JP2621182B2 - Non-aqueous electrolyte lithium secondary battery - Google Patents

Non-aqueous electrolyte lithium secondary battery

Info

Publication number
JP2621182B2
JP2621182B2 JP62150613A JP15061387A JP2621182B2 JP 2621182 B2 JP2621182 B2 JP 2621182B2 JP 62150613 A JP62150613 A JP 62150613A JP 15061387 A JP15061387 A JP 15061387A JP 2621182 B2 JP2621182 B2 JP 2621182B2
Authority
JP
Japan
Prior art keywords
active material
lithium
alloy
battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62150613A
Other languages
Japanese (ja)
Other versions
JPS63314778A (en
Inventor
彰克 守田
信夫 江田
秀 越名
幸雄 西川
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62150613A priority Critical patent/JP2621182B2/en
Publication of JPS63314778A publication Critical patent/JPS63314778A/en
Application granted granted Critical
Publication of JP2621182B2 publication Critical patent/JP2621182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はポータブル機器用電源、もしくはメモリーバ
ックアップ用電源としての非水電解質リチウム二次電池
の改良に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a non-aqueous electrolyte lithium secondary battery as a power source for portable equipment or a power source for memory backup.

従来の技術 非水電解質リチウム二次電池は在来水溶液系電池とく
らべ高電圧、高エネルギー密度であり、耐自己放電、耐
漏液性にすぐれるなどの特長を有し、今後大いに期待さ
れる電池系であると言えるが、現在二硫化モリブデンを
正極としたリチウム二次電池が一部実用化されているも
のの、本格的な実用化には至っていない。
2. Description of the Related Art Non-aqueous electrolyte lithium secondary batteries have higher voltage, higher energy density, better self-discharge resistance and liquid leakage resistance than conventional aqueous batteries, and are highly expected in the future. Although lithium secondary batteries using molybdenum disulfide as a positive electrode have been partly put into practical use at present, they have not reached full-scale commercialization.

その最も大きな理由として、例えば在来水溶液系電池
であるニッケルカドミウム電池とくらべ、充放電サイク
ル特性に劣るという大きな問題点を有することによる。
The greatest reason is that, for example, there is a large problem that the charge / discharge cycle characteristics are inferior to that of a nickel cadmium battery which is a conventional aqueous battery.

これはリチウム二次電池の負極活物質であるリチウム
が、放電時に電解質中に溶解し、充電時に再び電極上に
析出するという形態をとるが、この充電の際リチウムが
均一に析出せず、樹脂状となる、いわゆるデンドライト
が生成するため、次に放電する時、スムーズな放電をお
こなわないか、あるいはデンドライトがセパレータを貫
通して正極と接触し、短絡現象をおこすなどがその原因
である。
This is a form in which lithium, which is the negative electrode active material of the lithium secondary battery, dissolves in the electrolyte at the time of discharging and precipitates again on the electrode at the time of charging. The so-called dendrite is formed, so that when the next discharge is performed, smooth discharge is not performed, or the dendrite penetrates through the separator and contacts the positive electrode to cause a short circuit phenomenon.

これに対し、特開昭59−163756号報、同59−163758号
報では、カドミウム、鉛、スズ、ビスマス、アンチモ
ン、水銀、インジウムなどの二元素以上の合金、いわゆ
る低融点の可融合金が非水電解質中で容易にリチウムを
吸蔵、放出することを見い出し、これらの合金を負極と
する非水電解質リチウム二次電池を提案している。
In contrast, JP-A-59-163756 and JP-A-59-163758 disclose an alloy of two or more elements such as cadmium, lead, tin, bismuth, antimony, mercury, and indium, a so-called low melting point fusible alloy. It has been found that lithium can be easily inserted and extracted in a non-aqueous electrolyte, and a non-aqueous electrolyte lithium secondary battery using these alloys as a negative electrode has been proposed.

すなわち、これらの合金を負極として用いた電池で
は、放電の際合金内部に吸蔵されているリチウムが電解
質中に放出され、逆に充電の際は電解質のリチウムイオ
ンが合金上に析出するとすみやかに合金と反応し、合金
内部に拡散し、吸蔵されるため、合金負極の表面にデン
ドライトが生成することがないため、良好な充放電サイ
クル特性を示すというものである。
In other words, in batteries using these alloys as the negative electrode, the lithium occluded inside the alloy is discharged into the electrolyte during discharging, and conversely, when lithium ions of the electrolyte precipitate on the alloy during charging, the alloy is rapidly formed. And diffuses into the alloy and is occluded, so that dendrite does not form on the surface of the alloy negative electrode, thereby exhibiting good charge / discharge cycle characteristics.

上記元素のうちでも特に鉛、スズ、ビスマス、インジ
ウムがリチウムの吸蔵量が大で、且つ電池の充放電時に
容易にリチウムを放出する。一方、これらの元素をくみ
合せた合金を負極に用いて電池を構成し、充放電をくり
返すと、リチウムの吸蔵量が大であるが故に、電極にく
ずれが生じ、寿命が尽きるという欠点を有する。通常こ
の欠点を補うものとして、リチウムの吸蔵量は小さいも
のの、一種の結着剤的な役割を果す元素として、カドミ
ウム、亜鉛などを適量加えて合金を形成する。
Among the above elements, lead, tin, bismuth, and indium, particularly, have a large lithium storage capacity and easily release lithium when the battery is charged and discharged. On the other hand, when a battery is formed by using an alloy obtained by combining these elements as a negative electrode and the charge and discharge are repeated, a large amount of lithium is absorbed. Have. Usually, in order to compensate for this drawback, an alloy is formed by adding an appropriate amount of cadmium, zinc, or the like as an element that plays a role as a kind of binder, although the amount of occluded lithium is small.

またこれら合金はリチウムに対し、約0.4〜0.6Vの電
位を有するため、高電圧、高エネルギー密度のリチウム
二次電池を得るためには、理論的な電気容量が大で、且
つ高い電位を有する正極活物質を選択する必要がある。
In addition, since these alloys have a potential of about 0.4 to 0.6 V with respect to lithium, in order to obtain a high voltage, high energy density lithium secondary battery, the theoretical electric capacity is large and the potential is high. It is necessary to select a positive electrode active material.

これらの要件を満たす活物質として、二酸化マンガ
ン、クロム酸化物、バナジウム酸化物などが知られてい
る。即ち、上記の合金負極と正極活物質をくみ合せれ
ば、高電圧、高エネルギー密度で充放電サイクル特性に
すぐれた非水電解質リチウム二次電池が得られることに
なる。
As active materials satisfying these requirements, manganese dioxide, chromium oxide, vanadium oxide and the like are known. That is, if the alloy negative electrode and the positive electrode active material are combined, a non-aqueous electrolyte lithium secondary battery having high voltage, high energy density, and excellent charge / discharge cycle characteristics can be obtained.

発明が解決しようとする問題点 一方、電池の実際の使用にあたっては過放電を考慮す
る必要がある。これは一次電池の場合も同様であるが、
電池を機器に組み込んで使用状態にしておくと、電池は
いつまでも放電し続けることになる。特に最近用途が増
えているメモリーバックアップ用として使用する場合、
電池は機器に組み込まれた時点から作動状態におかれる
こととなり、機器の使用者が交流電源に接続して電池の
充電が開始されるまで放電が継続し、極端な場合は電池
が放電し尽し、電池電圧が0Vとなることもある。在来電
池、例えばニッケル・カドミウム電池などは、この過放
電使用に強く、例え電池電圧が0Vとなるまで放電して
も、その時点で充電しさえすれば、再びもと通り使用で
きる。
Problems to be Solved by the Invention On the other hand, in actual use of the battery, it is necessary to consider overdischarge. The same is true for primary batteries,
If the battery is incorporated in the device and used, the battery will continue to discharge forever. Especially when it is used for memory backup, which has been increasing its use recently,
The battery is put into operation from the time it is installed in the device.Discharge continues until the user of the device connects to the AC power supply and starts charging the battery.In extreme cases, the battery is completely discharged. However, the battery voltage may become 0V. Conventional batteries, such as nickel-cadmium batteries, are resistant to this over-discharge use. Even if they are discharged until the battery voltage reaches 0 V, they can be used again as long as they are charged at that time.

リチウム二次電池の場合、この過放電特性が極端に弱
く、電圧が0Vとなるまで放電すると、充電しても再びも
との状態にもどらない。リチウム二次電池が現在、普及
し得ない大きな理由として、このことが挙げられる。
In the case of a lithium secondary battery, this overdischarge characteristic is extremely weak, and if the battery is discharged until the voltage becomes 0 V, it does not return to the original state even if charged. This is one of the main reasons why lithium secondary batteries cannot be widely used at present.

問題点を解決するための手段 この問題点を解決するために、本発明は、正極は高い
電位で放電する第1の活物質と低い電位で放電する第2
の活物質とからなり、負極はリチウムを吸蔵、放出する
合金にリチウムを圧着させたものかもしくはあらかじめ
リチウムを吸蔵させた合金からなり、第1の活物質は合
金の非水電解質中での溶解電位より高い電位で放電し、
第2の活物質は逆に低い電位で放電するものであるとと
もに、負極の充放電可能なリチウムの理論電気量が、第
1の活物質の放電可能電気量よりも大であり、かつ第1
の活物質と第2の活物質の放電可能電気量の合計よりも
小に設計した非水電解質リチウム二次電池を提供するも
のである。
Means for Solving the Problems In order to solve this problem, the present invention provides a first active material in which the positive electrode discharges at a high potential and a second active material which discharges at a low potential.
The negative electrode is made of an alloy that absorbs and releases lithium and pressed against lithium or an alloy that has previously absorbed lithium, and the first active material is a solution of the alloy in a non-aqueous electrolyte. Discharge at a higher potential than
Conversely, the second active material discharges at a low potential, and the theoretical amount of chargeable lithium of the negative electrode is larger than the dischargeable amount of electricity of the first active material;
It is intended to provide a non-aqueous electrolyte lithium secondary battery designed to be smaller than the sum of dischargeable electricity amounts of the active material and the second active material.

作用 上記した如く、リチウム二次電池を過放電した場合、
もとにもどらないというのは次の理由による。
Operation As described above, when the lithium secondary battery is overdischarged,
The reason for not returning is as follows.

即ち、電池を過放電すると放電電圧は低下し、最終的
には電池の電圧が0Vとなるが、これは通常正極もしくは
負極の容量のいずれかが尽きてしまうということを示し
ている。正極の容量が尽きる場合、即ち正極容量規制の
場合を考えると、通常リチウム二次電池の正極活物質と
しては、上記した如く、二酸化マンガン、クロム酸化
物、バナジウム酸化物などの無機化合物を用いるが、こ
れらはある一定の電位以下まで放電すると結晶構造に変
化を来たす。従って充電しても再びもとの状態にもどら
ないということになる。
That is, when the battery is over-discharged, the discharge voltage decreases, and eventually the voltage of the battery becomes 0 V, which indicates that usually either the capacity of the positive electrode or the capacity of the negative electrode is exhausted. When the capacity of the positive electrode is exhausted, that is, when considering the case of the positive electrode capacity regulation, as described above, as a positive electrode active material of a lithium secondary battery, an inorganic compound such as manganese dioxide, chromium oxide, or vanadium oxide is used. When these are discharged below a certain potential, the crystal structure changes. Therefore, even if the battery is charged, it does not return to the original state.

一方、負極の容量が尽きる場合、即ち負極容量規制の
場合を考えると、合金負極に吸蔵されているリチウムは
放電とともに電解質中にイオンとして溶解していくが、
リチウムがすべて消費し尽されてしまうと負極の電位が
上昇し、合金負極の溶解反応がおこり始め、最終的には
すべて電解質中に溶解してしまう。従って、次に充電し
てもリチウムを吸蔵すべき合金が存在しないため、電池
としての充電はおこなわれないということになる。以上
がリチウム二次電池が過放電できない理由である。
On the other hand, when the capacity of the negative electrode is exhausted, that is, in the case of regulating the negative electrode capacity, the lithium occluded in the alloy negative electrode is dissolved as an ion in the electrolyte with discharge,
When all of the lithium is consumed, the potential of the negative electrode increases, and a dissolution reaction of the alloy negative electrode starts to occur, and eventually all of the lithium is dissolved in the electrolyte. Therefore, since there is no alloy that should absorb lithium even when the battery is charged next time, the battery is not charged. The above is the reason why the lithium secondary battery cannot be overdischarged.

この欠点を克服する方法として、まず正極容量規制の
電池の場合、正極活物質の容量が尽きたとしても何らか
の手段を講じて正極の電位を活物質の結晶構造が変化す
る電位よりも高い電位に留めておけばよい。
As a method of overcoming this drawback, in the case of a battery with positive electrode capacity regulation, even if the capacity of the positive electrode active material is exhausted, some measure is taken to raise the potential of the positive electrode to a potential higher than the potential at which the crystal structure of the active material changes. You should keep it.

また逆に負極容量規制の場合、合金負極に圧着もしく
は吸蔵させたリチウムの容量が尽きたとしても何らかの
手段を講じて負極の電位を合金の電位以下に留めておけ
ばよい。理論的には以上の通りであるが、実際問題とし
て正極容量規制の場合を考えると、通常上記した正極活
物質はすべてリチウムに対し1.0〜2.0Vの範囲で結晶構
造の変化を来たす。従って、正極の電位がそれ以下にな
らないようにするためには、負極の放電電位がそれぞれ
の正極活物質の結晶構造の変化を来たす電位以上で放電
しなければならないことになり、これでは電池としての
電圧が低すぎ、高電圧、高エネルギー密度の電池とはな
り得ない。よってリチウム二次電池の場合、負極容量規
制とし、負極の容量が尽きた時、何らかの手段を用いて
負極の電位が、合金の非水電解質中での溶解電位以下に
留めておくことを考えなければならない。
On the other hand, in the case of regulating the capacity of the negative electrode, even if the capacity of lithium pressed or occluded on the alloy negative electrode is exhausted, the potential of the negative electrode may be kept below the potential of the alloy by some means. Although it is theoretically as described above, considering the case where the capacity of the positive electrode is regulated as a practical problem, the above-mentioned positive electrode active materials usually change their crystal structures in the range of 1.0 to 2.0 V with respect to lithium. Therefore, in order to prevent the potential of the positive electrode from becoming lower than that, the discharge potential of the negative electrode must be discharged at a potential or more that causes a change in the crystal structure of each positive electrode active material. Is too low to be a high voltage, high energy density battery. Therefore, in the case of a lithium secondary battery, the capacity of the negative electrode is regulated, and when the capacity of the negative electrode is exhausted, it is necessary to consider that the potential of the negative electrode is kept below the melting potential of the alloy in the nonaqueous electrolyte by using some means. Must.

負極の合金の成分元素として考えている鉛、ビスマ
ス、スズ、インジウム、カドミウム、亜鉛の非水電解質
中でのリチウムに対する溶解電位を第1表に示す。
Table 1 shows the dissolution potentials of lead, bismuth, tin, indium, cadmium, and zinc, which are considered as constituent elements of the alloy of the negative electrode, with respect to lithium in a nonaqueous electrolyte.

上記の正極活物質として考えられる二酸化マンガン、
クロム酸化物、バナジウム酸化物は非水電解質中でいず
れも3V以上の放電電位を持つため、負極容量規制の電池
を構成した場合、ビスマスもしくは亜鉛などの一部を除
き、第1表の金属元素はいずれも溶解することになる。
Manganese dioxide considered as the above positive electrode active material,
Chromium oxide and vanadium oxide both have a discharge potential of 3 V or more in a non-aqueous electrolyte. Therefore, when a battery with a negative electrode capacity regulation is configured, except for a part of bismuth or zinc, the metal elements shown in Table 1 Will be dissolved.

従って、このままでは過放電可能な二次電池としては
成り立ち得ない。
Therefore, as it is, a secondary battery that can be overdischarged cannot be realized.

本発明は正極活物質として、上記の正極活物質(第1
の活物質)とともに、第1表に示した各種の金属元素の
溶解電位よりも低い電位で放電する第2の活物質を用い
ることを提案するものである。
In the present invention, the above-mentioned positive electrode active material (first
Together with a second active material that discharges at a potential lower than the dissolution potential of the various metal elements shown in Table 1.

即ち、電池全体としては負極容量規制の電池である
が、正極ではまず最初に第1の活物質が3V以上の電位で
放電し、その容量が尽きた時点で第2の活物質の放電に
移る。この第2の活物質が放電をおこなっている間に負
極の合金に吸蔵、もしくは圧着してあるリチウムの容量
が尽きるように電池を設計しておけば、最終的には負極
の電位が正極中の第2の活物質の放電電位に達した時、
電池の電圧は0Vとなり、これ以上電流は流れなくなり、
電池の放電は終了することになる。その時点で、上記し
た如く、第2の活物質は各種合金元素の溶解電位より低
い電位で放電しているわけであるから、これら合金元素
は溶解することなしにその電位に留めておかれることに
なる。
That is, although the battery as a whole is a battery with a regulated negative electrode capacity, the positive electrode first discharges the first active material at a potential of 3 V or more at the positive electrode, and starts discharging the second active material when the capacity is exhausted. . If the battery is designed so that the capacity of the lithium that has been occluded or pressed into the alloy of the negative electrode during the discharge of the second active material is exhausted, the potential of the negative electrode eventually becomes When the discharge potential of the second active material reaches
The battery voltage becomes 0 V, and no more current flows,
The discharge of the battery will end. At that time, as described above, the second active material is discharged at a potential lower than the dissolution potential of various alloying elements. Therefore, these alloying elements must be kept at that potential without being dissolved. become.

即ち、耐過放電特性にすぐれた理想的な非水電解質リ
チウム二次電池が得られるものとなる。
That is, an ideal nonaqueous electrolyte lithium secondary battery having excellent overdischarge resistance can be obtained.

なお、第2の活物質としては酸化モリブデン(Mo
O2)、三酸化モリブデン、二硫化モリブデン三硫化モリ
ブデン、二硫化チタン、酸化チタン、酸化タングステ
ン、二硫化ニオビウム、三酸ニオビウム(Nb2O5)、セ
レン化ニオビウム(NbSe3)などが考えられる。これら
はいずれもリチウムに対し、2.4V以下の電位で放電する
活物質で、上記の条件に適合するものである。
Note that molybdenum oxide (Mo) was used as the second active material.
O 2 ), molybdenum trioxide, molybdenum disulfide, molybdenum trisulfide, titanium disulfide, titanium oxide, tungsten oxide, niobium disulfide, niobium trioxide (Nb 2 O 5 ), niobium selenide (NbSe 3 ), etc. . All of these are active materials that discharge at a potential of 2.4 V or less with respect to lithium, and meet the above conditions.

実施例 (実施例1) 第1の正極活性物質である二酸化マンガンと第2の正
極活物質である二硫化チタンを重量比で2:1で混合し、
この混合物と導電材のカーボンブラックと結着剤の四フ
ッ化エチレン・六フッ化プロピレンの共重合体の水成デ
ィスパージョンをそれぞれ重量比(但し水成ディスパー
ジョンは固形分換算)で100:5:10の割合で混合し、乾燥
後、直径15mm、厚さ0.5mmの円盤状に加圧成形し正極と
する。この正極を用い、第1図に示す扁平形電池を組み
立てた。負極は、鉛、インジウム、カドミウムをそれぞ
れ重量比で75:5:20の割合で溶融し、合金としたものに
リチウムを圧着したものを用いた。
EXAMPLES (Example 1) Manganese dioxide as a first positive electrode active material and titanium disulfide as a second positive electrode active material were mixed at a weight ratio of 2: 1.
The aqueous dispersion of this mixture, the copolymer of carbon black as the conductive material and the copolymer of ethylene tetrafluoride and propylene hexafluoride as the binder was respectively 100: 5 by weight ratio (however, the aqueous dispersion is a solid content conversion). After mixing at a ratio of 10 and drying, the mixture was pressed into a disk having a diameter of 15 mm and a thickness of 0.5 mm to obtain a positive electrode. Using this positive electrode, the flat battery shown in FIG. 1 was assembled. As the negative electrode, one obtained by melting lead, indium, and cadmium at a weight ratio of 75: 5: 20, respectively, and pressing lithium on an alloy was used.

第1図において、1はニッケルメッキしたステンレス
鋼よりなる封口板で、内面に合金負極2をスポット溶接
し、その上にリチウム3を圧着している。4はポリプロ
ピレン製セパレータで1,3−ジオキソランからなる溶媒
に過塩素酸リチウムを1モル/の割合で溶解させた電
解質を含浸させてある。5は上記円盤状の正極で、ステ
ンレス製ケース6にスポット溶接したチタン製集電体7
に圧着してある。8はポリプロピレン製ガスケットで、
完成電池の寸法は直径20mm、厚さ1.6mmである。なお正
極中の第1の活物質である二酸化マンガン理論電気容量
は24mAh、第2の活物質である二硫化チタンの理論電気
容量は8mAh、合金負極に圧着したリチウムの理論電気容
量は40mAhである。この電池を20℃で1mAの電流で2Vまで
放電し、更に1mAの電流で3.4Vまで充電するというサイ
クルを3回くり返した後、電池の側部に穴をあけ、乾燥
空気雰囲気で、電池に用いた同じ電解質中でリチウムを
参照極とし、同様に20℃、1mAの電流で放電した時の、
正極と負極の挙動、ならびに電池電圧を第2図に示す。
In FIG. 1, reference numeral 1 denotes a sealing plate made of nickel-plated stainless steel, on which an alloy negative electrode 2 is spot-welded on its inner surface, and lithium 3 is pressed thereon. Reference numeral 4 denotes a polypropylene separator impregnated with an electrolyte obtained by dissolving lithium perchlorate in a solvent composed of 1,3-dioxolane at a ratio of 1 mol / mol. Reference numeral 5 denotes the disc-shaped positive electrode, and a titanium current collector 7 spot-welded to a stainless steel case 6.
It is crimped on. 8 is a polypropylene gasket,
The dimensions of the completed battery are 20mm in diameter and 1.6mm in thickness. The theoretical electric capacity of manganese dioxide as the first active material in the positive electrode was 24 mAh, the theoretical electric capacity of titanium disulfide as the second active material was 8 mAh, and the theoretical electric capacity of lithium pressed on the alloy negative electrode was 40 mAh. . The battery was discharged at 20 ° C with a current of 1 mA to 2 V and then charged with a current of 1 mA to 3.4 V three times, and then a hole was made in the side of the battery. When lithium was used as a reference electrode in the same electrolyte used and similarly discharged at 20 ° C. and a current of 1 mA,
FIG. 2 shows the behavior of the positive electrode and the negative electrode, and the battery voltage.

第2図から明らかなように、最初正極の第1の活物質
である二酸化マンガンが放電し、約19時間経過時点で第
2の活物質である二硫化チタンが放電を開始する。二硫
化チタンがリチウムに対し、約2.2Vから放電をおこなっ
ている間に負極のリチウムの容量が尽き、負極の電位は
急速に上昇し、1.9Vに達する。従ってこの時点で電池電
圧は0Vとなる。更に放電を続ければ正,負極の電位は逆
転するが、実際の使用においては一般的に定抵抗で放電
されるため、電池の電圧が0Vになった時点で放電は終了
する。このため、電池をこのまま放置しても、正極は第
2の活物質の容量が残っている状態であり、何ら変化を
おこさないし、負極も合金の成分元素の鉛、インジウ
ム、カドミウムの溶解電位よりも遥かに低い1.9Vに留め
ておかれているわけであるから何らの変化もおこさな
い。この場合、負極のリチウムの充填量が40mAhである
のに実際の放電電気量が24mAhであるのは、合金負極お
よび正極の二酸化マンガンにとり込まれて、でてこない
量が16mAh分あることを示している。次にこの電池をこ
の状態で1ケ月放置した後、20℃で1mAの電流で、電池
電圧が3.4Vになるまで充電し、再び、1mAで放電したと
ころ、第2図と全く同じ挙動を示した。このことからこ
の電池系では、電圧が0Vになるまで過放電しても、系自
体には何の変化もおこさないということが判る。
As is clear from FIG. 2, manganese dioxide, which is the first active material of the positive electrode, first discharges, and about 19 hours later, titanium disulfide, which is the second active material, starts discharging. While titanium disulfide discharges lithium from about 2.2V, the capacity of the negative electrode lithium is exhausted, and the potential of the negative electrode rapidly rises to reach 1.9V. Therefore, at this point, the battery voltage becomes 0V. If the discharge is further continued, the potentials of the positive and negative electrodes are reversed. However, in actual use, since the discharge is generally performed with a constant resistance, the discharge ends when the voltage of the battery becomes 0V. For this reason, even if the battery is left as it is, the positive electrode is in a state where the capacity of the second active material remains, and does not change at all, and the negative electrode also has a melting potential of lead, indium, and cadmium, which are constituent elements of the alloy. Since it is kept at 1.9V, which is much lower, there is no change. In this case, the fact that the amount of lithium charged in the negative electrode is 40 mAh and the actual amount of discharge electricity is 24 mAh indicates that the amount of manganese dioxide in the alloy negative electrode and the positive electrode that is taken out and does not come out is 16 mAh. ing. Next, after leaving this battery for one month in this state, it was charged with a current of 1 mA at 20 ° C. until the battery voltage reached 3.4 V, and discharged again at 1 mA. Was. This shows that in this battery system, even if the battery is overdischarged until the voltage becomes 0 V, no change occurs in the system itself.

(実施例2) 第1の活物質として酸化クロム(Cr2O5)を、第2の
活物質として二硫化モリブデンを重量比で5:2の割合で
混合し、この混合物と導電材のカーボンブラックと結着
剤の四フッ化エチレン・六フッ化プロピレンの共重合体
の水成ディスパージョンをそれぞれ重量比(但し水成デ
ィスパージョンは固形分換算)で100:5:10の割合で混合
し、乾燥後、直径15mm、厚さ0.5mmの円盤状に加圧成形
し正極とする。この正極を用い、実施例1の場合と同
様、第1図に示す扁平形電池を組み立てた。負極は、
鉛、ビスマス、カドミウムをそれぞれ重量比で50:25:25
の割合で溶融し、合金としたものにリチウムを圧着した
ものを用いた。電池の構成は実施例1と全く同様である
が、電解質としては、プロピレンカーボネートと1,3−
ジオキソランを体積比で1:1に混合したものに過塩素酸
リチウムを1モル/の割合で溶かしたものを用いた。
なお正極中の第1の活物質である酸化クロムの理論電気
容量は24mAh、第2の活物質である二硫化モリブデンの
理論電気容量は5.5mAhであり、合金負極に圧着したリチ
ウムの理論電気容量は38mAhである。
Example 2 Chromium oxide (Cr 2 O 5 ) as a first active material and molybdenum disulfide as a second active material were mixed at a weight ratio of 5: 2, and this mixture and carbon as a conductive material were mixed. The aqueous dispersion of the copolymer of black and ethylene tetrafluoride / hexafluoropropylene as the binder is mixed in a weight ratio of 100: 5: 10 (however, the aqueous dispersion is a solid content conversion). After drying, a positive electrode is formed by pressing into a disk having a diameter of 15 mm and a thickness of 0.5 mm. Using this positive electrode, the flat battery shown in FIG. 1 was assembled in the same manner as in Example 1. The negative electrode is
50:25:25 lead, bismuth and cadmium in weight ratio
, And an alloy was prepared by pressing lithium on an alloy. The structure of the battery was exactly the same as that of Example 1, except that propylene carbonate and 1,3-
A mixture in which dioxolane was mixed at a volume ratio of 1: 1 and lithium perchlorate was dissolved at a ratio of 1 mol / l was used.
The theoretical electric capacity of chromium oxide as the first active material in the positive electrode was 24 mAh, the theoretical electric capacity of molybdenum disulfide as the second active material was 5.5 mAh, and the theoretical electric capacity of lithium pressed on the alloy negative electrode was Is 38 mAh.

この電池を実施例1の場合と同様、20℃で1mAの電流
で2Vまで放電、続いて1mAの電流で3.4Vまで充電すると
いうサイクルを3回くり返した後、電池の側部に穴をあ
け、乾燥空気雰囲気下で電池に用いた同じ電解質中でリ
チウムを参照極とし、同様に20℃、1mAの電流で放電し
た時の正極と負極の挙動ならびに電池の電圧を第3図に
示す。
After repeating the cycle of discharging this battery at 20 ° C. at a current of 1 mA to 2 V at 20 ° C. and then charging it at a current of 1 mA up to 3.4 V in the same manner as in Example 1, a hole was made in the side of the battery. FIG. 3 shows the behavior of the positive and negative electrodes and the voltage of the battery when lithium was used as the reference electrode in the same electrolyte used for the battery in a dry air atmosphere and the battery was also discharged at 20 ° C. and a current of 1 mA.

第3図から判るように、第2図の場合と同様、最初正
極の第1の活物質である酸化クロムが放電し、約19時間
経過時点で第2の活物質である二硫化モリブデンが放電
を開始する。二硫化モリブデンも二硫化チタンの場合と
同様約2.2Vから放電を開始する。その間に負極のリチウ
ムの容量が尽き、負極の電位は上昇し、その時点での正
極の放電電位である2.0Vに達し、電池電圧は0Vとなり放
電は終了する。実施例1と同様、この電位は合金負極の
成分元素の溶解電位より遥かに低いため、電池自体には
何の変化もおこさない。続いてこの電池を1ケ月放置し
た後、20℃で1mAの電流で再び電池電圧が3.4Vになるま
で充電し、同様の条件で放電したところ、第3図と全く
同じ挙動を示した。同様なパターンを以降何回かくり返
したがその挙動は殆んど変らなかった。
As can be seen from FIG. 3, as in the case of FIG. 2, chromium oxide, which is the first active material of the positive electrode, first discharges, and after about 19 hours, molybdenum disulfide, which is the second active material, discharges. To start. Molybdenum disulfide also starts discharging at about 2.2 V, as in the case of titanium disulfide. In the meantime, the capacity of lithium on the negative electrode is exhausted, and the potential of the negative electrode rises, reaches 2.0 V, which is the discharge potential of the positive electrode at that time, the battery voltage becomes 0 V, and the discharge ends. As in Example 1, this potential is much lower than the dissolution potential of the constituent elements of the alloy negative electrode, so that no change occurs in the battery itself. Subsequently, after the battery was left for one month, the battery was charged again at 20 ° C. with a current of 1 mA until the battery voltage reached 3.4 V, and discharged under the same conditions. The same behavior as in FIG. 3 was exhibited. The same pattern was repeated several times, but the behavior was almost unchanged.

発明の効果 以上から明らかな如く、本発明によれば、正極に適切
な第1の活物質と第2の活物質を選択し、かつ第2の活
物質の放電容量が維持されているうちに、合金負極に圧
着もしくは吸蔵させたリチウムの放電可能な電気容量が
尽きるよう電池を設計することにより、電池電圧が0Vま
で過放電可能な、非水電解質リチウム二次電池を提供す
ることができるという効果がえられる。同時に本発明で
は、正極の第2の活物質の選択が重要なポイントであ
り、何回でも電池を過放電可能たらしめるためにはこの
活物質自体、充放電の可逆性を有するものでなければな
らない。また、この活物質は、実施例に挙げたものにと
どまらず、上記の条件を満足するものすべてにわたるも
のであることは言うまでもない。
Advantageous Effects of the Invention As is apparent from the above, according to the present invention, the first active material and the second active material appropriate for the positive electrode are selected, and the discharge capacity of the second active material is maintained. By designing a battery so that the dischargeable electric capacity of lithium pressed or occluded on the alloy negative electrode is exhausted, it is possible to provide a non-aqueous electrolyte lithium secondary battery capable of overdischarging the battery voltage to 0 V. The effect is obtained. At the same time, in the present invention, the selection of the second active material of the positive electrode is an important point, and in order to make the battery over-dischargeable any number of times, the active material itself must have reversibility of charge and discharge. No. In addition, it goes without saying that this active material is not limited to those described in the examples, but covers all the materials satisfying the above conditions.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例で用いた扁平形電池の断面図、
第2図および第3図は本発明電池の過放電特性図であ
る。 1……封口板、2……合金負極、3……リチウム、4…
…セパレータ、5……正極、6……ケース、7……集電
体、8……ガスケット。
FIG. 1 is a sectional view of a flat battery used in an embodiment of the present invention,
2 and 3 are diagrams showing overdischarge characteristics of the battery of the present invention. 1 ... sealing plate, 2 ... alloy negative electrode, 3 ... lithium, 4 ...
… Separator, 5… positive electrode, 6… case, 7… current collector, 8… gasket.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 4/58 H01M 4/58 (72)発明者 西川 幸雄 門真市大字門真1006番地 松下電器産業 株式会社内 (72)発明者 松井 徹 門真市大字門真1006番地 松下電器産業 株式会社内 (56)参考文献 特開 昭59−165372(JP,A) 特開 昭62−27455(JP,A)──────────────────────────────────────────────────続 き Continuing on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location H01M 4/58 H01M 4/58 (72) Inventor Yukio Nishikawa 1006 Kazuma Kazuma Kadoma Matsushita Electric Industrial Co., Ltd. In-company (72) Inventor Toru Matsui 1006 Kazuma Kadoma, Matsushita Electric Industrial Co., Ltd. (56) References JP-A-59-165372 (JP, A) JP-A-62-27455 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】充放電可能な第1の活物質と第2の活物質
からなる正極と、充電時にリチウムを吸蔵し放電時にリ
チウムを放出する合金にリチウムを圧着するかもしくは
あらかじめリチウムを吸蔵させた合金からなる負極と、
非水電解質を備えた電池において、第1の活物質は非水
電解質中で前記合金が溶解する電位よりも高い電位で放
電するものであり、第2の活物質は逆に低い電位で放電
するものであるとともに、合金に圧着したリチウムもし
くは合金に吸蔵させたリチウムの放電可能電気量が第1
の活物質の放電可能電気量よりも大であり、かつ第1の
活物質と第2の活物質の放電可能電気量の合計よりも小
であることを特徴とする非水電解質リチウム二次電池。
1. A positive electrode comprising a chargeable and dischargeable first active material and a second active material, and an alloy which occludes lithium during charging and releases lithium during discharging is press-bonded with lithium or preliminarily stores lithium. A negative electrode made of an alloy
In a battery provided with a non-aqueous electrolyte, the first active material discharges at a higher potential than the potential at which the alloy dissolves in the non-aqueous electrolyte, and the second active material discharges at a lower potential. And the amount of dischargeable electricity of lithium press-bonded to the alloy or inserted into the alloy is the first.
A non-aqueous electrolyte lithium secondary battery characterized by being larger than the dischargeable amount of electricity of the active material and smaller than the sum of the dischargeable amounts of electricity of the first active material and the second active material. .
【請求項2】正極の第1の活物質が二酸化マンガン(Mn
O2)、クロム酸化物(CrOx)、バナジウム酸化物(VO
x)よりなる群から選んだ一種であり、第2の活物質が
酸化モリブデン(MoO2)、三酸化モリブデン(MoO3)、
二硫化モリブデン(MoS2)、三硫化モリブデン(Mo
S3)、二硫化チタン(TiS2)、酸化チタン(TiO2)、酸
化タングステン(WO3)、二硫化ニオビウム(NbS2)、
酸化ニオビウム(Nb2O5)、セレン化ニオビウム(NbS
e3)よりなる群より選んだ一種である特許請求の範囲第
1項記載の非水電解質リチウム二次電池。
2. The method according to claim 1, wherein the first active material of the positive electrode is manganese dioxide (Mn).
O 2 ), chromium oxide (CrOx), vanadium oxide (VO
x), wherein the second active material is molybdenum oxide (MoO 2 ), molybdenum trioxide (MoO 3 ),
Molybdenum disulfide (MoS 2 ), molybdenum trisulfide (Mo
S 3 ), titanium disulfide (TiS 2 ), titanium oxide (TiO 2 ), tungsten oxide (WO 3 ), niobium disulfide (NbS 2 ),
Niobium oxide (Nb 2 O 5 ), niobium selenide (NbS
The non-aqueous electrolyte lithium secondary battery in the range first claim of e 3) is a type chosen from the group consisting of claims.
【請求項3】負極のリチウムを吸蔵、放出する合金はス
ズ(Sn)、鉛(Pb)、ビスマス(Bi)、インジウム(I
n)よりなる群から選んだ少なくとも1種と、亜鉛(Z
n)、カドミウム(Cd)よりなる群から選んだ1種とか
らなる特許請求の範囲第1項又は第2項記載の非水電解
質リチウム二次電池。
3. The alloy for absorbing and releasing lithium of the negative electrode is tin (Sn), lead (Pb), bismuth (Bi), indium (I
n) at least one selected from the group consisting of
3. The non-aqueous electrolyte lithium secondary battery according to claim 1, wherein the non-aqueous electrolyte lithium battery comprises n) and one selected from the group consisting of cadmium (Cd).
JP62150613A 1987-06-17 1987-06-17 Non-aqueous electrolyte lithium secondary battery Expired - Fee Related JP2621182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62150613A JP2621182B2 (en) 1987-06-17 1987-06-17 Non-aqueous electrolyte lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62150613A JP2621182B2 (en) 1987-06-17 1987-06-17 Non-aqueous electrolyte lithium secondary battery

Publications (2)

Publication Number Publication Date
JPS63314778A JPS63314778A (en) 1988-12-22
JP2621182B2 true JP2621182B2 (en) 1997-06-18

Family

ID=15500705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62150613A Expired - Fee Related JP2621182B2 (en) 1987-06-17 1987-06-17 Non-aqueous electrolyte lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2621182B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9216393D0 (en) * 1992-08-01 1992-09-16 Atomic Energy Authority Uk Electrochemical cell
US6596439B1 (en) 2000-04-26 2003-07-22 Quallion Llc Lithium ion battery capable of being discharged to zero volts
EP1864344B1 (en) * 2005-04-01 2018-05-02 Lg Chem, Ltd. Lithium secondary battery comprising electrode additive

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165372A (en) * 1983-03-09 1984-09-18 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH0717812B2 (en) * 1985-07-29 1995-03-01 ユニチカ株式会社 Granular resole resin composition and method for producing the same

Also Published As

Publication number Publication date
JPS63314778A (en) 1988-12-22

Similar Documents

Publication Publication Date Title
JPH11283664A (en) Solid-electrolyte battery
JP3252414B2 (en) Non-aqueous electrolyte secondary battery
JPH0562712A (en) Non-aqueous electrolyte secondary cell
JPH0744043B2 (en) Lithium secondary battery
US4844994A (en) Chargeable electrochemical device
JP2621182B2 (en) Non-aqueous electrolyte lithium secondary battery
JP3111324B2 (en) Non-aqueous electrolyte secondary battery
JPH06267542A (en) Nonaqueous electrolyte battery
JPH05258773A (en) Secondary battery with nonaqueous electrolyte
JPS6259412B2 (en)
JPH05242911A (en) Lithium ion secondary battery
JP2621213B2 (en) Organic electrolyte lithium secondary battery
Takehara Development of lithium rechargeable batteries in Japan
JPH042065A (en) Secondary battery with non-aqueous electrolyte and manufacture thereof
JPS62274555A (en) Nonaqueous solvent secondary battery
JPS60218766A (en) Nonaqueous electrolyte secondary battery
JP2957690B2 (en) Non-aqueous electrolyte battery
KR100646554B1 (en) Anode plate and secondary battery with the same
JP2579058B2 (en) Non-aqueous electrolyte secondary battery
JPS63228573A (en) Nonaqueous electrolytic lithium secondary cell
JPS6012677A (en) Solid electrolyte secondary battery
JPS63166166A (en) Lithium secondary cell
JPS6161376A (en) Rechargeable electrochemical device
JPH01144573A (en) Nonaqueous electrolyte lithium secondary cell
JPH01144574A (en) Nonaqueous electrolyte lithium secondary cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees