JPS63314778A - Nonaqueous electrolyte lithium secondary battery - Google Patents

Nonaqueous electrolyte lithium secondary battery

Info

Publication number
JPS63314778A
JPS63314778A JP62150613A JP15061387A JPS63314778A JP S63314778 A JPS63314778 A JP S63314778A JP 62150613 A JP62150613 A JP 62150613A JP 15061387 A JP15061387 A JP 15061387A JP S63314778 A JPS63314778 A JP S63314778A
Authority
JP
Japan
Prior art keywords
active material
lithium
alloy
battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62150613A
Other languages
Japanese (ja)
Other versions
JP2621182B2 (en
Inventor
Teruyoshi Morita
守田 彰克
Nobuo Eda
江田 信夫
Hide Koshina
秀 越名
Yukio Nishikawa
幸雄 西川
Toru Matsui
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62150613A priority Critical patent/JP2621182B2/en
Publication of JPS63314778A publication Critical patent/JPS63314778A/en
Application granted granted Critical
Publication of JP2621182B2 publication Critical patent/JP2621182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide possibility of electric discharge to a battery voltage of 0V by incorporating such a construction that the dischargeable electric capacity of Li in pressure contact with an alloy neg. pole goes out while the dischargeable capacity of No.2 active substance of positive pole consisting of specific No.1, No.2 active substances is maintained. CONSTITUTION:No.1 active substance selected from MnO2, chromium oxide, and vanadium oxide is mixed with No.2 active substance such as MoO2, MoO3, MoS2, MoS3, and thereto carbon black and binder are added followed by pressure molding to accomplish a positive pole 5. An alloy neg. pole 2 is spot welded to the inner surface of a mouth sealing plate 1 consisting of Ni-plated stainless steel, and thereto Li 3 is attached by pressure. The neg. pole 2 consists of alloy prepared through melting of Pb, In, Cd in a proportion 75:6:20 by weight. Electrolyte (Li perchlorate) is impregnated in a propylene separator 4. Current collector 7 of Ti is spot welded to a case 6, and the positive pole 5 is attached by pressure. At the time of electric discharge, No.1 active substance of the positive pole 5 makes discharge for a specified period of time, and the Li capacity of the neg. pole 2 goes out while No.2 active substance makes discharge, and the battery voltage becomes 0V.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はポータプル機器用電源、もしくはメモリーバッ
クアップ用電源としての非水電解質リチラム二次電池の
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an improvement of a non-aqueous electrolyte lithium secondary battery as a power source for portable equipment or a power source for memory backup.

従来の技術 非水電解質リチウム二次電池は在来水溶液系電池とくら
べ高電圧、高エネルギー密度であり、耐自己放電、耐漏
液性にすぐれるなどの特長を有し、今後大いに期待され
る電池系であると言えるが、現在二硫化モリブデンを正
極としたリチウム二次電池が一部実用化されているもの
の、本格的な実用化には至っていない。
Conventional technology Non-aqueous electrolyte lithium secondary batteries have high voltage and energy density compared to conventional aqueous batteries, and have excellent self-discharge resistance and leakage resistance, making them highly anticipated batteries in the future. Although some lithium secondary batteries using molybdenum disulfide as a positive electrode are currently in practical use, full-scale practical use has not yet been achieved.

その最も大きな理由として、例えば在来水溶液系電池で
あるニッケルカドミウム電池とくらべ、充放電サイクル
特性に劣るという大きな問題点を有することによる。
The biggest reason for this is that, compared to, for example, nickel-cadmium batteries, which are conventional aqueous batteries, they have a major problem in that they have inferior charge-discharge cycle characteristics.

これはリチウム二次電池の負極活物質であるリチウムが
、放電時に電解質中に溶解し、充電時に再び電極上に析
出するという形態をとるが、この充電の際リチウムが均
一に析出せず、樹脂状となる、いわゆるデンドライトが
生成するため、次に放電する時、スムーズな放電をおこ
なわないか、あるいはデンドライトがセパレータを貫通
して正極と接触し、短絡現象をおこすなどがその原因で
ある。
This takes the form that lithium, which is the negative electrode active material of lithium secondary batteries, dissolves in the electrolyte during discharging and deposits on the electrode again during charging, but lithium is not deposited uniformly during charging, and the resin This is because so-called dendrites are generated, and the next time the discharge occurs, the discharge does not occur smoothly, or the dendrites penetrate the separator and come into contact with the positive electrode, causing a short circuit phenomenon.

これに対し、特開昭59−163756号報、同59−
163758号報では、カドばラム、鉛、スズ、ビスマ
ス、アンチモン、水銀、インジウムなどの二元素板上の
合金、いわゆる低融点の可融合金が非水電解質中で容易
にリチウムを吸蔵、放出することを見い出し、これらの
合金を負極とする非水電解質リチウム二次電池を提案し
ている。
In contrast, Japanese Patent Application Laid-open No. 59-163756,
In No. 163758, alloys on two-element plates such as cadvaram, lead, tin, bismuth, antimony, mercury, and indium, so-called low-melting point fusible alloys, easily absorb and release lithium in nonaqueous electrolytes. We have discovered this and are proposing a non-aqueous electrolyte lithium secondary battery that uses these alloys as the negative electrode.

すなわち、これらの合金を負極として用いた電池では、
放電の際合金内部に吸蔵されているリチウムが電解質中
に放出され、逆に充電の際は電解質のリチウムイオンが
合金上に析出するとすみやかに合金と反応し、合金内部
に拡散し、吸蔵されるため、合金負極の表面にデンドラ
イトが生成することがないため、良好な充放電サイクル
特性を示すというものである。
In other words, in batteries using these alloys as negative electrodes,
During discharging, the lithium occluded within the alloy is released into the electrolyte, and conversely, during charging, lithium ions from the electrolyte precipitate on the alloy, quickly react with the alloy, diffuse into the alloy, and become occluded. Therefore, dendrites do not form on the surface of the alloy negative electrode, and therefore it exhibits good charge-discharge cycle characteristics.

上記元素のうちでも特に鉛、スズ、ビスマス、インジウ
ムがリチウムの吸蔵量が大で、且つ電池の充放電時に容
易にリチウムを放出する。一方、これらの元素をくみ合
せた合金を負極に用いて電池を構成し、充放電をくり返
すと、リチウムの吸蔵量が大であるが故に、電極にくず
れが生じ、寿命が尽きるという欠点を有する。通常この
欠点を補うものとして、リチウムの吸蔵量は小さいもの
の、一種の結着剤的な役割を果す元素として、カドミウ
ム、亜鉛などを適量加えて合金を形成する。
Among the above elements, lead, tin, bismuth, and indium in particular have a large lithium storage capacity, and easily release lithium during charging and discharging of the battery. On the other hand, if a battery is constructed using an alloy that combines these elements as a negative electrode and is repeatedly charged and discharged, the disadvantage is that the electrode will collapse and its life will end due to the large amount of lithium that can be absorbed. have Normally, to compensate for this drawback, an appropriate amount of cadmium, zinc, etc. is added as an element that acts as a kind of binder, although the amount of lithium absorbed is small, to form an alloy.

またこれら合金はリチウムに対し、約0,4〜o、eV
の電位を有するため、高電圧、高エネルギー密度のリチ
ウム二次電池を得るためには、理論的な電気容量が大で
、且つ高い電位を有する正極活物質を選択する必要があ
る。
Also, these alloys have a voltage of about 0.4 to o, eV with respect to lithium.
Therefore, in order to obtain a high-voltage, high-energy-density lithium secondary battery, it is necessary to select a positive electrode active material that has a large theoretical capacity and a high potential.

これらの要件を満たす活物質として、二酸化マンガン、
クロム酸化物、バナジウム酸化物などが知られている。
Manganese dioxide,
Chromium oxide, vanadium oxide, etc. are known.

即ち、上記の合金負極と正極活物質をくみ合せれば、高
電圧、高エネルギー密度で充放電サイクル特性にすぐれ
た非水電解質リチウム二次電池が得られることになる。
That is, by combining the above alloy negative electrode and positive electrode active material, a nonaqueous electrolyte lithium secondary battery with high voltage, high energy density, and excellent charge/discharge cycle characteristics can be obtained.

発明が解決しようとする問題点 一方、電池の実際の使用にあたっては過放電を考慮する
必要がある。これは−次電池の場合も同様であるが、電
池を機器に組み込んで使用状態にしておくと、電池はい
つまでも放電し続けることになる。特に最近用途が増え
ているメモリーバックアップ用として使用する場合、電
池は機器に組み込まれた時点から作動状態におかれるこ
ととなり、機器の使用者が交流電源に接続して電池の充
電が開始されるまで放電が継続し、極端な場合は電池が
放電し尽し、電池電圧がOVとなることもある。在来電
池、例えばニッケル・カドミウム電池などは、この過放
電使用に強く、例え電池電圧がOvとなるまで放電して
も、その時点で充電しさえすれば、再ひもと通シ使用で
きる。
Problems to be Solved by the Invention On the other hand, over-discharge must be taken into consideration when actually using the battery. This also applies to secondary batteries, but if a battery is installed in a device and left in use, the battery will continue to discharge forever. Particularly when used for memory backup, which has been increasingly used in recent years, the battery is put into operation from the moment it is installed in the device, and the device user connects it to an AC power source to start charging the battery. In extreme cases, the battery may be completely discharged and the battery voltage may reach OV. Conventional batteries, such as nickel-cadmium batteries, are resistant to over-discharge, and even if they are discharged until the battery voltage reaches Ov, they can be re-strung and used again as long as they are charged at that point.

リチウム二次電池の場合、この過放電特性が極端に弱く
、電圧がOVとなるまで放電すると、充電しても再びも
との状態にもどらない。リチウム二次電池が現在、普及
し得ない大きな理由として、このことが挙げられる。
In the case of a lithium secondary battery, this overdischarge characteristic is extremely weak, and if it is discharged until the voltage reaches OV, it will not return to its original state even if it is charged. This is one of the major reasons why lithium secondary batteries are currently not widespread.

問題点を解決するための手段 この問題点を解決するために、本発明は、正極は高い電
位で放電する第1の活物質と低い電位で放電する第2の
活物質とからなシ、負極はリチウムを吸蔵、放出する合
金にリチウムを圧着させたものかもしくはあらかじめリ
チウムを吸蔵させた合金からなり、第1の活物質は合金
の非水電解質中での溶解電位よシ高い電位で放電し、第
2の活物質は逆に低い電位で放電するものであるととも
に、負極の充放電可能なリチウムの理論電気量が、第1
の活物質の放電可能電気量よりも大であり、かつ第1の
活物質と第2の活物質の放電可能電気量の合計よりも小
に設計した非水電解質リチウム二次電池を提供するもの
である。
Means for Solving the Problem In order to solve this problem, the present invention provides a positive electrode consisting of a first active material that discharges at a high potential and a second active material that discharges at a low potential, and a negative electrode that is composed of a first active material that discharges at a high potential and a second active material that discharges at a low potential. is made of an alloy in which lithium is compressed to an alloy that occludes and releases lithium, or an alloy in which lithium is occluded in advance, and the first active material is discharged at a potential higher than the dissolution potential of the alloy in a non-aqueous electrolyte. , the second active material discharges at a low potential, and the theoretical amount of electricity of the chargeable and dischargeable lithium of the negative electrode is higher than that of the first active material.
To provide a non-aqueous electrolyte lithium secondary battery designed to have a dischargeable quantity of electricity greater than that of an active material and smaller than the sum of the dischargeable quantity of electricity of a first active material and a second active material. It is.

作用 上記した如く、リチウム二次電池を過放電した場合、も
とにもどらないというのは次の理由による0 即ち、電池を過放電すると放電電圧は低下し、最終的に
は電池の電圧がOvとなるが、これは通常正極もしくは
負極の容量のいずれかが尽きてしまうということを示し
ている。正極の容量が尽きる場合、即ち正極容量規制の
場合を考えると、通常リチウム二次電池の正極活物質と
しては、上記した如く、二酸化マンガン、クロム酸化物
、バナジウム酸化物などの無機化合物を用いるが、仁れ
らはある一定の電位以下まで放電すると結晶構造に変化
を来たす。従って充電しても再ひもとの状態にもどらな
いということになる。
Function As mentioned above, when a lithium secondary battery is over-discharged, it does not return to its original state for the following reason: When the battery is over-discharged, the discharge voltage decreases, and eventually the battery voltage decreases to Ov. However, this usually indicates that the capacity of either the positive electrode or the negative electrode has been exhausted. When the capacity of the positive electrode is exhausted, that is, when the positive electrode capacity is regulated, inorganic compounds such as manganese dioxide, chromium oxide, vanadium oxide, etc. are usually used as the positive electrode active material of lithium secondary batteries. When discharged to below a certain potential, the crystal structure changes. Therefore, even if the battery is charged, it will not return to its original state.

一方、負極の容量が尽きる場合、即ち負極容量規制の場
合を考えると、合金負極に吸蔵されているリチウムは放
電とともに電解質中にイオンとして溶解していくが、リ
チウムがすべて消費し尽されてしまうと負極の電位が上
昇し、合金負極の溶解反応がおこシ始め、最終的にはす
べて電解質中に溶解してしまう。従って、次に充電して
もリチウムを吸蔵すべき合金が存在しないため、電池と
しての充電はおこなわれないということになる。
On the other hand, when the capacity of the negative electrode is exhausted, that is, when considering the case of negative electrode capacity regulation, the lithium occluded in the alloy negative electrode dissolves as ions in the electrolyte as it discharges, but all of the lithium is consumed. The potential of the negative electrode increases, and a dissolution reaction of the alloy negative electrode begins to occur, eventually dissolving it all into the electrolyte. Therefore, even if the battery is charged next time, since there is no alloy to absorb lithium, the battery will not be charged.

以上がリチウム二次電池が過放電できない理由である。The above is the reason why lithium secondary batteries cannot be overdischarged.

この欠点を克服する方法として、まず正極容量規制の電
池の場合、正極活物質の容量が尽きたとしても何らかの
手段を講じて正極の電位を活物質の結晶構造が変化する
電位よりも高い電位に留めておけばよい。
As a way to overcome this drawback, first of all, in the case of batteries with a limited positive electrode capacity, even if the capacity of the positive electrode active material is exhausted, some method is taken to raise the potential of the positive electrode to a potential higher than the potential at which the crystal structure of the active material changes. Just keep it.

また逆に負極容量規制の場合、合金負極に圧着もしくは
吸蔵させたリチウムの容量が尽きたとしても何らかの手
段を講じて負極の電位を合金の電位以下に留めておけば
よい。理論的には以上の通りであるが、実際問題として
正極容量規制の場合を考えると、通常上記した正極活物
質はすべてリチウムに対し1.0〜2.Ovの範囲で結
晶構造の変化を来たす。従って、正極の電位がそれ以下
にならないようにするためには、負極の放電電位がそれ
ぞれの正極活物質の結晶構造の変化を来たす電位以上で
放電しなければなら力いことKなり、これでは電池とし
ての電圧が低すぎ、高電圧、高エネルギー密度の電池と
はなシ得ない。よってリチウム二次電池の場合、負極容
量規制とし、負極の容量が尽きた時、何らかの手段を用
いて負極の電位が、合金の非水電解質中での溶解電位以
下に留めておくことを考えなければならない。
Conversely, in the case of negative electrode capacity regulation, even if the capacity of the lithium compressed or occluded in the alloy negative electrode is exhausted, some means may be taken to keep the potential of the negative electrode below the potential of the alloy. The above is theoretically true, but when considering the case of positive electrode capacity regulation as a practical matter, all of the above-mentioned positive electrode active materials usually have a lithium ratio of 1.0 to 2. The crystal structure changes within the Ov range. Therefore, in order to prevent the potential of the positive electrode from falling below that level, it is necessary to discharge the negative electrode at a potential higher than the potential at which the crystal structure of each positive electrode active material changes. The voltage as a battery is too low and cannot be compared to a high voltage, high energy density battery. Therefore, in the case of lithium secondary batteries, the negative electrode capacity must be regulated, and when the negative electrode capacity is exhausted, it is necessary to consider using some means to keep the negative electrode potential below the dissolution potential of the alloy in the non-aqueous electrolyte. Must be.

負極の合金の成分元素として考えている鉛、ビスマス、
スズ、インジウム、カド、ミウム、亜鉛の非水電解質中
でのリチウムに対する溶解電位を第1表に示す。
Lead, bismuth, and
Table 1 shows the dissolution potentials of tin, indium, cadmium, mium, and zinc relative to lithium in nonaqueous electrolytes.

第   1   表 上記の正極活物質として考えられる二酸化マンガン、ク
ロム酸化物、バナジウム酸化物は非水電解質中でいずれ
も3v以上の放電電位を持つため、負極容量規制の電池
を構成した場合、ビスマスもしくは亜鉛などの一部を除
き、第1表の金属元素はいずれも溶解することになる。
Table 1 Manganese dioxide, chromium oxide, and vanadium oxide, all of which are considered as positive electrode active materials, have a discharge potential of 3 V or more in a nonaqueous electrolyte. All the metal elements listed in Table 1 will be dissolved, except for some such as zinc.

従って、このままでは過放電可能な二次電池としては成
り立ち得ない。
Therefore, as it is, it cannot be used as a secondary battery capable of overdischarging.

本発明は正極活物質として、上記の正極活物質(第1の
活物質)とともに、第1表に示した各種の金属元素の溶
解電位よりも低い電位で放電する第2の活物質を用いる
ことを提案するものである。
The present invention uses, as a positive electrode active material, a second active material that discharges at a potential lower than the dissolution potential of various metal elements shown in Table 1, together with the above-mentioned positive electrode active material (first active material). This is what we propose.

即ち、電池全体としては負極容量規制の電池であるが、
正極ではまず最初に第1の活物質が3v以上の電位で放
電し、その容量が尽きた時点で第2の活物質の放電に移
る。この第2の活物質が放電をおこなっている間に負極
の合金に吸蔵、もしくは圧着しであるリチウムの容量が
尽きるように電池を設計しておけば、最終的には負極の
電位が正極中の第2の活物質の放電電位に達した時、電
池の電圧はOVとなり、これ以上電流は流れなくなり、
電池の放電は終了することになる。その時点で、上記し
た如く、第2の活物質は各種合金元素の溶解電位よシ低
い電位で放電しているわけであるから、これら合金元素
は溶解することなしにその電位に留めておかれることに
なる。
In other words, although the battery as a whole is regulated by negative electrode capacity,
At the positive electrode, the first active material is first discharged at a potential of 3 V or more, and when its capacity is exhausted, the second active material is discharged. If the battery is designed so that the capacity of the lithium intercalated or crimped into the negative electrode alloy is exhausted while this second active material is discharging, the potential of the negative electrode will eventually decrease to that of the positive electrode. When the discharge potential of the second active material is reached, the voltage of the battery becomes OV, and no more current flows.
The discharge of the battery will end. At that point, as mentioned above, since the second active material is being discharged at a potential lower than the dissolution potential of the various alloying elements, these alloying elements are kept at that potential without being dissolved. It turns out.

即ち、耐過放電特性にすぐれた理想的な非水電解質リチ
ウム二次電池が得られるものとなる。
In other words, an ideal non-aqueous electrolyte lithium secondary battery with excellent overdischarge resistance can be obtained.

なお、第2の活物質としては酸化モリブデン(MoO2
)、三酸化モリブデン、二硫化モリブデン、三硫化モリ
ブデン、二硫化チタン、酸化チタン、酸化タングステン
、二硫化ニオビウム、三酸ニオヒウム(Nb205)、
セレン化ニオビウム(NbSe3)などが考えられる。
Note that the second active material is molybdenum oxide (MoO2
), molybdenum trioxide, molybdenum disulfide, molybdenum trisulfide, titanium disulfide, titanium oxide, tungsten oxide, niobium disulfide, niohium trioxide (Nb205),
Possible materials include niobium selenide (NbSe3).

これらはいずれもリチウムに対し、2.4v以下の電位
で放電する活物質で、上(実施例1) 第1の正極活物質である二酸化マンガンと第2の正極活
物質である二硫化チタンを重量比で2:1で混合し、こ
の混合物と導電材のカーボンブラックと結着剤の四フッ
化エチレン・六フッ化プロピレンの共重合体の水成ディ
スパージョンをそれぞれ重量比(但し水成ディスパージ
ョンは固形分換算)で100:5:10の割合で混合し
、乾燥後、直径15mm、厚さo、 s mmの円盤状
に加圧成形し正極とする。この正極を用い、第1図に示
す扁平形電池を組み立てた。負極は、鉛、インジウム、
カドミウムをそれぞれ重量比で75:5:20の割合で
溶融し、合金としたものにリチウムを圧着したものを用
いた。
All of these are active materials that discharge at a potential of 2.4 V or less with respect to lithium. Above (Example 1) Manganese dioxide, which is the first positive electrode active material, and titanium disulfide, which is the second positive electrode active material. Mix this mixture at a weight ratio of 2:1, and add this mixture to an aqueous dispersion of carbon black as a conductive material and a copolymer of tetrafluoroethylene and hexafluoropropylene as a binder (however, the aqueous dispersion The mixture was mixed in a ratio of 100:5:10 (in terms of solid content), and after drying, it was press-formed into a disk shape with a diameter of 15 mm and a thickness of 0.5 mm to form a positive electrode. Using this positive electrode, a flat battery shown in FIG. 1 was assembled. The negative electrode is made of lead, indium,
Cadmium was melted at a weight ratio of 75:5:20, and lithium was pressed onto an alloy.

第1図において、1はニッケルメッキしたステンレス鋼
よりなる封口板で、内面に合金負極2をスポット溶接し
、その上にリチウム3を圧着してイル。4はポリプロピ
レン製セパレータで1,3−ジオキソランからなる溶媒
に過塩素酸リチウムを1モル/lの割合で溶解させた電
解質を含浸させである。5は上記円盤状の正極で、ステ
ンレス製ケース6にスポット溶接したチタン製集電体7
に圧着しである。8はポリプロピレン製ガスケットで、
完成電池の寸法は直径20mm、厚さ1.6mmである
。なお正極中の第1の活物質である二酸化マンガンの理
論電気容量は2 a mAh、第2の活物質である二硫
化チタンの理論電気容量は8mAh、合金負極に圧着し
たリチウムの理論電気容量は(4ムhである。この電池
を20℃で1mムの電流で2vまで放電し、更に1mA
の電流で3.4vまで充電するというサイクルを3回く
り返した後、電池の側部に穴をあけ、乾燥空気雰囲気で
、電池に用いた同じ電解質中でリチウムを参照極とし、
同様に20’C11m人の電流で放電した時の、正極と
負極の挙動、ならびに電池電圧を第2図に示す。
In Figure 1, reference numeral 1 denotes a sealing plate made of nickel-plated stainless steel, with an alloy negative electrode 2 spot-welded on its inner surface, and lithium 3 crimped onto it. 4 is a polypropylene separator impregnated with an electrolyte in which lithium perchlorate is dissolved in a solvent of 1,3-dioxolane at a ratio of 1 mol/l. 5 is the disk-shaped positive electrode, and a titanium current collector 7 is spot-welded to a stainless steel case 6.
It is crimped. 8 is a polypropylene gasket,
The dimensions of the completed battery are 20 mm in diameter and 1.6 mm in thickness. The theoretical capacitance of manganese dioxide, which is the first active material in the positive electrode, is 2 a mAh, the theoretical capacitance of titanium disulfide, which is the second active material, is 8 mAh, and the theoretical capacitance of lithium bonded to the alloy negative electrode is (4mm h. Discharge this battery to 2v with a current of 1mm at 20°C, and then
After three cycles of charging to 3.4V with a current of
Similarly, FIG. 2 shows the behavior of the positive and negative electrodes and the battery voltage when the battery was discharged at a current of 20'C11m.

第2図から明らかなように、最初正極の第1の活物質で
ある二酸化マンガンが放電し、約19時間経過時点で第
2の活物質である二硫化チタンが放電を開始する。二硫
化チタンがリチウムに対し、約2.2vから放電をおこ
なっている間に負極のリチウムの容量が尽き、負極の電
位は急速に上昇し、1.9vに達する。従ってこの時点
で電池電圧はOVとなる。更に放電を続ければ正、負極
の電位は逆転するが、実際の使用においては一般的に定
抵抗で放電されるため、電池の電圧がOVになった時点
で放電は終了する。このため、電池をこのまま放置して
も、正極は第2の活物質の容量が残っている状態であり
、何ら変化をおこさないし、負極も合金の成分元素の鉛
、インジウム、カドミウムの溶解電位よりも遥かに低い
1.9vに留めておかれているわけであるから何らの変
化もおこさない。
As is clear from FIG. 2, manganese dioxide, which is the first active material of the positive electrode, first discharges, and after about 19 hours, titanium disulfide, which is the second active material, starts discharging. While titanium disulfide is discharging lithium from about 2.2V, the capacity of the lithium in the negative electrode is exhausted, and the potential of the negative electrode rapidly rises to 1.9V. Therefore, at this point, the battery voltage becomes OV. If the discharge continues, the potentials of the positive and negative electrodes will reverse, but in actual use, the battery is generally discharged with a constant resistance, so the discharge ends when the battery voltage reaches OV. Therefore, even if the battery is left as is, the positive electrode still has the capacity of the second active material and no change will occur, and the negative electrode will also be lower than the dissolution potential of the lead, indium, and cadmium components of the alloy. Since the voltage is kept at a much lower level of 1.9V, no change occurs.

この場合、負極のリチウムの充填量が40 mAhであ
るのに実際の放電電気量が24 mAhであるのは、合
金負極および正極の二酸化マンガンにとり込まれて、で
てとない量が16mAh分あることを示している。次に
この電池をこの状態で1ケ月放置した後、20℃で1m
人の電流で、電池電圧が3.4vになるまで充電し、再
び、1m人で放電したところ、第2図と全く同じ挙動を
示した。このことからこの電池系では、電圧がOVにな
るまで過放電しても、系自体には何の変化もおこさない
ということが判る。
In this case, the actual amount of electricity discharged is 24 mAh even though the amount of lithium charged in the negative electrode is 40 mAh.The reason why the amount of lithium charged in the negative electrode is 24 mAh is because the amount of lithium discharged is 16 mAh, which is taken up by the manganese dioxide in the alloy negative electrode and the positive electrode. It is shown that. Next, after leaving this battery in this state for one month, it was heated for 1 m at 20°C.
When the battery was charged with a human current until the battery voltage reached 3.4V and then discharged again with a 1m person, it exhibited exactly the same behavior as shown in Figure 2. From this, it can be seen that in this battery system, even if the battery is over-discharged until the voltage reaches OV, no change occurs in the system itself.

(実施例2) 第1の活物質として酸化クロム(Cr20s)を、第2
の活物質として二硫化モリブデンを重量比で6:2の割
合で混合し、この混合物と導電材のカーボンブラックと
結着剤の四7ツ化エチレン・六フッ化プロピレンの共重
合体の水成ディスパージョンをそれぞれ重量比(但し水
成ディスパージョンは固形分換算)で100:5:1.
0の割合で混合し、乾燥後、直径15mm、厚さ0.5
mmの円盤状に加圧成形し正極とする。この正極を用い
、実施例1の場合と同様、第1図に示す扁平形電池を組
み立てた。負極は、鉛、ビスマス、カドミウムをそれぞ
れ重量比で50:25:25の割合で溶融し、合金とし
たものにリチウムを圧着したものを用いた。電池の構成
は実施例1と全く同様であるが、電解質としては、プロ
ピレンカーボネートと1.3−ジオキソランを体積比で
1:1に混合したものに過塩素酸リチウムを1モル/l
の割合で溶かしたものを用いた。なお正極中の第1の活
物質である酸化クロムの理論電気容量は24111h、
第2の活物質である二硫化モリブデンの理論電気容量は
5.5!IIAhであり、合金負極に圧着したリチウム
の理論電気容量は3811Ahである。
(Example 2) Chromium oxide (Cr20s) was used as the first active material, and the second
Molybdenum disulfide is mixed as an active material at a weight ratio of 6:2, and this mixture is mixed with carbon black as a conductive material and a copolymer of ethylene tetra7tide and propylene hexafluoride as a binder. The weight ratio of each dispersion (however, aqueous dispersion is calculated as solid content) is 100:5:1.
Mix at a ratio of 0 and after drying, the diameter is 15 mm and the thickness is 0.5
Pressure mold it into a disk shape of mm and use it as a positive electrode. Using this positive electrode, the flat battery shown in FIG. 1 was assembled in the same manner as in Example 1. The negative electrode used was an alloy obtained by melting lead, bismuth, and cadmium in a weight ratio of 50:25:25, respectively, and pressing lithium onto the alloy. The structure of the battery is exactly the same as in Example 1, but the electrolyte is a mixture of propylene carbonate and 1,3-dioxolane in a volume ratio of 1:1, and 1 mol/l of lithium perchlorate.
A solution dissolved at the following ratio was used. The theoretical electric capacity of chromium oxide, which is the first active material in the positive electrode, is 24111 h.
The theoretical electric capacity of the second active material, molybdenum disulfide, is 5.5! IIAh, and the theoretical electric capacity of lithium compressed to the alloy negative electrode is 3811Ah.

この電池を実施例1の場合と同様、20℃で1m人の電
流で2vまで放電、続いて1曹ムの電流で3.4vまで
充電するというサイクルを3回くり返した後、電池の側
部に穴をあけ、乾燥空気雰囲気下で電池に用いた同じ電
解質中でリチウムを参照極とし、同様に20℃、1m人
の電流で放電した時の正極と負極の挙動ならびに電池の
電圧を第3図に示す。
As in the case of Example 1, this battery was discharged to 2V at 20°C with a current of 1 meter, and then charged to 3.4V with a current of 1 carbonate, which was repeated three times. A hole was made in the battery, and lithium was used as a reference electrode in the same electrolyte used in the battery in a dry air atmosphere, and the behavior of the positive and negative electrodes and the voltage of the battery when discharged at 20°C and a current of 1 m were measured in a third experiment. As shown in the figure.

第3図から判るように、第2図の場合と同様、最初正極
の第1の活物質である酸化クロムが放電し、約19時間
経過時点で第2の活物質である二硫化モリブデンが放電
を開始する。二硫化モリブデンも二硫化チタンの場合と
同様的2.2vから放電を開始する。その間に負極のリ
チウムの容量が尽き、負極の電位は上昇し、その時点で
の正極の放電電位である2、OVに達し、電池電圧はO
Vとなシ放電は終了する。実施例1と同様、この電位は
合金負極の成分元素の溶解電位より遥かに低いため、電
池自体には何の変化もおこさない。続いてこの電池を1
ケ月放置した後、20℃で1m人の電流で再び電池電圧
が3.4vになるまで充電し、同様の条件で放電したと
ころ、第3図と全く同じ挙動を示した。同様なパターン
を以降何回かくシ返しだがその挙動は殆んど変らなかっ
た。
As can be seen from Figure 3, as in the case of Figure 2, chromium oxide, which is the first active material of the positive electrode, is first discharged, and after about 19 hours, molybdenum disulfide, which is the second active material, is discharged. Start. Molybdenum disulfide also starts discharging at 2.2V, similar to the case of titanium disulfide. During that time, the capacity of the lithium in the negative electrode is exhausted, and the potential of the negative electrode increases, reaching 2.OV, which is the discharge potential of the positive electrode at that point, and the battery voltage becomes O
When the voltage reaches V, the discharge ends. As in Example 1, since this potential is much lower than the dissolution potential of the constituent elements of the alloy negative electrode, no change occurs in the battery itself. Next, insert this battery 1
After leaving the battery for several months, the battery was charged again at 20°C with a current of 1m until the battery voltage reached 3.4V, and then discharged under the same conditions, showing exactly the same behavior as shown in Figure 3. I repeated the same pattern several times after that, but the behavior hardly changed.

発明の効果 以上から明らかな如く、本発明によれば、正極に適切な
第1の活物質と第2の活物質を選択し、かつ第2の活物
質の放電容量が維持されているうちに、合金負極に圧着
もしくは吸蔵させたリチウムの放電可能な電気容量が尽
きるよう電池を設計することにより、電池電圧がOVま
で過放電可能な、非水電解質リチウム二次電池を提供す
ることができるという効果かえられる。同時に本発明で
は、正極の第2の活物質の選択が重要なポイントであり
、何回でも電池を過放電可能たらしめるためにはこの活
物質自体、充放電の可逆性を有するものでなければなら
ない。また、この活物質は、実施例に挙げたものにとど
まらず、上記の条件を満足するものすべてにわたるもの
であることは言うまでもない。
Effects of the Invention As is clear from the above, according to the present invention, the first active material and the second active material suitable for the positive electrode are selected, and while the discharge capacity of the second active material is maintained, By designing a battery so that the dischargeable capacity of lithium crimped or occluded in an alloy negative electrode is exhausted, it is possible to provide a non-aqueous electrolyte lithium secondary battery that can be over-discharged to a battery voltage of OV. The effect can be changed. At the same time, in the present invention, the selection of the second active material of the positive electrode is an important point, and in order to enable the battery to be overdischarged many times, this active material itself must have reversibility of charging and discharging. No. Further, it goes without saying that the active materials are not limited to those listed in the examples, but include all those that satisfy the above conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で用いた扁平形電池の断面図、
第2図および第3図は本発明電池の過放電特性図である
。 1・・・・・・封口板、2・・・・・・合金負極、3・
・・・・・リチウム、4・・・・・・セパレータ、6・
旧・・正極、6・・・・・・ケース、7・・・・・・集
電体、8・・・・・・ガスケット。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1・
−行℃長 第2図 城震吟関 (hoけs2 第3図
FIG. 1 is a cross-sectional view of a flat battery used in an example of the present invention.
FIGS. 2 and 3 are overdischarge characteristic diagrams of the battery of the present invention. 1...Sealing plate, 2...Alloy negative electrode, 3.
...Lithium, 4...Separator, 6.
Old: Positive electrode, 6: Case, 7: Current collector, 8: Gasket. Name of agent: Patent attorney Toshio Nakao and 1 other person
-Hokes2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)充放電可能な第1の活物質と第2の活物質からな
る正極と、充電時にリチウムを吸蔵し放電時にリチウム
を放出する合金にリチウムを圧着するかもしくはあらか
じめリチウムを吸蔵させた合金からなる負極と、非水電
解質を備えた電池において、第1の活物質は非水電解質
中で前記合金が溶解する電位よりも高い電位で放電する
ものであり、第2の活物質は逆に低い電位で放電するも
のであるとともに、合金に圧着したリチウムもしくは合
金に吸蔵させたリチウムの放電可能電気量が第1の活物
質の放電可能電気量よりも大であり、かつ第1の活物質
と第2の活物質の放電可能電気量の合計よりも小である
ことを特徴とする非水電解質リチウム二次電池。
(1) A positive electrode consisting of a chargeable and dischargeable first active material and a second active material, and an alloy in which lithium is compressed or pre-occluded to an alloy that occludes lithium during charging and releases lithium during discharging. In a battery comprising a negative electrode made of The first active material is one that discharges at a low potential, and the amount of dischargeable electricity of the lithium compressed to the alloy or the lithium occluded in the alloy is larger than the amount of electricity that can be discharged of the first active material, and the first active material A non-aqueous electrolyte lithium secondary battery characterized in that the amount of electricity is smaller than the sum of dischargeable electricity of the second active material and the second active material.
(2)正極の第1の活物質が二酸化マンガン(MnO_
2)、クロム酸化物(CrO_x)、バナジウム酸化物
(VO_x)よりなる群から選んだ一種であり、第2の
活物質が酸化モリブデン(MoO_2)、三酸化モリブ
デン(MoO_3)、二硫化モリブデン(MoS_2)
、三硫化モリブデン(MoS_3)、二硫化チタン(T
iS_2)、酸化チタン(TiO_2)、酸化タングス
テン(WO_3)、二硫化ニオビウム(NbS_2)、
酸化ニオビウム(Nb2O_5)、セレン化ニオビウム
(NbSo_3)よりなる群より選んだ一種である特許
請求の範囲第1項記載の非水電解質リチウム二次電池。
(2) The first active material of the positive electrode is manganese dioxide (MnO_
2), chromium oxide (CrO_x), vanadium oxide (VO_x), and the second active material is molybdenum oxide (MoO_2), molybdenum trioxide (MoO_3), molybdenum disulfide (MoS_2). )
, molybdenum trisulfide (MoS_3), titanium disulfide (T
iS_2), titanium oxide (TiO_2), tungsten oxide (WO_3), niobium disulfide (NbS_2),
The nonaqueous electrolyte lithium secondary battery according to claim 1, which is a type selected from the group consisting of niobium oxide (Nb2O_5) and niobium selenide (NbSo_3).
(3)負極のリチウムを吸蔵、放出する合金はスズ(S
n)、鉛(Pb)、ビスマス(Bi)、インジウム(I
n)よりなる群から選んだ少なくとも1種と、亜鉛(Z
n)、カドミウム(Cd)よりなる群から選んだ1種と
からなる特許請求の範囲第1項又は第2項記載の非水電
解質リチウム二次電池。
(3) The alloy that absorbs and desorbs lithium in the negative electrode is tin (S
n), lead (Pb), bismuth (Bi), indium (I
n) at least one selected from the group consisting of
n) and one type selected from the group consisting of cadmium (Cd).
JP62150613A 1987-06-17 1987-06-17 Non-aqueous electrolyte lithium secondary battery Expired - Fee Related JP2621182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62150613A JP2621182B2 (en) 1987-06-17 1987-06-17 Non-aqueous electrolyte lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62150613A JP2621182B2 (en) 1987-06-17 1987-06-17 Non-aqueous electrolyte lithium secondary battery

Publications (2)

Publication Number Publication Date
JPS63314778A true JPS63314778A (en) 1988-12-22
JP2621182B2 JP2621182B2 (en) 1997-06-18

Family

ID=15500705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62150613A Expired - Fee Related JP2621182B2 (en) 1987-06-17 1987-06-17 Non-aqueous electrolyte lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2621182B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582438A1 (en) * 1992-08-01 1994-02-09 United Kingdom Atomic Energy Authority Electrochemical cell
US7101642B2 (en) 2000-04-26 2006-09-05 Quallion Llc Rechargeable lithium battery for tolerating discharge to zero volts
JP2008532224A (en) * 2005-04-01 2008-08-14 エルジー・ケム・リミテッド Electrode for lithium secondary battery containing electrode additive and lithium secondary battery containing the electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165372A (en) * 1983-03-09 1984-09-18 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPS6227455A (en) * 1985-07-29 1987-02-05 Unitika Ltd Particulate resol resin composition and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165372A (en) * 1983-03-09 1984-09-18 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPS6227455A (en) * 1985-07-29 1987-02-05 Unitika Ltd Particulate resol resin composition and production thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582438A1 (en) * 1992-08-01 1994-02-09 United Kingdom Atomic Energy Authority Electrochemical cell
US5441832A (en) * 1992-08-01 1995-08-15 United Kingdom Atomic Energy Authority Electrochemical cell
US7101642B2 (en) 2000-04-26 2006-09-05 Quallion Llc Rechargeable lithium battery for tolerating discharge to zero volts
US7993781B2 (en) 2000-04-26 2011-08-09 Quallion Llc Method for making a lithium ion battery dischargeable to zero volts
US8535831B2 (en) 2000-04-26 2013-09-17 Quallion Llc Lithium ion battery capable of being discharged to zero volts
US8637184B2 (en) 2000-04-26 2014-01-28 Quallion Llc Rechargeable lithium battery for tolerating discharge to zero volts
JP2008532224A (en) * 2005-04-01 2008-08-14 エルジー・ケム・リミテッド Electrode for lithium secondary battery containing electrode additive and lithium secondary battery containing the electrode

Also Published As

Publication number Publication date
JP2621182B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
JPH11283664A (en) Solid-electrolyte battery
JPH0562712A (en) Non-aqueous electrolyte secondary cell
JPH05151995A (en) Nonaqueous electrolyte secondary battery
JPH01204361A (en) Secondary battery
US4844994A (en) Chargeable electrochemical device
JP2621182B2 (en) Non-aqueous electrolyte lithium secondary battery
US20020068218A1 (en) Lithium-ion battery
JPH0547384A (en) Nonaqueous electrolyte secondary battery
JPH06267542A (en) Nonaqueous electrolyte battery
JP3404929B2 (en) Non-aqueous electrolyte battery
JPH05258773A (en) Secondary battery with nonaqueous electrolyte
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JPS62274555A (en) Nonaqueous solvent secondary battery
JP2621213B2 (en) Organic electrolyte lithium secondary battery
JPH042065A (en) Secondary battery with non-aqueous electrolyte and manufacture thereof
JP2757398B2 (en) Non-aqueous electrolyte secondary battery
JPS60218766A (en) Nonaqueous electrolyte secondary battery
JPS63228573A (en) Nonaqueous electrolytic lithium secondary cell
JPH0542114B2 (en)
JP2579058B2 (en) Non-aqueous electrolyte secondary battery
JPS63166166A (en) Lithium secondary cell
JPH03112070A (en) Lithium secondary battery
JPH0558224B2 (en)
JPH01144573A (en) Nonaqueous electrolyte lithium secondary cell
JPS6012677A (en) Solid electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees