylene gasket that insulates the case and the sealing plate. 4 is the positive electrode, niobium pentoxide 8
5 parts by weight of carbon black, which is a conductive agent, and 10 parts by weight of fluororesin dispersion solid content are kneaded, dried, and crushed to form pellets with a diameter of 14°0 mm and a thickness of 6...-70, s mm. It is molded into. 6 is a positive electrode current collector made of a carbon coating layer. 6 beams 14.
It has a size of 0mm and a thickness of ○jmm. 7 is a negative electrode current collector, and a 60-mesh stainless steel net with a wire diameter of 0.1 mm was used. 8 is a separator seal made of a microporous membrane made of polypropylene.

電解液は第1表の如く調整したものを用いた。The electrolyte solution prepared as shown in Table 1 was used.

第   1   表 7へ−7 これらの電解液を用いた電池について以下に示す条件で
充放電をした。
To Table 1-7 Batteries using these electrolytes were charged and discharged under the conditions shown below.

各サイクルでえられた放電々気容量を第2図に示しだ。Figure 2 shows the discharge capacity obtained in each cycle.

実施例2 電解液全第1表のNo、 1とし、リチウム合金負極組
成を第2表の如く調整し、他は実施例1とまったく同じ
とした。
Example 2 The electrolytic solution was set to No. 1 in Table 1, the lithium alloy negative electrode composition was adjusted as shown in Table 2, and the other conditions were exactly the same as in Example 1.

第   2   表 これらの電池について、実施例1と同じ条件で充放電を
し、初期サイクルの平均維持電圧(v)及び各サイクル
の容量変化を調べた。この結果を第3〜4図に示しだ。
Table 2 These batteries were charged and discharged under the same conditions as in Example 1, and the average maintenance voltage (v) in the initial cycle and the change in capacity in each cycle were examined. The results are shown in Figures 3 and 4.

第2図の結果より明らか々ように、電解液が、LiCβ
04を溶解したPC,1G、EC系は充放電サイクルが
3o○サイクル前後得られているが、γBLやLiBF
4を用いたものは1つたく充放電ができない。さらに、
N(11,2,3より補助溶媒としてDME、DEJE
MEは用いても問題が々い。これらの補助溶媒は粘度が
低く、製造時や、強負荷特性に役立つものである。
As is clear from the results shown in Figure 2, the electrolyte is LiCβ
PC, 1G, and EC systems in which 04 was dissolved have a charge/discharge cycle of around 3o○ cycles, but γBL and LiBF
4 cannot be charged and discharged one by one. moreover,
N (DME, DEJE as co-solvents from 11,2,3)
Even if ME is used, there are many problems. These co-solvents have a low viscosity and are useful during manufacturing and for high load characteristics.

一方、第3〜4図から、Bi −Pb−Cd合金では平
均電圧が低く、2〜1vでは得られる電気容量も小さく
、サイクル寿命も小さい。捷だ、アルミニウム合金系に
おいても、No、 9〜11にみられるように、マンガ
ン、銀、マグネシウムのいずれかとインジウムを添加し
たものはサイクル寿命が伸びている。これは、マンガン
、銀、マグネシウムなどはアルミニウムの強度全向上さ
せ、インジウムはアルミニウム中のリチウムの固相拡散
’に促9′\−7 進させる作用があるだめと考えられる。
On the other hand, from FIGS. 3 and 4, in the Bi-Pb-Cd alloy, the average voltage is low, the obtained electric capacity is small at 2 to 1 V, and the cycle life is also short. Even among aluminum alloys, as seen in Nos. 9 to 11, those containing manganese, silver, or magnesium and indium have a longer cycle life. This is thought to be because manganese, silver, magnesium, etc. have the effect of improving the overall strength of aluminum, and indium has the effect of accelerating the solid phase diffusion of lithium in aluminum.

発明の効果 以上のように、本発明は充放電サイクル寿命にすぐれる
リチウム二次電池を提供するものである。
Effects of the Invention As described above, the present invention provides a lithium secondary battery with excellent charge/discharge cycle life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるリチウム二次電池の縦
断面図、第2図、第3図及び第4図は実施例におけるリ
チウム二次電池の特性比較図である。 4・・・・・正極、6・・・・・・負極、8・・・・・
セパレータ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名4−
正 極 第2図 ナイクル歎
FIG. 1 is a longitudinal cross-sectional view of a lithium secondary battery in an example of the present invention, and FIGS. 2, 3, and 4 are characteristic comparison diagrams of lithium secondary batteries in an example. 4...Positive pole, 6...Negative pole, 8...
Separator. Name of agent: Patent attorney Toshio Nakao and 1 other person 4-
Positive pole 2

Claims (3)

【特許請求の範囲】[Claims] (1)五酸化ニオブを主とした正極と、リチウム吸蔵ア
ルミニウム合金負極と、電解液とからなり、前記電解液
が、溶質として過塩素酸リチウム、溶媒としてカーボネ
ート基を有する脂肪族炭化水素を含有する非水溶媒を用
いることを特徴としたリチウム二次電池。
(1) Consisting of a positive electrode mainly made of niobium pentoxide, a lithium-absorbing aluminum alloy negative electrode, and an electrolytic solution, the electrolytic solution contains lithium perchlorate as a solute and an aliphatic hydrocarbon having a carbonate group as a solvent. A lithium secondary battery characterized by using a non-aqueous solvent.
(2)リチウム吸蔵アルミニウム合金がマンガン、銀、
インジウム及びマグネシウムよりなる群から選んだ少な
くとも1種を含有する特許請求の範囲第1項記載のリチ
ウム二次電池。
(2) Lithium storage aluminum alloy is manganese, silver,
The lithium secondary battery according to claim 1, which contains at least one member selected from the group consisting of indium and magnesium.
(3)電解液の溶媒として、1、2−ジメトキシエタン
、1.2−ジエトキシエタンあるいは1、2−エトキシ
メトキシエタンを含有する特許請求の範囲第1項記載の
リチウム二次電池。
(3) The lithium secondary battery according to claim 1, wherein the electrolytic solution contains 1,2-dimethoxyethane, 1,2-diethoxyethane, or 1,2-ethoxymethoxyethane as a solvent.
JP62318109A 1987-12-16 1987-12-16 Lithium secondary battery Pending JPH01159971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62318109A JPH01159971A (en) 1987-12-16 1987-12-16 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62318109A JPH01159971A (en) 1987-12-16 1987-12-16 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH01159971A true JPH01159971A (en) 1989-06-22

Family

ID=18095592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62318109A Pending JPH01159971A (en) 1987-12-16 1987-12-16 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH01159971A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200562A (en) * 1988-02-05 1989-08-11 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200562A (en) * 1988-02-05 1989-08-11 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte cell

Similar Documents

Publication Publication Date Title
JP3358478B2 (en) Organic electrolyte secondary battery
JPH0337968A (en) Lithium secondary battery
JPH10312826A (en) Nonaqueous electrolyte battery and charging method therefor
JPH10334948A (en) Electrode, lithium secondary battery, and electric double layer capacitor using the electrode
JP3059820B2 (en) Lithium secondary battery
JP3223051B2 (en) Lithium secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JP3208243B2 (en) Non-aqueous battery
JPH07105970A (en) Non-aqueous secondary battery and its manufacture
JP2940015B2 (en) Organic electrolyte secondary battery
JPH07272762A (en) Nonaqueous electrolytic secondary battery
JPH01159971A (en) Lithium secondary battery
JPH113698A (en) Lithium ion secondary battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JP2000040499A (en) Nonaqueous electrolyte secondary battery
JPH0355770A (en) Lithium secondary battery
JP3182277B2 (en) Non-aqueous electrolyte secondary battery
JP2840357B2 (en) Non-aqueous electrolyte secondary battery
JP2001006660A (en) Nonaqueous secondary battery
JP2001250585A (en) Charging method of lithium ion secondary battery
JPS62290069A (en) Organic electrolyte secondary battery
JPS62140358A (en) Nonaqueous electrolyte secondary cell
JPS614170A (en) Nonaqueous electrolyte secondary battery
JP2698180B2 (en) Non-aqueous secondary battery
JP3197658B2 (en) Non-aqueous secondary battery