JPH0626137B2 - Rechargeable electrochemical device - Google Patents

Rechargeable electrochemical device

Info

Publication number
JPH0626137B2
JPH0626137B2 JP59181355A JP18135584A JPH0626137B2 JP H0626137 B2 JPH0626137 B2 JP H0626137B2 JP 59181355 A JP59181355 A JP 59181355A JP 18135584 A JP18135584 A JP 18135584A JP H0626137 B2 JPH0626137 B2 JP H0626137B2
Authority
JP
Japan
Prior art keywords
alloy
weight
negative electrode
cycle characteristics
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59181355A
Other languages
Japanese (ja)
Other versions
JPS6161376A (en
Inventor
▲吉▼徳 豊口
純一 山浦
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59181355A priority Critical patent/JPH0626137B2/en
Publication of JPS6161376A publication Critical patent/JPS6161376A/en
Publication of JPH0626137B2 publication Critical patent/JPH0626137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質を用いる二次電池などの再充電可
能な電気化学装置、特に、その負極の改良に関するもの
である。
Description: FIELD OF THE INVENTION The present invention relates to a rechargeable electrochemical device such as a secondary battery using a non-aqueous electrolyte, and more particularly to an improvement of its negative electrode.

従来例の構成とその問題点 従来より、リチウムなどのアルカリ金属を負極に用いる
種々の二次電池が研究されて来たが、負極を充電する際
に発生するデンドライトの問題があった。この課題を解
決するために、本発明者らは、ビスマス,スズ,鉛,カ
ドミウムなどの合金を負極に使用することを提案した。
Structure of Conventional Example and Problems There have been researches on various secondary batteries using an alkali metal such as lithium for a negative electrode, but there has been a problem of dendrite generated when the negative electrode is charged. In order to solve this problem, the present inventors have proposed to use an alloy such as bismuth, tin, lead and cadmium for the negative electrode.

これらの合金を負極に用いることにより、充電時には、
電解質中のリチウムイオンをデンドライトを発生させる
ことなく吸蔵できる。これは、合金中の、スズ,鉛,ビ
スマスとリチウムとの間の金属間化合物の生成によるも
のである。さらに、この負極を放電すると、スズ,鉛,
ビスマスとリチウムの金属間化合物より、リチウムがリ
チウムイオンとして電解質中に放出される。以上の機構
により充放電を行うことができるのである。
By using these alloys for the negative electrode, during charging,
Lithium ions in the electrolyte can be stored without generating dendrites. This is due to the formation of intermetallic compounds between lithium, tin, lead and bismuth in the alloy. Furthermore, when this negative electrode is discharged, tin, lead,
Lithium is released as lithium ions from the intermetallic compound of bismuth and lithium into the electrolyte. The charge and discharge can be performed by the above mechanism.

合金中のカドミウムは、合金がリチウムを吸蔵する際の
負極の微粉化を防ぐ結着剤の役割を果たしている。すな
わち、スズ,鉛,ビスマスなどの単体金属や合金は、リ
チウムを吸蔵して金属間化合物を作る際に微粉化してし
まい、負極の形状を保てなくなるが、カドミウムを含ん
だ合金を用いることによって、負極の形状を保持するこ
とができる。
Cadmium in the alloy plays a role of a binder that prevents the anode from being pulverized when the alloy absorbs lithium. That is, elemental metals and alloys such as tin, lead, and bismuth are pulverized when lithium is occluded to form an intermetallic compound, and the shape of the negative electrode cannot be maintained. However, by using an alloy containing cadmium, The shape of the negative electrode can be maintained.

きる。Wear.

しかし、以上のようなカドミウムを含んだスズ,鉛,ビ
スマスの合金を用いた場合にも、充電に伴う負極の微粉
化を防ぐことはできるが、過放電を行うと、負極のサイ
クル特性が低下するという問題が生じた。特に二次電池
を構成する際に、正極の電気容量より、負極の電気容量
を小さくする場合には、負極は常に過放電状態となる。
負極の電気容量の方を小さくする理由としては、正極の
導電剤に使用する炭素材料が、卑な電位領域で電解質に
使用している溶媒の分解に触媒作用を有しているため、
正極の電位があまり卑な状態にならないようにする必要
があるためである。
However, even when the alloy of tin, lead, and bismuth containing cadmium as described above is used, it is possible to prevent atomization of the negative electrode due to charging, but when overdischarging, the negative electrode cycle characteristics deteriorate. There was a problem of doing. In particular, when the electric capacity of the negative electrode is made smaller than the electric capacity of the positive electrode when configuring the secondary battery, the negative electrode is always in the over-discharged state.
The reason for reducing the electric capacity of the negative electrode is that the carbon material used for the positive electrode conductive agent has a catalytic action for the decomposition of the solvent used for the electrolyte in the base potential region,
This is because it is necessary to prevent the potential of the positive electrode from becoming too base.

発明の目的 本発明の目的は、再充電可能な電気化学装置の負極とし
て、過放電に対して良好なサイクル寿命を示す優れた合
金負極を提供することである。
OBJECT OF THE INVENTION It is an object of the present invention to provide an excellent alloy negative electrode showing a good cycle life against over-discharge as a negative electrode of a rechargeable electrochemical device.

発明の構成 本発明は、充放電により可逆的にアルカリ金属イオンを
吸蔵・放出する合金からなる負極を備えた再充電可能な
電気化学装置において、前記合金が、20重量%を超え
75重量%未満のビスマス、15〜80重量%のカドミ
ウム、残部がスズ及び鉛よりなる群から選んだ少なくと
も1種からなるものである。
The present invention relates to a rechargeable electrochemical device provided with a negative electrode made of an alloy that reversibly absorbs and releases alkali metal ions upon charge and discharge, wherein the alloy is more than 20% by weight and less than 75% by weight. Of bismuth, 15 to 80% by weight of cadmium, and the balance of at least one selected from the group consisting of tin and lead.

実施例の説明 まず、負極の製法を説明すると、所定の組成になるよう
に、スズ,鉛,ビスマス,カドミウムよりなる合金を溶
融し、その中に集電体としてのニッケルエキスパンドメ
タルを浸漬し、引き上げて冷却し、その後0.2mmの厚
さに圧延した。ニッケルエキスパンドメタルの一部を露
出させ、これにリードとしてのニッケルリボンをスポッ
ト溶接した後、大きさ1cm×1cmに切り出し、負極の試
験極とした。
Description of Examples First, a method of manufacturing a negative electrode will be described. An alloy of tin, lead, bismuth, and cadmium is melted so as to have a predetermined composition, and a nickel expanded metal as a current collector is immersed therein, It was pulled up, cooled, and then rolled to a thickness of 0.2 mm. A part of the nickel expanded metal was exposed, and a nickel ribbon as a lead was spot-welded to the nickel expanded metal.

正極活物質としては、充放電に対して、可逆性を有する
ものであれば良い。本実施例では、MoO3を用いた。MoO3
100重量部、導電剤としてのアセチレンブラック20
重量部及び結着剤としての四フッ化エチレン樹脂15重
量部よりなる合剤を大きさ1cm×1cm、厚さ0.8mmに
プレス成形した。なお、集電体にはチタンのエキスパン
ドメタルを用い、集電体を埋め込むように合剤を成形し
た。チタンエキスパンドメタルの一部を露出させて、リ
ードとしてのチタンリボンをスポット溶接した。その後
真空乾燥を行い、1モル/lのLiClO4を溶解したピロピ
レンカーボネート中で30mAhカソード方向に通電した
ものを正極として用いた。
Any positive electrode active material may be used as long as it has reversibility with respect to charge and discharge. In this example, MoO 3 was used. MoO 3
100 parts by weight, acetylene black 20 as a conductive agent
A mixture consisting of 1 part by weight and 15 parts by weight of a tetrafluoroethylene resin as a binder was press-molded into a size of 1 cm × 1 cm and a thickness of 0.8 mm. An expanded metal of titanium was used as the current collector, and the mixture was molded so as to embed the current collector. A part of the titanium expanded metal was exposed, and a titanium ribbon as a lead was spot-welded. After that, vacuum drying was carried out, and an electric current was applied in a pyropyrene carbonate in which 1 mol / l of LiClO 4 was dissolved and 30 mAh was applied in the cathode direction, which was used as a positive electrode.

上記の電極を用いて第1図に示すようなセルを構成し、
負極の特性を調べた。図において、1は試験用負極、2
は正極、3は試験極の電位を測定するためのリチウム照
合電極、4はニッケルリード、5はチタンリード、6は
ニッケルリボンよりなるリード、7は1モル/lのLiCl
O4を溶解したプロピレンカーボネートよりなる非水電解
質、8は液絡橋である。
A cell as shown in FIG. 1 is constructed using the above electrodes,
The characteristics of the negative electrode were examined. In the figure, 1 is a test negative electrode, 2
Is a positive electrode, 3 is a lithium reference electrode for measuring the potential of a test electrode, 4 is a nickel lead, 5 is a titanium lead, 6 is a lead composed of a nickel ribbon, 7 is 1 mol / l LiCl
A non-aqueous electrolyte composed of propylene carbonate in which O 4 is dissolved, and 8 is a liquid bridge.

試験極のサイクル特性の測定は次のようにして行った。
まず、各種の合金よりなる試験極1の電位がリチウム照
合電極3に対してOmV になるまで1mA の定電流でカソ
ード方向に充電した。この条件では試験極上にリチウム
は析出せず、合金中に吸蔵される。その後、照合電極3
に対して2Vになるまでアノード方向に放電し、その後
充放電をくり返した。
The cycle characteristics of the test electrode were measured as follows.
First, the test electrode 1 made of various alloys was charged in the cathode direction with a constant current of 1 mA until the potential of the test electrode 1 with respect to the lithium reference electrode 3 became OmV. Under this condition, lithium does not deposit on the test electrode and is occluded in the alloy. After that, the reference electrode 3
Was discharged in the direction of the anode until it reached 2 V, and then charge and discharge were repeated.

実施例1 ビスマス(Bi),鉛(Pb),カドミウム(Cd)よりなる
合金について、負極としてのサイクル特性を検討した。
Example 1 With respect to an alloy composed of bismuth (Bi), lead (Pb) and cadmium (Cd), cycle characteristics as a negative electrode were examined.

第2図は、次表に示す各種合金を用いた時の充放電サイ
クルに伴う放電電気量の変化を示す。
FIG. 2 shows changes in the amount of discharged electricity with charge / discharge cycles when various alloys shown in the following table are used.

第2図より、合金Aが優れていることがわかる。AとB
は、Bi とPb の比をほぼ等しくし、Cd 含量を異なら
せた関係にあるが、Cd 含量の少ないBではサイクル特
性が悪い。これは充電時に電極の微粉化が起こりやすい
ためである。
It can be seen from FIG. 2 that alloy A is superior. A and B
Has a relationship in which the ratios of Bi and Pb are made substantially equal and the Cd contents are made different, but the cycle characteristics are poor in B having a small Cd content. This is because the electrodes are likely to be pulverized during charging.

また、Cd 含量を同じにしたAとCを比較すると、Bi
含量の多いAの方がサイクル特性は良好である。このこ
とは、Cと比較するとさらによくわかる。しかしなが
ら、AとDの比較から明らかなように、単にBi が多い
方がサイクル特性が良好になるのではないことがわか
る。
Also, comparing A and C with the same Cd content, Bi
The higher the content of A, the better the cycle characteristics. This is better understood when compared with C. However, as is clear from the comparison between A and D, it is understood that the cycle characteristics are not improved when Bi is simply increased.

そこで、各合金のサイクル特性を評価するために第3サ
イクル目の放電容量を基準にとり、その半分の放電容量
になるまでのサイクル数をサイクル特性として検討し
た。第3図には、Cd 量を一定とし、横軸にBi 量をと
ったときのサイクル特性を示している。第3図より、C
d は15重量%以上、Bi が20重量%を超え70重量
%未満の組成の時に良好なサイクル特性が得られること
がわかる。また図の曲線が中央付近で凸状になっている
ことにより、サイクル特性に対して、合金中のBi とP
b の間に何らかの相互作用があると思われる。
Therefore, in order to evaluate the cycle characteristics of each alloy, the discharge capacity at the third cycle was used as a reference, and the number of cycles until the discharge capacity became half thereof was examined as the cycle characteristics. FIG. 3 shows the cycle characteristics when the amount of Cd is constant and the amount of Bi is plotted on the horizontal axis. From Figure 3, C
It can be seen that good cycle characteristics can be obtained when d is 15% by weight or more and Bi is more than 20% by weight and less than 70% by weight. Also, since the curve in the figure is convex near the center, Bi and P in the alloy are
There seems to be some interaction between b.

Cd の量については、先に述べたように、15重量%未
満のときには、充電中に負極の微粉化が一部起こり始め
ることより、少なくとも15重量%が必要である。しか
し、結着剤として働くCd の量を大きくすると、実用的
な放電電気量を得ることができない。この点からCd の
適切な上限値は80重量%であり、これを超えると、放
電容量にかかわるPb,Bi の量が少なくなる。
Regarding the amount of Cd, as described above, when it is less than 15% by weight, at least 15% by weight is necessary because pulverization of the negative electrode partially starts to occur during charging. However, if the amount of Cd acting as a binder is increased, a practical amount of discharged electricity cannot be obtained. From this point, a suitable upper limit of Cd is 80% by weight, and above this, the amount of Pb, Bi involved in the discharge capacity becomes small.

次に、Pb の量については、1重量%程度の添加でサイ
クル特性を改善することができる。すなわち、第3図に
おいて、各曲線の右端はCd−Bi合金の特性を示してお
り、これにPb を添加することは各曲線をBi 量減少方
向へたどることであり、わずかのPb の添加でサイクル
特性が向上することがわかる。
Next, regarding the amount of Pb, the cycle characteristics can be improved by adding about 1% by weight. That is, in FIG. 3, the right end of each curve shows the characteristics of the Cd-Bi alloy, and the addition of Pb to this traces each curve in the direction of decreasing the amount of Bi, and with a slight addition of Pb. It can be seen that the cycle characteristics are improved.

以上より、Pb−Bi−Cd合金では、Cd は15重量%
以上、Bi は20重量%を超え75重量%未満の場合に
サイクル特性は良好となる。
From the above, in the Pb-Bi-Cd alloy, Cd is 15% by weight.
As described above, when Bi is more than 20% by weight and less than 75% by weight, the cycle characteristics are good.

実施例2 Pb のかわりにスズ(Sn)を用いた合金について、実施
例1と同様にして検討した。第4図は、第3図と同様に
Cd の量を一定として、合金中のBi の量を変えた時の
サイクル特性を示した。
Example 2 An alloy using tin (Sn) instead of Pb was examined in the same manner as in Example 1. Similar to FIG. 3, FIG. 4 shows the cycle characteristics when the amount of Bi in the alloy was changed while the amount of Cd was constant.

この合金の場合にも、実施例1で述べたのと同様に、S
n とBi の相互作用により、Cd は15重量%以上、B
i は20重量%を超え75重量%未満の場合にサイクル
特性は良好となる。Sn の量については、Pb の場合と
同様サイクル特性は1重量%程度の添加で改善できる。
実用的な放電電気量を得るにはCd 量は80重量%以内
にする必要がある。
Also in the case of this alloy, as described in Example 1, S
Due to the interaction between n and Bi, Cd is 15% by weight or more, B
When i is more than 20% by weight and less than 75% by weight, the cycle characteristics are good. Regarding the amount of Sn, the cycle characteristics can be improved by adding about 1% by weight as in the case of Pb.
In order to obtain a practical amount of discharged electricity, the amount of Cd must be within 80% by weight.

実施例3 Sn−Pb−Bi−Cdの4元合金について実施例1と同様
の試験をした。この場合、各サイクルの充放電の電気量
は、実施例1や2に比べ大きくなった。そして、実施例
1,2と同様に、Cd は15重量%以上、ビスマスBi
は20重量%を超えて75重量%未満の場合に良好であ
った。
Example 3 The same test as in Example 1 was performed on a Sn-Pb-Bi-Cd quaternary alloy. In this case, the amount of charge and discharge electricity in each cycle was larger than in Examples 1 and 2. Then, as in Examples 1 and 2, Cd was 15% by weight or more, and bismuth Bi
Was good when more than 20% and less than 75% by weight.

以上の結果は、正極にMoO3を用いた場合であるが、MoO3
以外にも、MnO2やTiS2、あるいはキャパシターなどに用
いられている炭素材料など可逆性を有する正極ならば適
用可能である。また電解質としても、実施例に示した以
外に、溶質にLiBF4,LiAsF6などのアルカリ金属塩、溶
媒にγ−ブチロラクトン,ジメトキシエタン,テトラヒ
ドロフランなどの非プロトン性溶媒を用いた電解質でも
有効である。
These results, although in the case of using MoO 3 in the positive electrode, MoO 3
Besides, any reversible positive electrode such as MnO 2 or TiS 2 or a carbon material used for a capacitor can be applied. As the electrolyte, other than those shown in the examples, an electrolyte using an alkali metal salt such as LiBF 4 or LiAsF 6 and an aprotic solvent such as γ-butyrolactone, dimethoxyethane or tetrahydrofuran as a solvent is also effective. .

発明の効果 以上のように、本発明によれば、過放電に対しても安定
なサイクル特性の電気化学装置を得ることができる。
EFFECTS OF THE INVENTION As described above, according to the present invention, it is possible to obtain an electrochemical device having stable cycle characteristics even against overdischarge.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例に用いた試験用セルの構成を示す縦断面
略図、第2図は各種合金負極を過放電した場合の放電電
気量をサイクル数に対してプロットした図、第3図及び
第4図はそれぞれBi−Pb−Cd 合金及びBi−Sn−C
d合金においてCd 含量を一定としてBi の含量を変え
たときのサイクル特性を示す図である。
FIG. 1 is a schematic vertical cross-sectional view showing the structure of a test cell used in Examples, and FIG. 2 is a diagram in which the amount of discharged electricity in the case of overdischarging various alloy negative electrodes is plotted against the number of cycles, FIG. FIG. 4 shows Bi-Pb-Cd alloy and Bi-Sn-C, respectively.
It is a figure which shows a cycle characteristic when changing C content and making Bi content change in d alloy.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−163758(JP,A) 日経エレクトロニクス、第339号(昭59 −3−26)P.93−94 ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP 59-163758 (JP, A) Nikkei Electronics, No. 339 (SHO 59-3-26) P. 93-94

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アルカリ金属イオンを含む非水電解質と、
可逆性正極と、充放電により可逆的にアルカリ金属イオ
ンを吸蔵・放出する合金よりなる負極を備え、前記合金
が、20重量%を超え75重量%未満のビスマス、15
〜80重量%のカドミウム、残部がスズ及び鉛よりなる
群から選んだ少なくとも1種からなる再充電可能な電気
化学装置。
1. A non-aqueous electrolyte containing an alkali metal ion,
A reversible positive electrode and a negative electrode made of an alloy that reversibly absorbs and desorbs alkali metal ions by charging and discharging, wherein the alloy contains more than 20% by weight and less than 75% by weight of bismuth.
A rechargeable electrochemical device comprising -80 wt% cadmium, the balance at least one selected from the group consisting of tin and lead.
JP59181355A 1984-08-30 1984-08-30 Rechargeable electrochemical device Expired - Lifetime JPH0626137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59181355A JPH0626137B2 (en) 1984-08-30 1984-08-30 Rechargeable electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59181355A JPH0626137B2 (en) 1984-08-30 1984-08-30 Rechargeable electrochemical device

Publications (2)

Publication Number Publication Date
JPS6161376A JPS6161376A (en) 1986-03-29
JPH0626137B2 true JPH0626137B2 (en) 1994-04-06

Family

ID=16099263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59181355A Expired - Lifetime JPH0626137B2 (en) 1984-08-30 1984-08-30 Rechargeable electrochemical device

Country Status (1)

Country Link
JP (1) JPH0626137B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日経エレクトロニクス、第339号(昭59−3−26)P.93−94

Also Published As

Publication number Publication date
JPS6161376A (en) 1986-03-29

Similar Documents

Publication Publication Date Title
US4002492A (en) Rechargeable lithium-aluminum anode
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
JP2002151056A (en) Electrode for lithium secondary battery and lithium secondary battery
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
JPH05151995A (en) Nonaqueous electrolyte secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JPH08250108A (en) Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery
JP3393243B2 (en) Non-aqueous electrolyte secondary battery
EP0139756A1 (en) Rechargeable electrochemical apparatus and negative pole therefor
US4844994A (en) Chargeable electrochemical device
JP3336672B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH06267542A (en) Nonaqueous electrolyte battery
JPH0626137B2 (en) Rechargeable electrochemical device
JPH0536401A (en) Lithium secondary battery
JPH08162154A (en) Secondary battery having nonaqueous solvent electrolyt
JPS63307663A (en) Nonaqueous electrolyte secondary battery
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JP3030143B2 (en) Non-aqueous electrolyte secondary battery
JPH0424828B2 (en)
JP2865386B2 (en) Non-aqueous electrolyte secondary battery
JPH02278658A (en) Secondary battery
JP2989212B2 (en) Non-aqueous electrolyte secondary battery
JPH0441471B2 (en)
JPS6086759A (en) Nonaqueous electrolyte secondary battery
JPH0719619B2 (en) Organic electrolyte secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term