JP2001006660A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JP2001006660A
JP2001006660A JP11179167A JP17916799A JP2001006660A JP 2001006660 A JP2001006660 A JP 2001006660A JP 11179167 A JP11179167 A JP 11179167A JP 17916799 A JP17916799 A JP 17916799A JP 2001006660 A JP2001006660 A JP 2001006660A
Authority
JP
Japan
Prior art keywords
amount
negative electrode
positive electrode
lithium
anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11179167A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Yoshihisa
洋悦 吉久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP11179167A priority Critical patent/JP2001006660A/en
Publication of JP2001006660A publication Critical patent/JP2001006660A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery having a discharge capacity larger than a battery of the same size by containing an amount of electrolyte in a battery exceeding the equivalence of storage capacity of an anion storage substance approximately electrically equivalent to the amount of lithium retention of a negative electrode. SOLUTION: A positive electrode 1 is carried on the surface of an aluminium foil 2 served as a positive electrode collector. A negative electrode 3 is carried on the surface of a cupper foil 4 served as a negative electrode collector. An amount of an anion storage substance added to the positive electrode 1 is an amount of an anion to be stored approximately equivalent to the retention amount of the negative electrode 3. For example, when LiCoO2 is used for the positive electrode 1, a graphite is for the negative electrode 3 and a polyacene or polyaniline is for the anion storage substance, a ratio of a required anion storage substance to LiCoO2 of the positive electrode 1 is 7-18 wt.%. A concentration of an electrolytic lithium salt in an electrolyte must contain an amount of the electrolyte exceeding at least the retention amount of the negative electrode 3 and is 1.5-2.5 M.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水二次電池に関
するものであり、特に炭素材料を負極に用いたリチウム
イオン電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery, and more particularly to a lithium ion battery using a carbon material for a negative electrode.

【0002】[0002]

【従来の技術】近年、電子機器の小型軽量化が急速に進
展している。それに伴い、それら電子機器の電源として
使用される電池についても、小型軽量化、高エネルギー
密度化の要求がますます増加してきている。
2. Description of the Related Art In recent years, the reduction in size and weight of electronic devices has been rapidly progressing. Along with this, demands for smaller and lighter batteries and higher energy densities of batteries used as power supplies for these electronic devices are increasing more and more.

【0003】このような要求を満たすものとして、リチ
ウムイオン電池が急速に普及しつつある。リチウムイオ
ン電池は、黒鉛などのリチウム吸蔵放出可能な炭素材料
を負極に用い、LiCoO2 、LiNiO2 、LiMn
2 等のリチウムと遷移金属との複合酸化物を正極に用
いて構成されている。
[0003] Lithium-ion batteries are rapidly spreading to satisfy such demands. Lithium-ion batteries use a carbon material capable of storing and releasing lithium such as graphite for the negative electrode, and use LiCoO 2 , LiNiO 2 , and LiMn.
It is configured using a composite oxide of lithium and a transition metal such as O 2 for the positive electrode.

【0004】炭素材料を負極に用いたリチウムイオン電
池においては、最初の充電過程で、活物質であるリチウ
ムイオンが正極から負極へ供給される。しかし、次の放
電過程で負極から正極へ戻るリチウムイオンの量は、先
に正極から供給された量の約70〜90%である。これ
は、先に正極から供給されたリチウムイオンの約10〜
30%が、主に負極で生じる不可逆な化学反応によっ
て、不活性なリチウム化合物に変化するためである。こ
のように、最初の1サイクルの充放電過程で、負極で不
活性化するリチウムイオンのロス量を負極のリテンショ
ン量といい、この分、電池の容量が小さくなるという問
題があった。
In a lithium ion battery using a carbon material for a negative electrode, lithium ions as an active material are supplied from a positive electrode to a negative electrode in a first charging step. However, the amount of lithium ions returning from the negative electrode to the positive electrode in the next discharge process is about 70 to 90% of the amount previously supplied from the positive electrode. This is about 10 to 10 of the lithium ions previously supplied from the positive electrode.
This is because 30% is changed to an inactive lithium compound mainly by an irreversible chemical reaction occurring at the negative electrode. As described above, in the charge / discharge process of the first one cycle, the loss amount of lithium ions inactivated at the negative electrode is called the retention amount of the negative electrode, and there has been a problem that the capacity of the battery is reduced accordingly.

【0005】上記リチウムのロスを補う方策として、負
極にリチウムをあらかじめ吸蔵させておく方法がある。
特開平4―73862号、特開平5−234622号に
は、負極に金属リチウムを接触させた状態で電池を組み
立て、ロス分を補う方法が示されている。また、特開昭
63―228573号、特開平2―265167号に
は、MoO3 やLiMnO2 のような、主活物質よりも
卑な電位でリチウムを放出する物質を正極に添加し、ロ
ス分を補う方法が示されている。
As a measure for compensating for the loss of lithium, there is a method in which lithium is stored in the negative electrode in advance.
Japanese Patent Application Laid-Open Nos. 4-73662 and 5-234622 disclose a method of assembling a battery in a state in which metallic lithium is in contact with a negative electrode to compensate for the loss. Further, JP-A-63-228573 and JP-A-2-265167 disclose that a substance which releases lithium at a lower potential than the main active material, such as MoO 3 or LiMnO 2 , is added to the positive electrode, and the loss component is reduced. Is shown.

【0006】一方、上記問題の解決とは目的が異なる
が、正極に導電性高分子を添加する方法が特開平6−2
75323号、特開平10−188985号に示されて
いる。
On the other hand, although the purpose is different from the solution of the above problem, a method of adding a conductive polymer to the positive electrode has been disclosed in Japanese Patent Laid-Open No. 6-2 / 1994.
75323 and JP-A-10-188895.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、これら
の方法では工程が煩雑であり、炭素材料にあらかじめド
ープされているリチウムは空気中で不安定であるため取
り扱いが難しく、放出できるリチウム量が不十分となり
やすいといった問題があった。
However, in these methods, the steps are complicated, and the lithium doped in advance in the carbon material is unstable in the air, so it is difficult to handle and the amount of lithium that can be released is insufficient. There was a problem that it was easy to become.

【0008】本発明は上記問題点に鑑み、なされたもの
であって、負極が例えば炭素材料のようなリチウムを吸
蔵放出可能な物質、正極がリチウムを吸蔵放出可能な遷
移金属酸化物からなる非水二次電池において、特に同一
サイズにおいて従来電池に比べ放電容量の大きな電池を
提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and has been made in view of the above-mentioned problems. The negative electrode is made of a material capable of storing and releasing lithium such as a carbon material, and the positive electrode is formed of a transition metal oxide capable of storing and releasing lithium. An object of the present invention is to provide a water secondary battery having a larger discharge capacity than a conventional battery, particularly in the same size.

【0009】[0009]

【課題を解決するための手段】本発明は、上記問題点を
解決するため、負極にリチウムを吸蔵放出可能な材料を
用い、正極にリチウムを吸蔵放出可能な遷移金属酸化物
を用いる電池において、該正極はアニオンを吸蔵する能
力を持つアニオン吸蔵物質を含み、該アニオン吸蔵物質
のアニオン吸蔵量は、負極のリチウムリテンション量と
電気量換算でおよそ等量であり、かつ、該アニオン吸蔵
量の等量を超える量の電解質を電池内に内蔵することを
特徴とする非水二次電池である。また、前記アニオン吸
蔵物質が、ポリアニリン、ポリピロール、ポリチオフェ
ン、ポリアセン、または活性炭のうちから選ばれた少な
くとも一種である非水二次電池である。また、前記遷移
金属酸化物が、リチウムとCo、Ni、Mnの中の少な
くとも1種を含む複合酸化物である非水二次電池であ
る。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a battery using a material capable of inserting and extracting lithium as a negative electrode and a transition metal oxide capable of inserting and extracting lithium as a positive electrode. The positive electrode includes an anion storage material having an ability to store an anion. The anion storage amount of the anion storage material is approximately equivalent to the lithium retention amount of the negative electrode in terms of electric quantity, and A non-aqueous secondary battery characterized by incorporating an amount of electrolyte exceeding the amount in the battery. Further, in the non-aqueous secondary battery, the anion storage material is at least one selected from polyaniline, polypyrrole, polythiophene, polyacene, and activated carbon. Further, in the non-aqueous secondary battery, the transition metal oxide is a composite oxide containing lithium and at least one of Co, Ni, and Mn.

【0010】即ち、負極で生じるリチウムのロスを補う
ため、ロス量に相当するリチウムを電解質として内在さ
せ、該電解質のリチウムカチオンと対を成すアニオンを
正極に取り込む構成にすることにより、上記課題を解決
しようとするものである。
That is, in order to compensate for the loss of lithium generated in the negative electrode, the above problem is solved by incorporating lithium corresponding to the loss amount as an electrolyte and incorporating an anion paired with the lithium cation of the electrolyte into the positive electrode. That is what we are trying to solve.

【0011】[0011]

【発明の実施の形態】図1は、本発明の実施の一形態を
示す電池の断面図である。正極1は、正極集電体である
アルミニウム箔2の面上に担持されている。負極3は、
負極集電体である銅箔4の面上に担持されている。セパ
レータ5は、ポリエチレンやポリプロピレン等の微多孔
フィルムであり、正極1と負極3の間に狭まれている。
FIG. 1 is a sectional view of a battery showing an embodiment of the present invention. The positive electrode 1 is supported on a surface of an aluminum foil 2 which is a positive electrode current collector. The negative electrode 3 is
It is carried on the surface of a copper foil 4 which is a negative electrode current collector. The separator 5 is a microporous film such as polyethylene or polypropylene, and is narrowed between the positive electrode 1 and the negative electrode 3.

【0012】正極1、負極3およびセパレータ5は電解
液を含んでいる。6は正極リード端子、7は負極リード
端子である。8は負極端子を兼ねるパッケージ、9は正
極端子、10は安全弁である。
The positive electrode 1, the negative electrode 3, and the separator 5 contain an electrolytic solution. Reference numeral 6 denotes a positive lead terminal, and 7 denotes a negative lead terminal. Reference numeral 8 denotes a package also serving as a negative electrode terminal, 9 denotes a positive electrode terminal, and 10 denotes a safety valve.

【0013】正極1は、活物質、アニオン吸蔵物質、導
電剤およびバインダー樹脂で構成される。活物質は、例
えばLiCoO2 を用いることができる。導電剤は、例
えばアセチレンブラックを用いることができる。バイン
ダーは、例えばポリフッ化ビニリデン(PVDF)を用
いることができる。正極中に導電剤およびバインダーが
占める割合は、3〜10重量%とした。アニオン吸蔵物
質は、単位重量当たりおよび単位体積当たりの吸蔵量が
多いものが望ましく、吸蔵時の電位が正極活物質の放電
電位よりも卑であり、負極集電体である銅の析出電位よ
りも貴であるもの、即ちLi/Li+基準電位に対して
2.5〜3.5Vであるものが望ましい。具体的にはポ
リアニリン、ポリピロール、ポリチオフェン、ポリアセ
ン等の導電性ポリマーや活性炭等を用いることができ
る。アニオン吸蔵物質の添加量は、負極におけるリチウ
ムリテンション量とおよそ等量のアニオンを吸蔵できる
量とする。
The positive electrode 1 is composed of an active material, an anion storage material, a conductive agent and a binder resin. As the active material, for example, LiCoO 2 can be used. As the conductive agent, for example, acetylene black can be used. As the binder, for example, polyvinylidene fluoride (PVDF) can be used. The proportion occupied by the conductive agent and the binder in the positive electrode was 3 to 10% by weight. It is desirable that the anion occluding substance has a large amount of occlusion per unit weight and per unit volume. A noble material, that is, a material having a voltage of 2.5 to 3.5 V with respect to Li / Li + reference potential is desirable. Specifically, conductive polymers such as polyaniline, polypyrrole, polythiophene, and polyacene, activated carbon, and the like can be used. The addition amount of the anion storage material is set to an amount capable of storing an anion equivalent to the amount of lithium retention in the negative electrode.

【0014】さらに、これらの物質は、アニオンを吸蔵
した状態において良好な電子伝導性を有するため、正極
中に添加するべき導電材の役割を兼ね備えることができ
るので、その分アセチレンブラック等の導電剤の添加量
を低減させることができ、電池のエネルギー密度の増大
に有効である。
Further, since these substances have good electron conductivity in the state where anions are occluded, they can also serve as a conductive material to be added to the positive electrode, and accordingly, a conductive agent such as acetylene black can be used. Can be reduced, which is effective for increasing the energy density of the battery.

【0015】負極3は、リチウムを吸蔵放出可能な活物
質とバインダー樹脂で構成される。活物質は、例えば黒
鉛を用いることができる。バインダーは、例えばポリフ
ッ化ビニリデン(PVDF)を用いることができる。負
極中にバインダーが占める割合は、2〜8重量%とし
た。
The negative electrode 3 is composed of an active material capable of inserting and extracting lithium and a binder resin. As the active material, for example, graphite can be used. As the binder, for example, polyvinylidene fluoride (PVDF) can be used. The ratio of the binder in the negative electrode was 2 to 8% by weight.

【0016】電解液は、例えばエチレンカーボネート等
の環状炭酸エステル類、エチルメチルカーボネート等の
鎖状炭酸エステル類、γ―ブチロラクトン等のラクトン
類等からなる単独または混合溶媒に、六フッ化燐酸リチ
ウム(LiPF6 )や四フッ化硼酸リチウム(LiBF
4 )等のリチウム塩を溶解させた溶液を用いることがで
きる。
The electrolytic solution may be a mixture of a cyclic carbonate such as ethylene carbonate, a chain carbonate such as ethyl methyl carbonate, a lactone such as γ-butyrolactone, or a mixed solvent comprising lithium hexafluorophosphate ( LiPF 6 ) and lithium tetrafluoroborate (LiBF)
A solution in which a lithium salt such as 4 ) is dissolved can be used.

【0017】正極活物質および負極活物質の量は、充放
電電気量においておよそ等量を電池に内包している。負
極のリテンション量は、負極の材料物性や電解液の組成
等により左右されるが、黒鉛を負極活物質に用いた場合
には、少なくとも黒鉛の放電容量の5〜15%である。
非晶質炭素材料を負極活物質に用いた場合には、約30
%に達する場合がある。
The amount of the positive electrode active material and the amount of the negative electrode active material are included in the battery in approximately equal amounts in terms of charge and discharge electricity. The retention amount of the negative electrode depends on the material properties of the negative electrode, the composition of the electrolytic solution, and the like, but when graphite is used as the negative electrode active material, it is at least 5 to 15% of the discharge capacity of graphite.
When an amorphous carbon material is used for the negative electrode active material, about 30
%.

【0018】正極に添加するアニオン吸蔵物質の量は、
負極のリテンション量とおよそ等量のアニオンを吸蔵で
きる量とする。例えば、正極にLiCoO2 、負極に黒
鉛、アニオン吸蔵物質にポリアセンやポリアニリンを用
いた場合には、必要とするアニオン吸蔵物質の比率は正
極LiCoO2 に対して7〜18重量%である。
The amount of the anion storage substance to be added to the positive electrode is
The amount is such that an anion equivalent to the amount of retention of the negative electrode can be absorbed. For example, when LiCoO 2 is used for the positive electrode, graphite is used for the negative electrode, and polyacene or polyaniline is used for the anion-occluding material, the required ratio of the anion-occluding material is 7 to 18% by weight based on the positive electrode LiCoO 2 .

【0019】電解液中の電解質(リチウム塩)濃度は、
従来のリチウムイオン電池においては1M前後を用いて
いる。本発明電池においては、少なくとも上記負極のリ
テンション量を越える電解質を内包しなければならず、
従来電池の電解質量に上記リチウムロス量を加えた量を
内包することが望ましい。具体的には、1.5〜2.5
Mである。
The electrolyte (lithium salt) concentration in the electrolyte is
A conventional lithium ion battery uses about 1M. In the battery of the present invention, it is necessary to include at least an electrolyte exceeding the retention amount of the negative electrode,
It is desirable to include the amount obtained by adding the amount of lithium loss to the electrolytic mass of the conventional battery. Specifically, 1.5 to 2.5
M.

【0020】以上、正極活物質にLiCoO2 を用い、
負極活物質に黒鉛を用いた場合を例に挙げて説明した
が、本発明電池に適用できる正極活物質は、放電電位が
アニオン吸蔵物質の吸蔵電位よりも貴であればよく、特
に限定されるものではない。また負極についても、黒鉛
以外の炭素材料、金属酸化物、ポリマー材料等も用いる
ことができ、これらの記述に限定されるものではない。
電解液についても、高分子ゲルや高分子固体電解質をこ
れに代えて用いることができる。
As described above, LiCoO 2 is used as the positive electrode active material,
Although the case where graphite is used as the negative electrode active material has been described as an example, the positive electrode active material applicable to the battery of the present invention is not particularly limited as long as the discharge potential is more noble than the storage potential of the anion storage material. Not something. Also for the negative electrode, carbon materials other than graphite, metal oxides, polymer materials, and the like can be used, and the present invention is not limited to these descriptions.
As the electrolytic solution, a polymer gel or a polymer solid electrolyte can be used instead.

【0021】[0021]

【実施例】以下、実施例に基づき、本発明を説明する。The present invention will be described below with reference to examples.

【0022】(本発明)正極は、100重量部のLiC
oO2 、10重量部のポリアニリンおよび2重量部のア
セチレンブラックをポリフッ化ビニリデンの溶液でペー
スト状とし、アルミニウム箔上に塗布し、乾燥した。負
極は、黒鉛をポリフッ化ビニリデンの溶液でペースト状
とし、銅箔上に塗布し、乾燥した。角形電池に組み込ん
だ後、電解液を注液した。用いた電解液は、γ- ブチロ
ラクトンとエチレンカーボネートを3対2の割合で混合
した溶媒に1.7Mの六フッ化燐酸リチウムを溶解した
ものである。電池サイズは、巾22.5mm、高さ4
8.0mm、厚さ6.1mmである。これを本発明電池
とする。
(Invention) The positive electrode is composed of 100 parts by weight of LiC
oO 2 , 10 parts by weight of polyaniline and 2 parts by weight of acetylene black were made into a paste with a solution of polyvinylidene fluoride, applied on an aluminum foil, and dried. For the negative electrode, graphite was made into a paste with a solution of polyvinylidene fluoride, applied on a copper foil, and dried. After being incorporated in the prismatic battery, an electrolyte was injected. The electrolytic solution used was one in which 1.7 M lithium hexafluorophosphate was dissolved in a solvent in which γ-butyrolactone and ethylene carbonate were mixed at a ratio of 3: 2. Battery size is width 22.5mm, height 4
It is 8.0 mm and 6.1 mm thick. This is referred to as the battery of the present invention.

【0023】(比較例)正極は、100重量部のLiC
oO2 、および6重量部のアセチレンブラックをポリフ
ッ化ビニリデンの溶液でペースト状とし、アルミニウム
箔上に塗布し、乾燥した。負極は、黒鉛をポリフッ化ビ
ニリデンの溶液でペースト状とし、銅箔上に塗布し、乾
燥した。角形電池に組み込んだ後、電解液を注液した。
用いた電解液は、γ- ブチロラクトンとエチレンカーボ
ネートを3対2の割合で混合した溶媒に1.0Mの六フ
ッ化燐酸リチウムを溶解したものである。電池サイズ
は、巾22.5mm、高さ48.0mm、厚さ6.1m
mである。これを比較電池とする。
(Comparative Example) The positive electrode was 100 parts by weight of LiC
oO 2 and 6 parts by weight of acetylene black were pasted with a solution of polyvinylidene fluoride, applied on an aluminum foil, and dried. For the negative electrode, graphite was made into a paste with a solution of polyvinylidene fluoride, applied on a copper foil, and dried. After being incorporated in the prismatic battery, an electrolyte was injected.
The electrolytic solution used was prepared by dissolving 1.0 M lithium hexafluorophosphate in a solvent in which γ-butyrolactone and ethylene carbonate were mixed at a ratio of 3: 2. Battery size is width 22.5mm, height 48.0mm, thickness 6.1m
m. This is a comparative battery.

【0024】上記二つの電池を充放電試験に供した。充
電条件は、定電流定電圧充電、200mA、4.2V、
5時間とし、放電条件は、電流200mA、終止電圧
2.7Vとした。試験温度は室温とした。10サイクル
目の放電容量を比較して表1に示す。
The above two batteries were subjected to a charge / discharge test. The charging conditions were constant current and constant voltage charging, 200 mA, 4.2 V,
5 hours, and the discharge conditions were a current of 200 mA and a cutoff voltage of 2.7 V. The test temperature was room temperature. Table 1 shows a comparison of the discharge capacity at the tenth cycle.

【0025】[0025]

【表1】 [Table 1]

【0026】本発明では、初期充電において負極で生じ
るリチウムロスを電池に内包するリチウム塩で補う。リ
チウム塩は電解質として電解液に溶解した状態では容積
をとらず、正極に内包されるアニオン吸蔵物質が導電剤
の役目を兼ね備えるので導電剤の比率を低減でき、その
分活物質充填量が大きくなり、従来電池に比べ、電池の
放電容量を大きくすることができる。
In the present invention, lithium loss generated at the negative electrode during initial charging is supplemented by a lithium salt contained in the battery. Lithium salt does not take up volume when dissolved in the electrolyte as an electrolyte, and the anion-occluding substance contained in the positive electrode also functions as a conductive agent, so the ratio of the conductive agent can be reduced, and the amount of the active material charged increases. Further, the discharge capacity of the battery can be increased as compared with the conventional battery.

【0027】さらに、従来電池では、過放電されると、
負極集電体である銅が溶解し、正極に銅がデンドライト
状に析出し、電池の短絡を引き起こす恐れがあった。し
かしながら本発明電池では、過放電されると、負極集電
体である銅が溶解するものの、正極ではアニオン吸蔵物
質がアニオンを放出し終わるまで銅の析出が起こらず、
短絡を引き起こしにくいので、安全面でも有利である。
また部品、製造工程に大きな変更を加えること無く電気
的特性の優れた電池を提供できる。
Further, in the conventional battery, when overdischarged,
Copper, which is a negative electrode current collector, was dissolved, and copper was deposited on the positive electrode in a dendrite shape, possibly causing a short circuit of the battery. However, in the battery of the present invention, when overdischarged, although the copper serving as the negative electrode current collector is dissolved, copper deposition does not occur in the positive electrode until the anion-occluding substance has completely released the anion,
Since a short circuit is unlikely to occur, it is advantageous in terms of safety.
Also, a battery having excellent electrical characteristics can be provided without making significant changes in parts and manufacturing processes.

【0028】[0028]

【発明の効果】以上詳述した如く、本発明は、電気的特
性が優れかつ安全な非水二次電池を従来と同様の部品を
適用し、大きな製造工程の変更を加えずに製造すること
ができるので、工業的価値は極めて大である。
As described in detail above, the present invention is to manufacture a non-aqueous secondary battery having excellent electrical characteristics and safety by using the same parts as before and without making a major change in the manufacturing process. Therefore, the industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の1形態を示す図である。FIG. 1 is a diagram showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 3 負極 1 positive electrode 3 negative electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 負極にリチウムを吸蔵放出可能な材料を
用い、正極にリチウムを吸蔵放出可能な遷移金属酸化物
を用いる電池において、該正極はアニオンを吸蔵する能
力を持つアニオン吸蔵物質を含み、該アニオン吸蔵物質
のアニオン吸蔵量は、負極のリチウムリテンション量と
電気量換算でおよそ等量であり、かつ、該アニオン吸蔵
量の等量を超える量の電解質を電池内に内蔵することを
特徴とする非水二次電池。
1. A battery using a material capable of storing and releasing lithium for a negative electrode and a transition metal oxide capable of storing and releasing lithium for a positive electrode, wherein the positive electrode includes an anion storing substance having an ability to store and store anions. The anion storage amount of the anion storage material is approximately equivalent to the amount of lithium retention of the negative electrode in terms of the amount of electricity, and an amount of electrolyte exceeding the equivalent amount of the anion storage amount is incorporated in the battery. Non-aqueous secondary battery.
【請求項2】 前記アニオン吸蔵物質が、ポリアニリ
ン、ポリピロール、ポリチオフェン、ポリアセン、およ
び活性炭のうちから選ばれた少なくとも一種である請求
項1記載の非水二次電池。
2. The non-aqueous secondary battery according to claim 1, wherein the anion storage substance is at least one selected from polyaniline, polypyrrole, polythiophene, polyacene, and activated carbon.
【請求項3】 前記遷移金属酸化物が、リチウムとC
o、Ni、Mnの中の少なくとも1種を含む複合酸化物
である請求項1又は2記載の非水二次電池。
3. The method according to claim 2, wherein the transition metal oxide is lithium and C
3. The non-aqueous secondary battery according to claim 1, which is a composite oxide containing at least one of o, Ni, and Mn.
JP11179167A 1999-06-25 1999-06-25 Nonaqueous secondary battery Pending JP2001006660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11179167A JP2001006660A (en) 1999-06-25 1999-06-25 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11179167A JP2001006660A (en) 1999-06-25 1999-06-25 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2001006660A true JP2001006660A (en) 2001-01-12

Family

ID=16061120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11179167A Pending JP2001006660A (en) 1999-06-25 1999-06-25 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2001006660A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529222A (en) * 2006-03-03 2009-08-13 カリフォルニア・インスティテュート・オブ・テクノロジー Fluoride ion electrochemical cell
US8377586B2 (en) 2005-10-05 2013-02-19 California Institute Of Technology Fluoride ion electrochemical cell
JP2013145758A (en) * 2006-03-03 2013-07-25 California Inst Of Technology Fluoride ion electrochemical cell
JP2017514278A (en) * 2014-07-22 2017-06-01 ジョン イー. スタウファーJohn E. Stauffer Lithium storage battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8377586B2 (en) 2005-10-05 2013-02-19 California Institute Of Technology Fluoride ion electrochemical cell
US8968921B2 (en) 2005-10-05 2015-03-03 California Institute Of Technology Fluoride ion electrochemical cell
JP2009529222A (en) * 2006-03-03 2009-08-13 カリフォルニア・インスティテュート・オブ・テクノロジー Fluoride ion electrochemical cell
JP2013145758A (en) * 2006-03-03 2013-07-25 California Inst Of Technology Fluoride ion electrochemical cell
JP2017514278A (en) * 2014-07-22 2017-06-01 ジョン イー. スタウファーJohn E. Stauffer Lithium storage battery

Similar Documents

Publication Publication Date Title
WO2016080128A1 (en) Lithium ion cell
JP4240078B2 (en) Lithium secondary battery
JP2007265668A (en) Cathode for nonaqueous electrolyte secondary battery and its manufacturing method
JP2008243684A (en) Lithium secondary battery
JP2020102348A (en) Manufacturing method of lithium ion battery, and lithium ion battery
US20120007564A1 (en) Nonaqueous electrolyte secondary battery and method for charging the same
JP2001126766A (en) Nonaqueous electrolyte secondary battery
JP5205863B2 (en) Non-aqueous electrolyte secondary battery
JP5424052B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
WO2012043733A1 (en) Method for manufacturing nonaqueous electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
WO2005027254A1 (en) Nonaqueous electrolyte containing capacity enhancing additive of lithium ion cell and lithium ion cell employing it
JP2014116180A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2017016905A (en) Charging/discharging method for lithium secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JP2001006660A (en) Nonaqueous secondary battery
JP4626021B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2003263984A (en) Nonaqueous electrolyte cell and manufacturing method thereof
JP2004227931A (en) Nonaqueous electrolyte rechargeable battery
JP3346739B2 (en) Non-aqueous electrolyte secondary battery
JP2007323827A (en) Secondary battery, electronic equipment and transport equipment using secondary battery
CN112673503A (en) Nonaqueous electrolyte electricity storage element and electricity storage device
JP2001015168A (en) Lithium secondary battery
JP2002093463A (en) Nonaqueous electrolyte battery