JP2007234458A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2007234458A
JP2007234458A JP2006056161A JP2006056161A JP2007234458A JP 2007234458 A JP2007234458 A JP 2007234458A JP 2006056161 A JP2006056161 A JP 2006056161A JP 2006056161 A JP2006056161 A JP 2006056161A JP 2007234458 A JP2007234458 A JP 2007234458A
Authority
JP
Japan
Prior art keywords
separator
positive electrode
nonwoven fabric
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006056161A
Other languages
Japanese (ja)
Other versions
JP4836185B2 (en
Inventor
Tetsuto Oka
哲人 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2006056161A priority Critical patent/JP4836185B2/en
Publication of JP2007234458A publication Critical patent/JP2007234458A/en
Application granted granted Critical
Publication of JP4836185B2 publication Critical patent/JP4836185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having high charge discharge cycle characteristics and high productivity. <P>SOLUTION: The nonaqueous electrolyte secondary battery is equipped with a positive electrode, a negative electrode having lithium or a lithium alloy, a separator, and a nonaqueous electrolyte, the separator has three layer structure interposing a microporous film between two nonwoven fabrics, and the retaining amount of the nonaqueous electrolyte in the nonwoven fabric facing the negative electrode out of two nonwoven fabrics constituting the separator is made less than that of the nonaqueous electrolyte in the nonwoven fabric facing the positive electrode. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非水電解液二次電池に関し、更に詳しくは、良好な充放電サイクル特性を有し、生産性にも優れた非水電解液二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having good charge / discharge cycle characteristics and excellent productivity.

負極にリチウムまたはリチウム合金を用いた非水電解液電池は、エネルギー密度が高い点から、各種電子機器の主電源やメモリーバックアップ電源として広く用いられている。   Nonaqueous electrolyte batteries using lithium or a lithium alloy as a negative electrode are widely used as main power sources and memory backup power sources for various electronic devices because of their high energy density.

このような電池は、一般に、正極、リチウムまたはリチウム合金を用いた負極、セパレータ、および非水電解液(以下、単に「電解液」という場合がある)を構成要素に有しており、セパレータには、微孔性フィルムや不織布を用いることが通常である。   Such a battery generally includes a positive electrode, a negative electrode using lithium or a lithium alloy, a separator, and a non-aqueous electrolyte (hereinafter sometimes simply referred to as “electrolyte”) as constituent elements. In general, a microporous film or a nonwoven fabric is used.

電池におけるセパレータの主な役割としては、(1)正極と負極の接触を防ぐことによって短絡を防止する働き;(2)正極と負極の微細粉の移動を防ぎ短絡を防止する働き;(3)電池の放電反応の際に必要となる電解液を保持する働き;(4)電池作製時にセパレータに予め電解液を吸収させておくことで、電池内への電解液の注入を容易とする働き;が挙げられる。   The main role of the separator in the battery is as follows: (1) the action of preventing the short circuit by preventing the contact between the positive electrode and the negative electrode; (2) the function of preventing the movement of fine powder between the positive electrode and the negative electrode and preventing the short circuit; (4) A function of facilitating the injection of the electrolyte into the battery by preliminarily absorbing the electrolyte in the separator during battery production; Is mentioned.

セパレータにおけるこれらの役割から見ると、微孔性フィルム製のセパレータは、多孔性のフィルムであるため、主に正極と負極の微細粉の移動やデンドライトの発生を防ぎ短絡を防止するという働きが優れている。他方、不織布製のセパレータは、複雑に折り重なった繊維の集合体であるため、主に電解液を保持する働きが優れている。   From the viewpoint of these roles in the separator, the separator made of microporous film is a porous film, so it mainly works to prevent the movement of fine powder and dendrite from the positive and negative electrodes and prevent short circuit. ing. On the other hand, since the separator made of nonwoven fabric is an aggregate of fibers folded in a complicated manner, it mainly has an excellent function of holding the electrolyte.

ところで、これらセパレータを構成する微孔性フィルムや不織布は、それぞれ単独で、または複数枚を積層した積層体で構成されるのが一般的であるが、例えば、セパレータを不織布のみで構成した場合には、正極と負極の微細粉やデンドライトの発生を防ぎ短絡を防止するという点で問題が生じる場合がある。これに対し、例えば、特許文献1や特許文献2に開示されているように、セパレータを、微孔性フィルムと不織布とで構成した2層構造とすることで、微孔性フィルムの作用によって上記の短絡の発生を抑制できると共に、不織布の作用によって電解液の保持性も高めることができる。   By the way, although the microporous film and nonwoven fabric which comprise these separators are generally comprised individually or in the laminated body which laminated | stacked several sheets, when a separator is comprised only with a nonwoven fabric, for example May cause problems in terms of preventing the occurrence of fine powder and dendrites of the positive and negative electrodes and preventing short circuits. On the other hand, for example, as disclosed in Patent Document 1 and Patent Document 2, the separator has a two-layer structure composed of a microporous film and a non-woven fabric. Generation | occurrence | production of a short circuit can be suppressed, and the retainability of electrolyte solution can also be improved by the effect | action of a nonwoven fabric.

特開2003−187814号公報JP 2003-187814 A 特許第3167157号公報Japanese Patent No. 3167157

ところが、上記のような微孔性フィルムと不織布から構成される2層構造のセパレータの場合、微孔性フィルムは不織布に比べて電解液保持性が劣るため、非水電解液二次電池の放電特性(特に充放電サイクル特性)を確保するには、微孔性フィルムが対向する側の電極(正極または負極)に、放電に必要な量の電解液を供給するための工夫が必要であった。   However, in the case of a two-layer separator composed of a microporous film and a non-woven fabric as described above, the microporous film is inferior in electrolytic solution retention compared to the non-woven fabric, so that the discharge of the non-aqueous electrolyte secondary battery In order to ensure characteristics (particularly charge / discharge cycle characteristics), it was necessary to devise a method for supplying an amount of electrolyte necessary for discharge to the electrode (positive electrode or negative electrode) on the side facing the microporous film. .

また、上記の如き、微孔性フィルムと不織布から構成される2層構造のセパレータは帯電し易く、取り扱い性に劣るため、非水電解液二次電池の生産性が損なわれてしまう。   In addition, a separator having a two-layer structure composed of a microporous film and a non-woven fabric as described above is easily charged and inferior in handleability, so that the productivity of the nonaqueous electrolyte secondary battery is impaired.

この他、リチウムやリチウム合金を有する負極を備えた非水電解液二次電池では、正極側と負極側で、放電に必要な電解液量が異なるため、負極側を基準に電解液量を設定すると、正極側の電解液量が不足し、他方、正極側を基準に電解液量を設定すると、負極側では電解液が余ることから、電池製造時に電解液が外装缶から溢れる虞がある。電池の放電特性確保の観点からは、電解液量の設定を、正極側を基準にせざるを得ないため、電池製造の際の電解液の溢れを防止する工夫が必要であり、これも非水電解液二次電池の生産性向上の阻害要因となっている。   In addition, in non-aqueous electrolyte secondary batteries equipped with a negative electrode having lithium or lithium alloy, the amount of electrolyte required for discharge differs between the positive electrode side and the negative electrode side, so the amount of electrolyte is set based on the negative electrode side. Then, the amount of the electrolyte on the positive electrode side is insufficient, and on the other hand, if the amount of the electrolyte is set based on the positive electrode side, the electrolyte solution is left on the negative electrode side, so that the electrolyte solution may overflow from the outer can during battery manufacture. From the standpoint of securing the discharge characteristics of the battery, the amount of the electrolyte must be set on the positive electrode side, and therefore a device for preventing overflow of the electrolyte during battery production is necessary. This is an impediment to improving the productivity of electrolyte secondary batteries.

本発明は上記事情に鑑みてなされたものであり、その目的は、良好な充放電サイクル特性を有し、生産性にも優れた非水電解液二次電池を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the non-aqueous-electrolyte secondary battery which has favorable charging / discharging cycling characteristics, and was excellent also in productivity.

上記目的を達成し得た本発明の非水電解液二次電池は、正極、リチウムまたはリチウム合金を有する負極、セパレータおよび非水電解液を備えたものであって、上記セパレータは、微孔性フィルムが2枚の不織布で挟まれた3層構造を有しており、上記セパレータを構成する上記2枚の不織布のうち、負極に対向する側の不織布(以下、「負極側の不織布」という場合がある)における非水電解液の保持量が、正極に対向する側の不織布(以下、「正極側の不織布」という場合がある)における非水電解液の保持量よりも少ないことを特徴とするものである。   The non-aqueous electrolyte secondary battery of the present invention capable of achieving the above object comprises a positive electrode, a negative electrode having lithium or a lithium alloy, a separator, and a non-aqueous electrolyte, and the separator is microporous. The film has a three-layer structure sandwiched between two non-woven fabrics. Among the two non-woven fabrics constituting the separator, the non-woven fabric on the side facing the negative electrode (hereinafter referred to as “negative electrode non-woven fabric”) The amount of non-aqueous electrolyte retained in the non-woven electrolyte on the side facing the positive electrode (hereinafter sometimes referred to as “non-woven fabric on the positive electrode side”) is smaller than the amount retained in the non-aqueous electrolyte. Is.

本発明の非水電解液二次電池では、リチウムまたはリチウム合金を有する負極を用いる一方で、正極には、正極活物質、導電助剤およびバインダーなどで構成される正極合剤を成形したものを使用する(詳しくは後述する)。この場合、正極は多孔質になるため、その内部にまで電解液が浸透するのに対し、負極は実質的に空孔を有しないため、負極内部にまで電解液が浸透することは無い。そのため、上記のような正負極を有する電池では、放電に必要とされる電解液量は、負極よりも正極の方が大きくなる。   In the non-aqueous electrolyte secondary battery of the present invention, a negative electrode having lithium or a lithium alloy is used. On the positive electrode, a positive electrode mixture composed of a positive electrode active material, a conductive additive and a binder is molded. Use (details will be described later). In this case, since the positive electrode becomes porous, the electrolytic solution penetrates into the inside thereof, whereas the negative electrode does not substantially have pores, so that the electrolytic solution does not penetrate into the negative electrode. Therefore, in the battery having the positive and negative electrodes as described above, the amount of the electrolytic solution required for discharging is larger at the positive electrode than at the negative electrode.

よって、上記のような正負極を有する非水電解液二次電池の製造の際に、負極を基準に電池内に注入する電解液量を設定すると、正極では、供給される電解液量が不足して、電池特性が損なわれ、他方、正極を基準に電池内に注入する電解液量を設定すると、負極側では電解液が余るために、外装缶から電解液が溢れてしまう。   Therefore, when manufacturing a non-aqueous electrolyte secondary battery having positive and negative electrodes as described above, if the amount of electrolyte injected into the battery is set based on the negative electrode, the amount of electrolyte supplied is insufficient at the positive electrode. Thus, the battery characteristics are impaired, and on the other hand, when the amount of the electrolyte solution to be injected into the battery is set based on the positive electrode, the electrolyte solution is left on the negative electrode side, so that the electrolyte solution overflows from the outer can.

そこで、本発明の非水電解液二次電池では、微孔性フィルムが2枚の不織布で挟まれた3層構造を有するセパレータを用い、負極に対向する側の不織布における電解液の保持量(以下、「保液量」という場合がある)を、正極に対向する側の不織布における電解液の保持量よりも小さくすることで、正負極に対し、適正な量の電解液の供給を可能にして、良好な充放電サイクル特性を確保すると共に、電池製造時における電解液の溢れを容易に抑制できるようにした。また、セパレータを、帯電し易い微孔性フィルムの両面が帯電し難い2枚の不織布で挟まれた構造としているため、セパレータの帯電による取り扱い性の低下も防止した。   Therefore, in the non-aqueous electrolyte secondary battery of the present invention, a separator having a three-layer structure in which a microporous film is sandwiched between two nonwoven fabrics, and the amount of electrolyte retained in the nonwoven fabric on the side facing the negative electrode ( Hereinafter, it may be referred to as “amount of liquid retained”) smaller than the amount of electrolyte retained in the non-woven fabric on the side facing the positive electrode, so that an appropriate amount of electrolyte can be supplied to the positive and negative electrodes. In addition to ensuring good charge / discharge cycle characteristics, it is possible to easily suppress overflow of the electrolyte during battery manufacture. In addition, since the separator has a structure in which both surfaces of a microporous film that is easily charged are sandwiched between two non-woven fabrics that are difficult to be charged, a decrease in handleability due to charging of the separator is also prevented.

このように、本発明の非水電解液二次電池では、上記構成の採用によって、良好な充放電サイクル特性を確保することに加えて、電池製造時の電解液の溢れ抑制と、セパレータの取り扱い性の向上によって、生産性の向上も達成している。   Thus, in the non-aqueous electrolyte secondary battery of the present invention, by adopting the above configuration, in addition to ensuring good charge / discharge cycle characteristics, suppressing overflow of the electrolyte during battery production and handling of the separator Improvements in productivity have also improved productivity.

本発明によれば、良好な充放電サイクル特性を有し、生産性にも優れた非水電解液二次電池を提供ことができる。   According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having good charge / discharge cycle characteristics and excellent productivity.

本発明に係るセパレータは、上記の通り、微孔性フィルムが2枚の不織布で挟まれた3層構造を有している。セパレータをこのような3層構造とすることで、中央に存在する微孔性フィルムによって、正極と負極の微細粉の移動やリチウムデンドライトの発生を防ぎ、これらに起因する短絡の発生を防止することができる。また、上記の通り、セパレータの両外面が不織布であるため、静電気による帯電が生じ難く、取り扱い性が良好である。   As described above, the separator according to the present invention has a three-layer structure in which a microporous film is sandwiched between two nonwoven fabrics. By making the separator into such a three-layer structure, the microporous film present in the center prevents the movement of fine powders of the positive electrode and the negative electrode and the generation of lithium dendrite, and prevents the occurrence of short circuits due to these. Can do. Moreover, since both the outer surfaces of a separator are a nonwoven fabric as above-mentioned, it is hard to produce the charge by static electricity and handling property is favorable.

更に、本発明に係るセパレータにおいては、負極に対向する側の不織布の保液量が、正極に対向する側の不織布の保液量よりも少ない。このような構成の採用によって、上記の通り、電池製造時の電解液の溢れを容易に抑制して電池の生産性を高めつつ、正負極のそれぞれに適正な量の電解液を供給して、電池特性、特に充放電サイクル特性を高めることができる他、漏液の発生を抑制することもできる。   Furthermore, in the separator according to the present invention, the liquid retention amount of the nonwoven fabric on the side facing the negative electrode is smaller than the liquid retention amount of the nonwoven fabric on the side facing the positive electrode. By adopting such a configuration, as described above, it is possible to easily suppress overflow of the electrolyte during battery production and increase battery productivity, while supplying an appropriate amount of electrolyte to each of the positive and negative electrodes, In addition to improving battery characteristics, particularly charge / discharge cycle characteristics, it is also possible to suppress the occurrence of liquid leakage.

セパレータを構成するための微孔性フィルムとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィンで構成されたものの他、耐熱用途として、四フッ化エチレン−パーフルオロアルコキシエチレン共重合体(PFA)などのフッ素樹脂;ポリフェニレンサルファイド(PPS);ポリエーテルエーテルケトン(PEEK);ポリブチレンテレフタレート(PBT);などの耐熱樹脂で構成されたものなどが挙げられる。   Examples of the microporous film for constituting the separator include those made of polyolefin such as polyethylene and polypropylene, and fluorine such as tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA) for heat resistance. Resins; Polyphenylene sulfide (PPS); Polyetheretherketone (PEEK); Polybutylene terephthalate (PBT);

微孔性フィルムの孔径としては、例えば1μm以下であることが好ましい。このような孔径の空孔を有する微孔性フィルムであれば、正負極の微細粉の移動やリチウムデンドライトの発生を防止して、これらに起因する短絡の発生を良好に防止できる。また、微孔性フィルムの厚みは、例えば、20〜100μmであることが好ましく、その空孔率は、例えば、40〜60%であることが好ましい。   As a hole diameter of a microporous film, it is preferable that it is 1 micrometer or less, for example. If it is a microporous film which has the hole of such a hole diameter, the movement of the fine powder of positive and negative electrodes and generation | occurrence | production of lithium dendrite can be prevented, and generation | occurrence | production of the short circuit resulting from these can be prevented favorably. Moreover, it is preferable that the thickness of a microporous film is 20-100 micrometers, for example, and it is preferable that the porosity is 40-60%, for example.

なお、微孔性フィルムとしては、その製法については特に制限は無く、従来公知の各種製法で得られたものが使用でき、また、市販品を入手して使用することもできる。   In addition, there is no restriction | limiting in particular about the manufacturing method as a microporous film, The thing obtained by various conventionally well-known manufacturing methods can be used, and a commercial item can also be obtained and used.

セパレータを構成するための不織布としては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィンの繊維で構成されたもの他、耐熱用途として、四フッ化エチレン−パーフルオロアルコキシエチレン共重合体(PFA)などのフッ素樹脂;ポリフェニレンサルファイド(PPS);ポリエーテルエーテルケトン(PEEK);ポリブチレンテレフタレート(PBT);などの耐熱樹脂の繊維で構成されたものなどが挙げられる。不織布の空隙率としては、例えば、70〜90%であることが好ましい。   Examples of the nonwoven fabric for constituting the separator include those made of polyolefin fibers such as polyethylene and polypropylene, and fluorine resins such as tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA) for heat resistance. And polyphenylene sulfide (PPS); polyether ether ketone (PEEK); polybutylene terephthalate (PBT); As a porosity of a nonwoven fabric, it is preferable that it is 70 to 90%, for example.

セパレータを構成する微孔性フィルムの空孔率および不織布の空隙率は、次式により求めることができる。
P = 100×(Va−Vb)/Va
上記式中、Pは、微孔性フィルムの空孔率または不織布の空隙率、Vaは、微孔性フィルムまたは不織布の見かけの体積、Vbは、微孔性フィルムまたは不織布の真体積である。また、微孔性フィルムまたは不織布の真体積Vbは、次式により求めることができる。
Vb = m/s
上記式中、mは、微孔性フィルムまたは不織布の質量、sは、微孔性フィルムまたは不織布を構成する材料の比重である。
The porosity of the microporous film constituting the separator and the porosity of the nonwoven fabric can be obtained by the following formula.
P = 100 × (Va−Vb) / Va
In the above formula, P is the porosity of the microporous film or the porosity of the nonwoven fabric, Va is the apparent volume of the microporous film or nonwoven fabric, and Vb is the true volume of the microporous film or nonwoven fabric. Moreover, the true volume Vb of a microporous film or a nonwoven fabric can be calculated | required by following Formula.
Vb = m / s
In the above formula, m is the mass of the microporous film or nonwoven fabric, and s is the specific gravity of the material constituting the microporous film or nonwoven fabric.

なお、不織布としては、その製法については特に制限は無く、従来公知の各種製法で得られたものが使用でき、また、市販品を入手して使用することもできる。   In addition, there is no restriction | limiting in particular about the manufacturing method as a nonwoven fabric, The thing obtained by various conventionally well-known manufacturing methods can be used, and a commercial item can also be obtained and used.

セパレータを構成するための2枚の不織布は、同じ素材で構成されていてもよく、異なる素材で構成されていても構わないが、負極に対向する側の不織布が、正極に対向する側の不織布よりも、電解液の保持量が少なくなるように選択しなければならない。   The two nonwoven fabrics for constituting the separator may be made of the same material or different materials, but the nonwoven fabric on the side facing the negative electrode is the nonwoven fabric on the side facing the positive electrode Rather, the amount of electrolyte retained must be selected to be small.

上記セパレータに係る両不織布では、その空隙部分に非水電解液が保持される。そのため、セパレータにおいて、負極に対向する側の不織布における保液量と、正極に対向する側の不織布における保液量との関係は、例えば、負極に対向する側の不織布の有する空隙部分の体積と、正極に対向する側の不織布の有する空隙部分の体積との関係から見積ることができる。すなわち、負極に対向する側の不織布の有する空隙部分の体積が、正極に対向する側の不織布の有する空隙部分の体積よりも小さくなるように、セパレータを構成すればよい。   In both the nonwoven fabrics which concern on the said separator, a non-aqueous electrolyte is hold | maintained at the space | gap part. Therefore, in the separator, the relationship between the liquid retention amount in the nonwoven fabric on the side facing the negative electrode and the liquid retention amount in the nonwoven fabric on the side facing the positive electrode is, for example, the volume of the void portion of the nonwoven fabric on the side facing the negative electrode It can be estimated from the relationship with the volume of the void portion of the nonwoven fabric on the side facing the positive electrode. That is, the separator may be configured such that the volume of the void portion of the nonwoven fabric on the side facing the negative electrode is smaller than the volume of the void portion of the nonwoven fabric on the side facing the positive electrode.

なお、セパレータを構成する不織布の空隙体積は、不織布の空隙率を算出するための上記式に係るVa:不織布の見かけの体積、およびVb:不織布の真体積を用いて、「Va−Vb」により求めることができる。   The void volume of the nonwoven fabric constituting the separator is expressed by “Va−Vb” using Va: apparent volume of the nonwoven fabric and Vb: true volume of the nonwoven fabric according to the above formula for calculating the porosity of the nonwoven fabric. Can be sought.

また、上記セパレータにおいては、例えば、セパレータを構成する2枚の不織布のうち、負極に対向する側の不織布における空隙部分の体積Xと、正極に対向する側の不織布における空隙部分の体積Yとの比Y/Xが、1.5以上、より好ましくは1.8以上であって、4.5以下、より好ましくは4.0以下であることが望ましい。負極と対向する側の不織布に対して正極と対向する側の不織布の空隙部分の体積が小さすぎたり大きすぎたりすると(すなわち、空隙部分の体積比Y/Xの値が小さすぎたり、大きすぎたりすると)、負極と対向する側の不織布における保液量に対する正極と対向する側の不織布の保液量の比率が小さくなりすぎたり大きくなりすぎたりして、正負極に供給する電解液量を最適化することが困難となって、本発明の効果が小さくなることがある。   In the separator, for example, of the two nonwoven fabrics constituting the separator, the volume X of the void portion in the nonwoven fabric on the side facing the negative electrode and the volume Y of the void portion in the nonwoven fabric on the side facing the positive electrode It is desirable that the ratio Y / X is 1.5 or more, more preferably 1.8 or more, and 4.5 or less, more preferably 4.0 or less. If the volume of the void portion of the nonwoven fabric on the side facing the positive electrode is too small or too large relative to the nonwoven fabric on the side facing the negative electrode (that is, the value of the volume ratio Y / X of the void portion is too small or too large) The ratio of the liquid retention amount of the nonwoven fabric facing the positive electrode to the liquid retention amount of the nonwoven fabric facing the negative electrode is too small or too large, and the amount of electrolyte supplied to the positive and negative electrodes is It becomes difficult to optimize, and the effect of the present invention may be reduced.

本発明に係るセパレータにおいて、負極側の不織布が、正極側の不織布よりも、電解液の保持量が少なくなるようにし、好ましくは上記の空隙部分の体積比を達成するには、例えば、負極側の不織布と、正極側の不織布との厚みを変えることが挙げられる。すなわち、負極側の不織布に、正極側の不織布よりも薄いものを用いればよい。   In the separator according to the present invention, the negative electrode-side non-woven fabric has a smaller amount of electrolyte solution retained than the positive-electrode-side non-woven fabric, and preferably the above-described void portion volume ratio is achieved, for example, by the negative electrode side And changing the thickness of the non-woven fabric and the non-woven fabric on the positive electrode side. That is, it is only necessary to use a non-woven fabric on the negative electrode side that is thinner than the non-woven fabric on the positive electrode side.

負極側の不織布と、正極側の不織布との厚みの違いによって、両不織布の空隙部分の体積比を上記好適値に調整して、両不織布の保液量の比率を制御するには、負極側の不織布の厚みに対して、正極側の不織布の厚みを、例えば、1.5倍以上、より好ましくは1.8倍以上であって、4.5倍以下、より好ましくは4.0倍以下とすることが望ましい。負極側の不織布に対して、正極側の不織布が薄すぎると、負極側の不織布と正極側の不織布とで保液量を変えることによる上記の効果が小さくなることがある。また、負極側の不織布に対して、正極側の不織布が厚すぎると、例えば、電池内に注入しなければならない電解液量が増大したり、電池厚みの増大を引き起こしたりするため、好ましくない。   In order to control the ratio of the liquid retention amount of both nonwoven fabrics by adjusting the volume ratio of the voids of both nonwoven fabrics to the above preferred value depending on the difference in thickness between the nonwoven fabric on the negative electrode side and the nonwoven fabric on the positive electrode side, The thickness of the non-woven fabric on the positive electrode side is, for example, 1.5 times or more, more preferably 1.8 times or more, and 4.5 times or less, more preferably 4.0 times or less. Is desirable. If the non-woven fabric on the positive electrode side is too thin with respect to the non-woven fabric on the negative electrode side, the above-described effect due to changing the amount of liquid retained between the non-woven fabric on the negative electrode side and the non-woven fabric on the positive electrode side may be reduced. On the other hand, if the non-woven fabric on the positive electrode side is too thick with respect to the non-woven fabric on the negative electrode side, for example, the amount of the electrolyte solution that must be injected into the battery increases or the thickness of the battery increases.

なお、負極側の不織布および正極側の不織布の具体的な厚みは、非水電解液二次電池の構成(主にサイズ)によって変動するが、例えば、代表的なコイン形の非水電解液二次電池の一つである所謂「ML1220」の場合では、負極側の不織布の厚みが、80μm以上、より好ましくは90μm以上であって、200μm以下、より好ましくは180μm以下であり、正極側の不織布の厚みが、300μm以上、より好ましくは310μm以上であって、400μm以下、より好ましくは380μm以下であることが望ましい。そして、このような厚みを満たしつつ、上述の厚みの比率を満足することが好ましい。   The specific thickness of the negative electrode-side non-woven fabric and the positive electrode-side non-woven fabric varies depending on the configuration (mainly size) of the non-aqueous electrolyte secondary battery. In the case of so-called “ML1220” which is one of the secondary batteries, the thickness of the non-woven fabric on the negative electrode side is 80 μm or more, more preferably 90 μm or more, and 200 μm or less, more preferably 180 μm or less. The thickness is preferably 300 μm or more, more preferably 310 μm or more, and 400 μm or less, more preferably 380 μm or less. And it is preferable to satisfy | fill the ratio of the above-mentioned thickness, satisfy | filling such thickness.

また、本発明に係るセパレータにおいて、負極側の不織布が、正極側の不織布よりも、電解液の保持量が小さくなるようにし、好ましくは上記の空隙部分の体積比を達成して両不織布の保液量の比率を制御する方法としては、上述の、両不織布の厚みを変えることの他に、負極側の不織布の空隙率を、正極側の不織布の空隙率よりも小さくする方法も採用できる。   In the separator according to the present invention, the non-woven fabric on the negative electrode side has a smaller amount of electrolyte solution retained than the non-woven fabric on the positive electrode side, and preferably the above-mentioned volume ratio of the voids is achieved to maintain both non-woven fabrics. As a method for controlling the ratio of the liquid amount, in addition to changing the thicknesses of both nonwoven fabrics, a method of making the porosity of the nonwoven fabric on the negative electrode side smaller than the porosity of the nonwoven fabric on the positive electrode side can also be adopted.

なお、負極側の不織布と、正極側の不織布との厚みを変えることによって、これら不織布の保液量を変える方法を採用する場合には、負極側の不織布を薄くして、電池内におけるセパレータの見かけ上の占有容積を減らすことができるため、正負極の充填量を増加させることも可能であり、これにより高容量化を図ることもできる。   In addition, when adopting a method of changing the liquid retention amount of these nonwoven fabrics by changing the thickness of the nonwoven fabric on the negative electrode side and the nonwoven fabric on the positive electrode side, the nonwoven fabric on the negative electrode side is made thin so that the separator in the battery Since the apparent occupied volume can be reduced, it is also possible to increase the filling amount of the positive and negative electrodes, thereby increasing the capacity.

本発明に係るセパレータは、微孔性フィルムと2枚の不織布とが、互いに貼り合わされていてもよく、単に重ねられているだけでも構わない。互いに貼り合せる際には、例えば、微孔性フィルムや不織布の表面に、空孔率・空隙率にあまり影響しない程度に熱をかけ、その後に重ね合わせて熱融着させる方法などが採用できる。また、例えば、微孔性フィルムと2枚の不織布とを重ねた状態で、必要とするサイズに打ち抜きをすれば、その端部において微孔性フィルムと2枚の不織布とが互いに接着する場合もあり、このような状態でセパレータとして用いることもできる。   In the separator according to the present invention, the microporous film and the two non-woven fabrics may be bonded to each other or simply overlapped. When pasting each other, for example, a method of applying heat to the surface of the microporous film or the nonwoven fabric to such an extent that the porosity and porosity are not so much influenced, and then superposing and heat-sealing can be employed. Also, for example, if the microporous film and two nonwoven fabrics are overlapped and punched to the required size, the microporous film and the two nonwoven fabrics may adhere to each other at the end. Yes, it can also be used as a separator in such a state.

本発明の非水電解液二次電池に係る負極は、リチウムを活物質とするものである。ここで、リチウムを活物質とするとは、リチウム金属、リチウム化合物またはリチウムイオンが電極反応に関与するという意味である。負極を構成する材料としては、リチウム金属や、リチウム−アルミニウム、リチウム−ガリウムなどのリチウムと可逆的に合金化するリチウム合金を使用することができる。リチウム合金の場合には、リチウム含有量が、例えば1〜15原子%であることが好ましい。これらの負極材料は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。上記の負極材料は、例えば、箔の形態でそのまま使用したり、箔状のものを、集電体となる金属箔、エキスパンドメタル、平織り金網などに圧着して用いたりすることができる。   The negative electrode according to the nonaqueous electrolyte secondary battery of the present invention uses lithium as an active material. Here, using lithium as an active material means that lithium metal, a lithium compound, or lithium ions are involved in the electrode reaction. As a material constituting the negative electrode, lithium metal or a lithium alloy reversibly alloyed with lithium such as lithium-aluminum or lithium-gallium can be used. In the case of a lithium alloy, the lithium content is preferably 1 to 15 atomic%, for example. These negative electrode materials may be used individually by 1 type, and may be used in combination of 2 or more type. The negative electrode material can be used as it is in the form of a foil, for example, or a foil-like material can be used by being pressure-bonded to a metal foil, an expanded metal, a plain weave wire mesh or the like as a current collector.

本発明の非水電解液二次電池では、上記セパレータおよび上記負極以外の構成要素については、特に制限は無く、従来公知の非水電解液二次電池で採用されている各種構成要素を適用することができる。   In the nonaqueous electrolyte secondary battery of the present invention, there are no particular limitations on the components other than the separator and the negative electrode, and various components adopted in conventionally known nonaqueous electrolyte secondary batteries are applied. be able to.

正極としては、例えば、リチウムイオンを可逆的に吸蔵および放出する非水電解液二次電池に一般的に用いられる正極を用いることができる。正極活物質として使用できるリチウムイオンを可逆的に吸蔵及び放出することが可能な物質としては、例えば、LiCoO(コバルト酸リチウム)、LiNiO(ニッケル酸リチウム)、マンガン含有酸化物[LiMn、LiMn、LiMnO、LiMnO(マンガン酸リチウム)、LiMn(スピネル)など]、V(五酸化バナジウム)などが挙げられる。 As the positive electrode, for example, a positive electrode generally used for a non-aqueous electrolyte secondary battery that reversibly occludes and releases lithium ions can be used. Examples of the material capable of reversibly occluding and releasing lithium ions that can be used as the positive electrode active material include LiCoO 2 (lithium cobaltate), LiNiO 2 (lithium nickelate), and manganese-containing oxide [LiMn 2 O 4 , LiMn 3 O 6 , Li 2 MnO 3 , LiMnO 2 (lithium manganate), LiMn 2 O 4 (spinel), etc.], V 2 O 5 (vanadium pentoxide) and the like.

正極は、通常、上記のような正極活物質に加えて、導電助剤およびバインダーが用いられる。導電助剤としては、例えば、カーボンブラック、鱗片状黒鉛、ケッチェンブラック、アセチレンブラック、繊維状炭素などが用いられる。また、バインダーとしては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、カルボキシメチルセルロース、スチレンブタジエンラバーなどが用いられる。   For the positive electrode, a conductive additive and a binder are usually used in addition to the positive electrode active material as described above. Examples of the conductive assistant include carbon black, flaky graphite, ketjen black, acetylene black, and fibrous carbon. As the binder, for example, polytetrafluoroethylene, polyvinylidene fluoride, carboxymethyl cellulose, styrene butadiene rubber or the like is used.

正極の作製にあたっては、正極活物質と導電助剤とバインダーとを混合して調製した正極合剤を加圧成形するか、または上記正極合剤を水または有機溶剤に分散させて正極合剤含有ぺーストを調製し(この場合、バインダーは予め水または溶剤に溶解または分散させておき、それを正極活物質などと混合して正極合剤含有ペーストを調製してもよい)、その正極合剤含有ぺーストを金属箔、エキスパンドメタル、平織り金網などからなる集電体に塗布し、乾燥した後、加圧成形することによって作製される。ただし、正極の作製方法は、上記例示の方法のみに限られることなく、他の方法によってもよい。   In producing the positive electrode, the positive electrode mixture prepared by mixing the positive electrode active material, the conductive additive and the binder is pressure-molded, or the positive electrode mixture is dispersed in water or an organic solvent to contain the positive electrode mixture. A paste is prepared (in this case, the binder may be previously dissolved or dispersed in water or a solvent and mixed with a positive electrode active material or the like to prepare a positive electrode mixture-containing paste), and the positive electrode mixture The paste is applied to a current collector made of a metal foil, an expanded metal, a plain weave wire net, and the like, dried, and then press-molded. However, the method for manufacturing the positive electrode is not limited to the above-described method, and other methods may be used.

このように作製された正極は、上記の通り、空孔を有する多孔体であり、放電を効率よく行うためには、内部に電解液を十分に含ませる必要がある。したがって、上記セパレータのうち、正極に対向する側の不織布の保液量は、こうした空孔を実質的に有しない負極に対向する側の不織布の保液量よりも多いことが要求される。   As described above, the positive electrode produced in this way is a porous body having pores, and it is necessary to sufficiently contain an electrolytic solution therein in order to efficiently discharge. Therefore, the liquid retention amount of the nonwoven fabric on the side facing the positive electrode in the separator is required to be larger than the liquid retention amount of the nonwoven fabric on the side facing the negative electrode which does not substantially have such pores.

本発明に係る電解液としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状炭酸エステル;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状炭酸エステル;や、1,2−ジメトキシエタン、ジグライム(ジエチレングリコールメチルエーテル)、トリグライム(トリエチレングリコールジメチルエーテル)、テトラグライム(テトラエチレングリコールジメチルエーテル)、1,2−ジメトキシエタン、1,2−ジエトキシメタン、テトラヒドロフランなどのエーテル;より選ばれる1種の溶媒あるいは2種以上の混合溶媒に電解質を溶解させて調製した非水電解液が用いられる。   Examples of the electrolytic solution according to the present invention include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, and vinylene carbonate; chain carbonate esters such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; Selected from ethers such as dimethoxyethane, diglyme (diethylene glycol methyl ether), triglyme (triethylene glycol dimethyl ether), tetraglyme (tetraethylene glycol dimethyl ether), 1,2-dimethoxyethane, 1,2-diethoxymethane, and tetrahydrofuran; A nonaqueous electrolytic solution prepared by dissolving an electrolyte in one kind of solvent or two or more kinds of mixed solvents is used.

本発明に係る電解液に溶解させる電解質としては、例えば、LiBF、LiPF、LiAsF、LiSbF、LiClO、LiCFSO、LiCSOなどのLiC2n+1SO(n≧1)、LiN(CFSO、LiC(CFSO、LiCFCO、LiB10Cl10、低級脂肪酸カルボン酸リチウム、LiAlCl、LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウムなどが挙げられる。これらの電解質は、それぞれ1種単独で用いてもよく、2種以上を併用してもよい。なお、上記の電解質の中でも、正極活物質にマンガン含有酸化物を使用する場合、その共存性から、LiClO、LiPF、LiCFSO、LiCSOなどのLiC2n+1SO(n≧1)や、LiN(CFSO、LiN(CSOなどのリチウムイミド塩が好ましい。 The electrolytes dissolved in the electrolytic solution according to the present invention, for example, LiBF 4, LiPF 6, LiAsF 6, LiSbF 6, LiClO 4, LiCF 3 SO 3, LiC 4 F 9 SO 3 LiC n F 2n + 1 SO 3 , such as ( n ≧ 1), LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiCF 3 CO 2 , LiB 10 Cl 10 , lower fatty acid carboxylate, LiAlCl 4 , LiCl, LiBr, LiI, chloroborane Examples include lithium and lithium tetraphenylborate. Each of these electrolytes may be used alone or in combination of two or more. Among the above electrolytes, when a manganese-containing oxide is used as the positive electrode active material, LiC n F 2n + 1 SO such as LiClO 4 , LiPF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 is used because of its coexistence. 3 (n ≧ 1), lithium imide salts such as LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 are preferable.

電解液中における電解質の濃度は、特に制限は無いが、例えば、0.2〜2mol/lであることが好ましく、0.3〜1.5mol/lであることがより好ましい。   Although there is no restriction | limiting in particular in the density | concentration of the electrolyte in electrolyte solution, For example, it is preferable that it is 0.2-2 mol / l, and it is more preferable that it is 0.3-1.5 mol / l.

なお、本発明では、電解液は、通常、液状のまま用いるが、上記の電解液に更にポリマーなどのゲル化剤を添加し、所謂ゲル状として使用することもできる。   In the present invention, the electrolytic solution is usually used in a liquid state, but a gelling agent such as a polymer may be further added to the above electrolytic solution to be used as a so-called gel.

本発明の非水電解液二次電池の形態は特に限定されず、例えば、所謂コイン形電池やボタン形電池と称される扁平形電池の形態や、円筒状、角筒状などの筒形電池の形態、更には、アルミニウムラミネートフィルムを外装体とするラミネート電池の形態など従来公知の非水電解液二次電池で採用されている各種形態とすることができる。扁平形電池やラミネート電池の場合には、例えば、正極と負極とが、セパレータを介して積層した構成で、電池外装体内に装填されており、更に電解液が注入されて封止されていればよい。他方、筒形電池の場合には、正極と負極とを、セパレータを介して積層した積層電極体や、更にこれを渦巻状に巻回した巻回電極体が、筒形の電池外装体内に装填され、電解液が注入されて封止された構造を有していればよい。   The form of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited. For example, a so-called coin battery or button battery, a flat battery, a cylindrical battery such as a cylindrical battery, a rectangular battery, or the like is used. In addition, various forms employed in conventionally known non-aqueous electrolyte secondary batteries such as a laminated battery having an aluminum laminate film as an exterior body can be used. In the case of a flat battery or a laminated battery, for example, a structure in which a positive electrode and a negative electrode are stacked via a separator, is loaded in the battery outer body, and is further sealed by injecting an electrolyte. Good. On the other hand, in the case of a cylindrical battery, a laminated electrode body in which a positive electrode and a negative electrode are stacked with a separator interposed therebetween, and a wound electrode body obtained by winding the positive electrode and the negative electrode in a spiral shape are loaded into the cylindrical battery exterior body. It is only necessary to have a structure in which an electrolytic solution is injected and sealed.

本発明の非水電解液二次電池は、良好な充放電サイクル特性を有しており、このような特性を生かして、従来公知の非水電解液二次電池が用いられている各種用途(各種電子機器の主電源やメモリーバックアップ電源など)に好適に用いることができる。   The non-aqueous electrolyte secondary battery of the present invention has good charge / discharge cycle characteristics, and by utilizing such characteristics, various applications in which conventionally known non-aqueous electrolyte secondary batteries are used ( It can be suitably used for a main power source and a memory backup power source of various electronic devices.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.

実施例1
水酸化リチウム(LiOH)をイオン交換水に0.25mol溶解した飽和水溶液に、NHOHで中和した電解二酸化マンガン(平均粒子径:30μm、BET比表面積:60m/g)を0.75モル添加し、120±10℃の温度で予備乾燥し、途中で撹拌しながら、水分を除去した。これを乾燥、粉砕した後、大気中、350±10℃の温度で20時間加熱してリチウムマンガン複合酸化物を合成した。
Example 1
0.75 mol of electrolytic manganese dioxide (average particle size: 30 μm, BET specific surface area: 60 m 2 / g) neutralized with NH 4 OH in a saturated aqueous solution in which 0.25 mol of lithium hydroxide (LiOH) was dissolved in ion-exchanged water. Mole was added, pre-dried at a temperature of 120 ± 10 ° C., and water was removed while stirring on the way. This was dried and ground, and then heated in the atmosphere at a temperature of 350 ± 10 ° C. for 20 hours to synthesize a lithium manganese composite oxide.

上記のようにして合成したリチウムマンガン複合酸化物100質量部に対して、導電助剤として鱗片状黒鉛5質量部、およびバインダーとして濃度60質量%のポリテトラフルオロエチレンディスパージョン2質量部を配合して、正極合剤を調製した。   To 100 parts by mass of the lithium manganese composite oxide synthesized as described above, 5 parts by weight of scaly graphite as a conductive assistant and 2 parts by weight of polytetrafluoroethylene dispersion having a concentration of 60% by weight as a binder are blended. Thus, a positive electrode mixture was prepared.

上記の正極合剤と、直径8.6mmの円形に打ち抜いたステンレス鋼製の平織り金網とを加圧成形した後、250℃で真空乾燥して、直径8.6mmで、厚さ0.75mmの正極を得た。   After press-molding the above positive electrode mixture and a stainless steel plain woven wire net punched into a circle having a diameter of 8.6 mm, it is vacuum-dried at 250 ° C., and has a diameter of 8.6 mm and a thickness of 0.75 mm. A positive electrode was obtained.

電解液には、0.5molのLiPFを、プロピレンカーボネートと1,2−ジメトキシエタンを67:33(質量比)で有する混合溶媒に溶解したものを用い、図1に示す構造の非水電解液二次電池(コイン形の非水電解液二次電池)を作製した。 As the electrolytic solution, 0.5 mol of LiPF 6 dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane at 67:33 (mass ratio) was used, and non-aqueous electrolysis having the structure shown in FIG. A liquid secondary battery (coin-shaped non-aqueous electrolyte secondary battery) was produced.

図1に示す電池について説明すると、1はステンレス鋼製の正極缶、2は上記の正極である。3は正極集電体で、この正極集電体3は上記正極2の加圧成形時に、正極合剤の一方の側に配置したステンレス鋼製の平織り金網からなるものである。   The battery shown in FIG. 1 will be described. 1 is a positive electrode can made of stainless steel, and 2 is the above positive electrode. Reference numeral 3 denotes a positive electrode current collector, and the positive electrode current collector 3 is made of a stainless steel plain weave metal net disposed on one side of the positive electrode mixture when the positive electrode 2 is pressed.

4はセパレータで、5は、厚みが500μmのリチウム−アルミニウム合金(リチウム含量14原子%)からなる負極、6はステンレス鋼製網からなる負極集電体、7はステンレス鋼製の負極缶であり、負極集電体6はこの負極缶7の内面にスポット溶接されている。   4 is a separator, 5 is a negative electrode made of a lithium-aluminum alloy (lithium content 14 atomic%) having a thickness of 500 μm, 6 is a negative electrode current collector made of a stainless steel net, and 7 is a negative electrode can made of stainless steel. The negative electrode current collector 6 is spot welded to the inner surface of the negative electrode can 7.

8はポリプロピレン製の環状ガスケットであり、図1の電池では、負極缶7と正極缶1とが、環状ガスケット8を介して、正極缶1の開口端部を内方に締め付けるようにかしめられ、負極缶7の周辺折り返し部と正極缶1の開口端部とが環状ガスケット8に圧接されることで封口されている。また、この電池には上記組成の電解液が注入されていて、電池のサイズは直径12.5mm、高さ2.0mmである。   8 is an annular gasket made of polypropylene, and in the battery of FIG. 1, the negative electrode can 7 and the positive electrode can 1 are caulked so that the opening end of the positive electrode can 1 is tightened inward via the annular gasket 8, The peripheral folded portion of the negative electrode can 7 and the open end of the positive electrode can 1 are sealed by being pressed against the annular gasket 8. In addition, an electrolytic solution having the above composition is injected into this battery, and the battery has a diameter of 12.5 mm and a height of 2.0 mm.

また、図1の電池に係るセパレータ4を含む部分の拡大図を図2に示すが、セパレータ4は、不織布4a、4cと、微孔性フィルム4bで構成されている。負極5側の不織布4aは、ポリプロピレン製で、厚みが100μm、空隙率が89%であり、正極2側の不織布4cは、ポリプロピレン製で、厚みが380μm、空隙率が86%である。また、微孔性フィルム4bは、厚みが30μmで、空孔率が50%である。このとき、負極側の不織布と正極側の不織布との空隙部分の体積比Y/Xは、3.67であった。なお、上記の図1および図2では、各構成要素のサイズは、必ずしも正確に表現していない。   Moreover, although the enlarged view of the part containing the separator 4 which concerns on the battery of FIG. 1 is shown in FIG. 2, the separator 4 is comprised by the nonwoven fabric 4a, 4c and the microporous film 4b. The nonwoven fabric 4a on the negative electrode 5 side is made of polypropylene and has a thickness of 100 μm and a porosity of 89%. The nonwoven fabric 4c on the positive electrode 2 side is made of polypropylene and has a thickness of 380 μm and a porosity of 86%. The microporous film 4b has a thickness of 30 μm and a porosity of 50%. At this time, the volume ratio Y / X of the void portion between the negative electrode-side nonwoven fabric and the positive electrode-side nonwoven fabric was 3.67. In FIGS. 1 and 2, the size of each component is not necessarily expressed accurately.

実施例2
ポリプロピレン製で、厚みが170μm、空隙率が84%の不織布4a(負極5側)と、ポリプロピレン製で、厚みが280μm、空隙率が87%の不織布4c(正極2側)と、厚みが30μmで、空孔率が50%の微孔性フィルム4bで構成される3層構造のセパレータを用いた以外は、実施例1と同様にしてコイン形の非水電解液二次電池を作製した。この電池に用いたセパレータでは、負極側の不織布と正極側の不織布との空隙部分の体積比Y/Xは、1.71であった。
Example 2
Nonwoven fabric 4a (negative electrode 5 side) made of polypropylene and having a thickness of 170 μm and porosity of 84%; Nonwoven fabric 4c (positive electrode 2 side) made of polypropylene and having a thickness of 280 μm and porosity of 87%; and a thickness of 30 μm A coin-shaped nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a separator having a three-layer structure composed of a microporous film 4b having a porosity of 50% was used. In the separator used for this battery, the volume ratio Y / X of the gap between the nonwoven fabric on the negative electrode side and the nonwoven fabric on the positive electrode side was 1.71.

実施例3
ポリプロピレン製で、厚みが170μm、空隙率が84%の不織布4a(負極5側)と、ポリプロピレン製で、厚みが320μm、空隙率が83%の不織布4c(正極2側)と、厚みが30μmで、空孔率が50%の微孔性フィルム4bで構成される3層構造のセパレータを用いた以外は、実施例1と同様にしてコイン形の非水電解液二次電池を作製した。この電池に用いたセパレータでは、負極側の不織布と正極側の不織布との空隙部分の体積比Y/Xは、1.86であった。
Example 3
Nonwoven fabric 4a (negative electrode 5 side) made of polypropylene and having a thickness of 170 μm and porosity of 84%; Nonwoven fabric 4c (positive electrode 2 side) made of polypropylene and having a thickness of 320 μm and porosity of 83%; and a thickness of 30 μm A coin-shaped nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a separator having a three-layer structure composed of a microporous film 4b having a porosity of 50% was used. In the separator used for this battery, the volume ratio Y / X of the gap between the negative electrode-side nonwoven fabric and the positive electrode-side nonwoven fabric was 1.86.

実施例4
ポリプロピレン製で、厚みが100μm、空隙率が89%の不織布4a(負極5側)と、ポリプロピレン製で、厚みが400μm、空隙率が86%の不織布4c(正極2側)と、厚みが30μmで、空孔率が50%の微孔性フィルム4bで構成される3層構造のセパレータを用いた以外は、実施例1と同様にしてコイン形の非水電解液二次電池を作製した。この電池に用いたセパレータでは、負極側の不織布と正極側の不織布との空隙部分の体積比Y/Xは、3.87であった。
Example 4
Nonwoven fabric 4a (negative electrode 5 side) made of polypropylene and having a thickness of 100 μm and porosity of 89%; Nonwoven fabric 4c (positive electrode 2 side) made of polypropylene and having a thickness of 400 μm and porosity of 86%; and a thickness of 30 μm A coin-shaped nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a separator having a three-layer structure composed of a microporous film 4b having a porosity of 50% was used. In the separator used in this battery, the volume ratio Y / X of the gap between the nonwoven fabric on the negative electrode side and the nonwoven fabric on the positive electrode side was 3.87.

実施例5
ポリプロピレン製で、厚みが100μm、空隙率が89%の不織布4a(負極5側)と、ポリプロピレン製で、厚みが420μm、空隙率が87%の不織布4c(正極2側)と、厚みが30μmで、空孔率が50%の微孔性フィルム4bで構成される3層構造のセパレータを用いた以外は、実施例1と同様にしてコイン形の非水電解液二次電池を作製した。この電池に用いたセパレータでは、負極側の不織布と正極側の不織布との空隙部分の体積比Y/Xは、4.11であった。
Example 5
Nonwoven fabric 4a (negative electrode 5 side) made of polypropylene and having a thickness of 100 μm and porosity of 89%; Nonwoven fabric 4c (positive electrode 2 side) made of polypropylene and having a thickness of 420 μm and porosity of 87%; and a thickness of 30 μm A coin-shaped nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a separator having a three-layer structure composed of a microporous film 4b having a porosity of 50% was used. In the separator used for this battery, the volume ratio Y / X of the void portion between the negative electrode-side nonwoven fabric and the positive electrode-side nonwoven fabric was 4.11.

比較例1
セパレータとして、微孔性フィルムと不織布から構成される2層構造のセパレータを用い、微孔性フィルム側を負極に対向させて配置した他は、実施例1と同様にして、コイン形の非水電解液二次電池を作製した。なお、セパレータを構成する微孔性フィルムには、実施例1に係るセパレータを構成する微孔性フィルムと同じものを用い、セパレータを構成する不織布には、実施例1に係るセパレータを構成する正極側の不織布と同じものを用いた。
Comparative Example 1
As the separator, a coin-shaped non-water is formed in the same manner as in Example 1 except that a separator having a two-layer structure composed of a microporous film and a nonwoven fabric is used and the microporous film side is disposed facing the negative electrode. An electrolyte secondary battery was produced. The microporous film constituting the separator is the same as the microporous film constituting the separator according to Example 1, and the non-woven fabric constituting the separator is the positive electrode constituting the separator according to Example 1. The same non-woven fabric was used.

比較例2
セパレータとして、実施例1で用いたセパレータを構成する正極側の不織布と同じもの2枚の間に、実施例1で用いたセパレータを構成する微孔性フィルムと同じものを挟んだ3層構造のセパレータを用いた以外は、実施例1と同様にして、コイン形の非水電解液二次電池を作製した。
Comparative Example 2
As a separator, a three-layer structure in which the same thing as the microporous film constituting the separator used in Example 1 is sandwiched between two sheets of the same non-woven fabric on the positive electrode side constituting the separator used in Example 1 A coin-shaped non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the separator was used.

比較例3
セパレータとして、実施例1で用いたセパレータを構成する負極側の不織布と同じもの2枚の間に、実施例1で用いたセパレータを構成する微孔性フィルムと同じものを挟んだ3層構造のセパレータを用いた以外は、実施例1と同様にして、コイン形の非水電解液二次電池を作製した。
Comparative Example 3
As a separator, a three-layer structure in which the same thing as the microporous film constituting the separator used in Example 1 is sandwiched between two sheets of the same non-woven fabric on the negative electrode side constituting the separator used in Example 1 A coin-shaped non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the separator was used.

上記実施例1および比較例1〜3の非水電解液二次電池について、下記の充放電サイクル特性評価を行うと共に、厚みを測定した。結果を表1に示す。充放電サイクル特性は、上記の各電池について、20℃で、充電電圧3.25±0.01V、電流規制抵抗390Ωで、17時間の充電と、2.7kΩで12時間の放電とを繰り返し行い、放電中の電圧が2.0V以上を維持し得た回数で評価した。   About the nonaqueous electrolyte secondary battery of the said Example 1 and Comparative Examples 1-3, while performing the following charging / discharging cycle characteristic evaluation, thickness was measured. The results are shown in Table 1. Charging / discharging cycle characteristics are as follows. For each of the above batteries, charging is performed at 20 ° C. with a charging voltage of 3.25 ± 0.01 V, a current regulating resistance of 390Ω, and 17 hours of charging and 2.7 kΩ of discharging for 12 hours. Evaluation was made based on the number of times that the voltage during discharge could be maintained at 2.0 V or higher.

Figure 2007234458
Figure 2007234458

表1から明らかなように、実施例1〜5の非水電解液二次電池は、比較例1〜3の非水電解液二次電池に比べて、充放電サイクルの回数が多く、充放電サイクル特性が良好であった。   As is clear from Table 1, the nonaqueous electrolyte secondary batteries of Examples 1 to 5 have a larger number of charge / discharge cycles than the nonaqueous electrolyte secondary batteries of Comparative Examples 1 to 3, and the charge / discharge is performed. The cycle characteristics were good.

これに対し、比較例1の非水電解液二次電池は、電池作製時においてセパレータの取り扱いが困難であると共に、1層のみの不織布に電解液を吸収させて組み立てた場合には、その組み立て時に電解液が溢れるという問題が生じるため、充放電サイクルの途中で電解液が不足する問題が発生した。また、負極への電解液供給量が少ないために充放電サイクルの回数が少なかった。比較例2の非水電解液二次電池では、セパレータに係る不織布に電解液が吸収されすぎるために、正負極の放電反応に最適な電解液を配置できておらず、充放電サイクルの回数が低下した。また、他の実施例、比較例の電池の厚みが1.8〜2.0mmであるのに対して、電池厚みが2.0mmを大きく超えて厚くなりすぎて、許容範囲を超えてしまうものが発生した。比較例3の非水電解液二次電池は、セパレータの保液性能が不十分で電池組み立て時に電解液が溢れたため、充放電サイクルの途中で電解液が不足する問題が生じ、充放電サイクルの回数が低下した。   On the other hand, the non-aqueous electrolyte secondary battery of Comparative Example 1 is difficult to handle the separator at the time of battery production, and is assembled when the electrolyte is absorbed by only one layer of nonwoven fabric. Since the problem that the electrolytic solution overflows sometimes occurs, the problem that the electrolytic solution becomes insufficient during the charge / discharge cycle occurred. Moreover, since the amount of electrolyte supplied to the negative electrode was small, the number of charge / discharge cycles was small. In the non-aqueous electrolyte secondary battery of Comparative Example 2, since the electrolyte solution is excessively absorbed by the nonwoven fabric related to the separator, the electrolyte solution optimal for the discharge reaction of the positive and negative electrodes cannot be disposed, and the number of charge / discharge cycles is reduced. Declined. In addition, while the thickness of the batteries of other examples and comparative examples is 1.8 to 2.0 mm, the battery thickness is much larger than 2.0 mm and becomes too thick to exceed the allowable range. There has occurred. The non-aqueous electrolyte secondary battery of Comparative Example 3 has a problem that the electrolyte is insufficient during the charge / discharge cycle because the separator has insufficient liquid retention performance and the electrolyte overflows during battery assembly. The number of times decreased.

本発明の非水電解液二次電池の構造の一例を概略的に示す部分縦断面図である。It is a fragmentary longitudinal cross-sectional view which shows roughly an example of the structure of the nonaqueous electrolyte secondary battery of this invention. 図1の要部の拡大図である。It is an enlarged view of the principal part of FIG.

符号の説明Explanation of symbols

1 正極缶
2 正極
3 正極集電体
4 セパレータ
4a、4c 不織布
4b 微孔性フィルム
5 負極
6 負極集電体
7 負極缶
8 環状ガスケット
DESCRIPTION OF SYMBOLS 1 Positive electrode can 2 Positive electrode 3 Positive electrode collector 4 Separator 4a, 4c Nonwoven fabric 4b Microporous film 5 Negative electrode 6 Negative electrode collector 7 Negative electrode can 8 Cylindrical gasket

Claims (3)

正極、リチウムまたはリチウム合金を有する負極、セパレータおよび非水電解液を備えた非水電解液二次電池であって、
上記セパレータは、微孔性フィルムが2枚の不織布で挟まれた3層構造を有しており、
上記セパレータを構成する上記2枚の不織布のうち、負極に対向する側の不織布における非水電解液の保持量が、正極に対向する側の不織布における非水電解液の保持量よりも少ないことを特徴とする非水電解液二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode having lithium or a lithium alloy, a separator and a non-aqueous electrolyte,
The separator has a three-layer structure in which a microporous film is sandwiched between two nonwoven fabrics,
Of the two nonwoven fabrics constituting the separator, the amount of nonaqueous electrolyte retained in the nonwoven fabric facing the negative electrode is less than the amount of nonaqueous electrolyte retained in the nonwoven fabric facing the positive electrode. Non-aqueous electrolyte secondary battery characterized.
上記セパレータを構成する上記2枚の不織布のうち、負極に対向する側の不織布における空隙部分の体積Xと、正極に対向する側の不織布における空隙部分の体積Yとの比Y/Xが、1.5〜4.5である請求項1に記載の非水電解液二次電池。   Of the two nonwoven fabrics constituting the separator, the ratio Y / X of the volume X of the void portion in the nonwoven fabric facing the negative electrode and the volume Y of the void portion in the nonwoven fabric facing the positive electrode is 1 The nonaqueous electrolyte secondary battery according to claim 1, which is 5 to 4.5. 上記セパレータを構成する上記2枚の不織布のうち、負極に対向する側の不織布は、正極に対向する側の不織布よりも薄い請求項1または2に記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein, of the two nonwoven fabrics constituting the separator, the nonwoven fabric on the side facing the negative electrode is thinner than the nonwoven fabric on the side facing the positive electrode.
JP2006056161A 2006-03-02 2006-03-02 Non-aqueous electrolyte secondary battery Active JP4836185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006056161A JP4836185B2 (en) 2006-03-02 2006-03-02 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006056161A JP4836185B2 (en) 2006-03-02 2006-03-02 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2007234458A true JP2007234458A (en) 2007-09-13
JP4836185B2 JP4836185B2 (en) 2011-12-14

Family

ID=38554830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006056161A Active JP4836185B2 (en) 2006-03-02 2006-03-02 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4836185B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245028A (en) * 2009-03-19 2010-10-28 Asahi Kasei E-Materials Corp Laminated microporous membrane, and separator for nonaqueous electrolyte secondary battery
WO2013047016A1 (en) * 2011-09-27 2013-04-04 三洋電機株式会社 Negative electrode of non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell
JP2016173975A (en) * 2015-03-18 2016-09-29 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2017098156A (en) * 2015-11-26 2017-06-01 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
KR101754915B1 (en) 2015-03-31 2017-07-06 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
US9865856B2 (en) 2014-08-29 2018-01-09 Sumitomo Chemical Company, Limited Porous layer, separator formed by laminating porous layer, and non-aqueous electrolyte secondary battery including porous layer or separator
JP2019192403A (en) * 2018-04-20 2019-10-31 Fdk株式会社 Nonaqueous electrolyte battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138454A (en) * 1984-12-07 1986-06-25 Matsushita Electric Ind Co Ltd Organic electrolyte cell
JPS63175348A (en) * 1987-01-14 1988-07-19 Hitachi Maxell Ltd Lithium cell
JP2001351682A (en) * 2000-06-07 2001-12-21 Matsushita Electric Ind Co Ltd Macromolecular solid electrolyte secondary cell and manufacturing method of the same
JP2004220829A (en) * 2003-01-10 2004-08-05 Nissan Motor Co Ltd Bipolar battery
JP2006004873A (en) * 2004-06-21 2006-01-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2006261093A (en) * 2005-02-10 2006-09-28 Maxell Hokuriku Seiki Kk Non-aqueous secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138454A (en) * 1984-12-07 1986-06-25 Matsushita Electric Ind Co Ltd Organic electrolyte cell
JPS63175348A (en) * 1987-01-14 1988-07-19 Hitachi Maxell Ltd Lithium cell
JP2001351682A (en) * 2000-06-07 2001-12-21 Matsushita Electric Ind Co Ltd Macromolecular solid electrolyte secondary cell and manufacturing method of the same
JP2004220829A (en) * 2003-01-10 2004-08-05 Nissan Motor Co Ltd Bipolar battery
JP2006004873A (en) * 2004-06-21 2006-01-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2006261093A (en) * 2005-02-10 2006-09-28 Maxell Hokuriku Seiki Kk Non-aqueous secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245028A (en) * 2009-03-19 2010-10-28 Asahi Kasei E-Materials Corp Laminated microporous membrane, and separator for nonaqueous electrolyte secondary battery
JP2014017275A (en) * 2009-03-19 2014-01-30 Asahi Kasei E-Materials Corp Laminated microporous membrane, and separator for nonaqueous electrolyte secondary battery
WO2013047016A1 (en) * 2011-09-27 2013-04-04 三洋電機株式会社 Negative electrode of non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell
US9865856B2 (en) 2014-08-29 2018-01-09 Sumitomo Chemical Company, Limited Porous layer, separator formed by laminating porous layer, and non-aqueous electrolyte secondary battery including porous layer or separator
JP2016173975A (en) * 2015-03-18 2016-09-29 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US10581048B2 (en) 2015-03-18 2020-03-03 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte battery having first separator layer with total pore volume larger than second separator layer
KR101754915B1 (en) 2015-03-31 2017-07-06 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
US10454086B2 (en) 2015-03-31 2019-10-22 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery and rechargeable lithium battery including the same
JP2017098156A (en) * 2015-11-26 2017-06-01 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2019192403A (en) * 2018-04-20 2019-10-31 Fdk株式会社 Nonaqueous electrolyte battery
JP7129202B2 (en) 2018-04-20 2022-09-01 Fdk株式会社 Non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JP4836185B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
CN110400922B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5271275B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5223166B2 (en) Battery active material and secondary battery
JP5158193B2 (en) Lithium air battery
JP5541957B2 (en) Multilayer secondary battery
JP2011081931A (en) Lithium ion secondary battery
JP2007273183A (en) Negative electrode and secondary battery
JP2011090876A (en) Lithium secondary battery and method of manufacturing the same
JP2008262768A (en) Lithium ion secondary battery
JP6121697B2 (en) Non-aqueous electrolyte battery
JPWO2018179900A1 (en) Rechargeable battery
JP2004014405A (en) Non-aqueous electrolyte secondary battery
JP4836185B2 (en) Non-aqueous electrolyte secondary battery
JP2018092707A (en) Method for manufacturing positive electrode plate, method for manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US20200006778A1 (en) Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
WO2019098056A1 (en) Lithium ion secondary battery
JP2009016339A (en) Anode and secondary battery
US20230187779A1 (en) Power storage device and electrode or separator used for same
JP2015082381A (en) Nonaqueous electrolyte secondary battery
JP2007172879A (en) Battery and its manufacturing method
JP7003775B2 (en) Lithium ion secondary battery
CN110214385B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6728135B2 (en) Non-aqueous electrolyte secondary battery
JP2007172878A (en) Battery and its manufacturing method
JP2014220140A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110519

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4836185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250