JP2006004873A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2006004873A
JP2006004873A JP2004182662A JP2004182662A JP2006004873A JP 2006004873 A JP2006004873 A JP 2006004873A JP 2004182662 A JP2004182662 A JP 2004182662A JP 2004182662 A JP2004182662 A JP 2004182662A JP 2006004873 A JP2006004873 A JP 2006004873A
Authority
JP
Japan
Prior art keywords
thickness direction
separator
negative electrode
secondary battery
elastic modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004182662A
Other languages
Japanese (ja)
Other versions
JP5017769B2 (en
Inventor
Hideki Sano
秀樹 佐野
Norihiro Yamamoto
典博 山本
Kazunari Kinoshita
一成 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004182662A priority Critical patent/JP5017769B2/en
Publication of JP2006004873A publication Critical patent/JP2006004873A/en
Application granted granted Critical
Publication of JP5017769B2 publication Critical patent/JP5017769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery with excellent charge/discharge cycle characteristics and preservation characteristics. <P>SOLUTION: The nonaqueous electrolyte secondary battery is composed of: an electrode plate group made by winding around a cathode plate 11 and an anode plate 12 through a separator consisting of two or more layers porous resin; nonaqueous electrolyte; and an outer package body housing the electrode plate group and the nonaqueous electrolyte. (1) The separator is made by laminating two or more layers of separators with different coefficients of elasticity in a thickness direction, and (2) a formula of (K<SP>-</SP>/K)>1.1 is satisfied on condition that a coefficient of elasticity of a layer in contact with an anode in a thickness direction is K<SP>-</SP>, and that of a layer with the least coefficient of elasticity in the thickness direction is K. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非水電解質二次電池に関し、さらに詳しくは、本発明は、非水電解質二次電池の充放電サイクル特性の改善に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, the present invention relates to improvement of charge / discharge cycle characteristics of a non-aqueous electrolyte secondary battery.

近年、電子機器のコードレス化、ポータブル化が急速に進んでおり、これらの駆動用電源として、高電圧及び高エネルギー密度を有する非水電解質二次電池の実用化が進んでいる。非水電解質二次電池の正極には、一般に酸化還元電位の高い、遷移金属とリチウムとの複合酸化物が用いられる。前記複合酸化物には、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムなどが用いられるが、複数の遷移金属を含む酸化物も用いられる。負極には、一般に炭素材料が用いられている。正極と負極を隔てるセパレータには、一般にポリオレフィン樹脂製の微多孔膜或いは不織布が用いられる。また、性質の異なる複数の膜を積層することにより、それらの性質を併せ持たせたものもある。例えば、融点が約120℃と比較的低融点であるポリエチレンと、融点が高く機械的強度が強いポリプロピレンやポリイミド等を組み合わせることにより、異常高温時のシャットダウン性と耐ショート性を高いレベルで両立させる等が提案されている。   In recent years, cordless and portable electronic devices are rapidly advancing, and nonaqueous electrolyte secondary batteries having high voltage and high energy density are being put to practical use as power sources for driving these devices. For the positive electrode of the nonaqueous electrolyte secondary battery, a composite oxide of a transition metal and lithium having a generally high redox potential is used. As the composite oxide, lithium cobaltate, lithium nickelate, lithium manganate, or the like is used, but an oxide containing a plurality of transition metals is also used. A carbon material is generally used for the negative electrode. For the separator that separates the positive electrode and the negative electrode, a microporous film or non-woven fabric made of polyolefin resin is generally used. In addition, there are also films in which a plurality of films having different properties are stacked to have those properties. For example, by combining polyethylene, which has a relatively low melting point of about 120 ° C., and polypropylene, polyimide, etc., which has a high melting point and high mechanical strength, both shutdown performance and short-circuit resistance at abnormally high temperatures can be achieved at a high level. Etc. have been proposed.

このように、安全性を向上させることを目的として性質の異なるセパレータを積層させる提案は数多くあるにも関わらず、充放電特性を向上させる提案は極めて少ない。   As described above, although there are many proposals for stacking separators having different properties for the purpose of improving safety, there are very few proposals for improving the charge / discharge characteristics.

非水電解質二次電池には、充放電サイクルを繰り返すと、電池の容量が徐々に低下するという問題がある。この問題の原因は様々であるが、セパレータが関与している原因として以下の現象が考えられる。正極及び負極は充電時に膨張、放電時に収縮する。この膨張・収縮の繰り返しは様々なサイクル劣化要因を生じている。例えば、正極、負極、セパレータを捲回或いは積層して構成されている極板群から、充電時に電解液が押出され、放電時に極板群に戻る。これを繰り返すと極板群内部で電解液の不足する箇所が生じ、充放電特性が低下する。このため、セパレータ及び、正極、負極には良好な電解液吸液性が求められている。また、正極、負極に比して厚さ方向の弾性率がはるかに小さいセパレータは、正極、負極の膨張・収縮の繰り返しにより収縮・膨張を繰り返す。このとき負極上にある電解液分解生成物が、セパレータ内部の空隙に吸い込まれていく。すると負極上には新たに電解液との反応物が生成する。この繰り返しによりセパレータは目詰まりを生じリチウムイオン伝導性が低下し、さらに極板中の充放電状態の不均一が生じ、充放電特性が低下する。また、電解液分解生成物と同時に正極、負極の活物質や導電剤、結着剤(以下これらを総称して、正極合剤、負極合剤と記述する)もセパレータに食い込んでいくため、セパレータの目詰まりを生じてしまう。   The non-aqueous electrolyte secondary battery has a problem that the capacity of the battery gradually decreases when the charge / discharge cycle is repeated. There are various causes of this problem, but the following phenomenon can be considered as a cause of the involvement of the separator. The positive electrode and the negative electrode expand during charging and contract during discharging. This repeated expansion / contraction causes various cycle deterioration factors. For example, an electrolyte solution is extruded during charging from an electrode plate group formed by winding or laminating a positive electrode, a negative electrode, and a separator, and returns to the electrode plate group during discharging. If this is repeated, a portion where the electrolytic solution is insufficient is generated inside the electrode plate group, and charge / discharge characteristics are deteriorated. For this reason, a separator, a positive electrode, and a negative electrode are calculated | required by favorable electrolyte solution absorptivity. Further, a separator having a much smaller elastic modulus in the thickness direction than the positive electrode and the negative electrode repeats contraction / expansion by repeating the expansion / contraction of the positive electrode and the negative electrode. At this time, the electrolytic solution decomposition product on the negative electrode is sucked into the gap inside the separator. Then, a reaction product with the electrolytic solution is newly generated on the negative electrode. By repeating this, the separator is clogged, the lithium ion conductivity is lowered, the charge / discharge state in the electrode plate is uneven, and the charge / discharge characteristics are lowered. In addition, the positive electrode and negative electrode active materials, the conductive agent, and the binder (hereinafter collectively referred to as positive electrode mixture and negative electrode mixture) bite into the separator simultaneously with the electrolytic decomposition product. Will cause clogging.

このように、厚さ方向の膨張・収縮が充放電特性に対して大きな影響を及ぼすにも関わらず、厚さ方向の物性値、及び極板群の構成についての検討はなされていない。   Thus, although the expansion / contraction in the thickness direction has a great influence on the charge / discharge characteristics, the physical property value in the thickness direction and the configuration of the electrode plate group have not been studied.

そこで、重量平均分子量が100万以上の超高分子量ポリエチレン微多孔質膜と、空孔率が45%以上の高空孔率ポリエチレン微多孔質膜とを積層し、かつ正極板側に超高分子量ポリエチレン微多孔質膜層を、負極板側に高空孔率ポリエチレン微多孔質膜層を当接して配することにより高温サイクル特性を向上するという提案がある(例えば、特許文献1参照)。
特開2002−15720号公報
Therefore, an ultrahigh molecular weight polyethylene microporous membrane having a weight average molecular weight of 1 million or more and a high porosity polyethylene microporous membrane having a porosity of 45% or more are laminated, and the ultrahigh molecular weight polyethylene is provided on the positive electrode plate side. There is a proposal to improve the high-temperature cycle characteristics by arranging the microporous membrane layer in contact with the high porosity polyethylene microporous membrane layer on the negative electrode plate side (see, for example, Patent Document 1).
JP 2002-15720 A

しかしながら、この提案では、正極によるセパレータの酸化を超高分子量ポリエチレンにより抑制し、負極での電解液分解生成物によるセパレータの目詰まりを高空孔率セパレータにより抑制するとしている。本発明とは負極皮膜のセパレータの目詰まりを抑制することでは一致するが、本発明では目詰まりのきっかけとなるセパレータの収縮・膨張を制御する点で全く異なった発想をしている。本発明ではサイクル特性を向上させることを目的とする。   However, in this proposal, oxidation of the separator by the positive electrode is suppressed by ultra high molecular weight polyethylene, and clogging of the separator by the electrolytic solution decomposition product at the negative electrode is suppressed by the high porosity separator. Although the present invention is consistent with suppressing the clogging of the separator of the negative electrode film, the present invention has a completely different idea in that the shrinkage / expansion of the separator that causes clogging is controlled. An object of the present invention is to improve cycle characteristics.

本発明は、厚み方向の弾性率の異なるセパレータを積層し、厚み方向の弾性率の大きい層を負極と接することにより、セパレータの収縮・膨張に起因する、負極上の電解液分解生成物及び負極合剤のセパレータへの吸収を抑制できるという発見に基づいている。   In the present invention, separators having different elastic modulus in the thickness direction are laminated, and a layer having a large elastic modulus in the thickness direction is in contact with the negative electrode, so that the electrolytic solution decomposition product on the negative electrode and the negative electrode are caused by the shrinkage / expansion of the separator This is based on the discovery that absorption of the mixture into the separator can be suppressed.

負極上に存在する皮膜、合剤がセパレータに吸収されるメカニズムは、正極、負極が充電時に膨張すると、セパレータ圧縮される。このとき、負極とセパレータの界面では、負極表面上の電解液反応生成物及び負極合剤は多孔質であるセパレータ内部に押し込まれる。その後、放電状態では正極、負極は元の状態に収縮するため、セパレータは元の状態に戻る。このとき、セパレータ内部に押し込まれた電解液反応生成物及び負極合剤の一部はセパレータ内部の孔の壁面との摩擦力等により負極上に戻ることできず、セパレータ内部に残る。この量は、負極と接しているセパレータの厚み方向の収縮度が大きい程、多いと考えられる。   The mechanism by which the film and the mixture present on the negative electrode are absorbed by the separator is compressed by the separator when the positive electrode and the negative electrode expand during charging. At this time, at the interface between the negative electrode and the separator, the electrolyte reaction product and the negative electrode mixture on the negative electrode surface are pushed into the porous separator. Thereafter, in the discharged state, the positive electrode and the negative electrode shrink to the original state, so that the separator returns to the original state. At this time, a part of the electrolyte reaction product and the negative electrode mixture pushed into the separator cannot return to the negative electrode due to a frictional force with the wall surface of the hole inside the separator, and remains inside the separator. This amount is considered to increase as the degree of shrinkage in the thickness direction of the separator in contact with the negative electrode increases.

以上のことから本発明は、正極板と、負極板とを、多孔質樹脂の2層以上からなるセパレータを介して捲回してなる極板群、非水電解質、ならびに前記極板群と非水電解質とを収容する外装体からなる非水電解質二次電池であって、(1)前記セパレータは厚み方向の弾性率の異なる2層以上のセパレータを積層して成り、(2)負極と接する層の厚み方向の弾性率をK-、厚み方向の弾性率の最も小さい層の厚み方向の弾性率をKとした時、(K-/K)>1.1であることを特徴とする非水電解液二次電池に関するものである。   In view of the above, the present invention provides an electrode plate group obtained by winding a positive electrode plate and a negative electrode plate through a separator composed of two or more layers of porous resin, a non-aqueous electrolyte, and the electrode plate group and the non-aqueous electrode. A non-aqueous electrolyte secondary battery comprising an outer package containing an electrolyte, wherein (1) the separator is formed by laminating two or more separators having different elastic moduli in the thickness direction, and (2) a layer in contact with the negative electrode (K− / K)> 1.1 where K− is the elastic modulus in the thickness direction and K is the elastic modulus in the thickness direction of the layer having the smallest elastic modulus in the thickness direction. The present invention relates to an electrolyte secondary battery.

本発明によれば、厚み方向の弾性率の異なる2層以上の積層セパレータを用い、厚み方向の弾性率の小さい層を負極と接しないように構成することで、充放電サイクル特性に優れた非水電解質二次電池を得ることができる。   According to the present invention, by using two or more laminated separators having different elastic modulus in the thickness direction, a layer having a small elastic modulus in the thickness direction is configured so as not to contact the negative electrode. A water electrolyte secondary battery can be obtained.

本発明では、厚み方向の弾性率の異なる2層以上の積層セパレータを最も厚み方向の弾性率の小さい層が負極と接しないように正極、負極と捲回し極板群を構成するが、2種類以上の単層セパレータを捲回時に重ね合わせることによって前記の構成を実現してもよい。   In the present invention, two or more laminated separators having different elastic modulus in the thickness direction are wound with the positive electrode and the negative electrode so that the layer having the smallest elastic modulus in the thickness direction is not in contact with the negative electrode. You may implement | achieve the said structure by overlapping the above single layer separator at the time of winding.

積層セパレータの負極と接する層の厚み方向の弾性率をK-、厚み方向の弾性率が最も小さい層の弾性率をKとした場合、これらの比K-/Kは1.1以上あれば本発明の効果は得られるが、この値が大きいほうが効果は大きい。好ましくは1.3以上である。   When the elastic modulus in the thickness direction of the layer in contact with the negative electrode of the laminated separator is K− and the elastic modulus of the layer having the smallest elastic modulus in the thickness direction is K, the ratio K− / K is 1.1 or more. Although the effect of the invention can be obtained, the larger this value, the greater the effect. Preferably it is 1.3 or more.

厚み方向の弾性率の最も小さい層は、充電時の正極、負極の膨張により収縮するため、収縮したときもリチウムイオンの伝導性を確保するために、空孔率は30%〜80%であることが好ましく、厚みは3μm〜47μmであることが好ましい。さらに好ましい厚みは5μm〜47μmである。   Since the layer having the smallest elastic modulus in the thickness direction contracts due to the expansion of the positive electrode and the negative electrode during charging, the porosity is 30% to 80% in order to ensure lithium ion conductivity even when contracted. The thickness is preferably 3 μm to 47 μm. A more preferable thickness is 5 μm to 47 μm.

3層以上の積層セパレータを用いて、厚み方向の弾性率の最も小さい層が負極とも正極とも接しないよう極板群を構成すると、正極合剤のセパレータへの食い込みが抑制され、さらに好ましい。   If the electrode plate group is configured using three or more laminated separators so that the layer having the smallest elastic modulus in the thickness direction is not in contact with either the negative electrode or the positive electrode, it is more preferable that the positive electrode mixture bites into the separator.

厚み方向の弾性率の異なるセパレータを作製する方法としては、材質、空孔率、孔径、製法、層の種類(微多孔膜、不織布等)等の少なくとも1つ以上の因子を制御することにより作製可能であるが、特に限定しない。   As a method for producing separators having different elastic moduli in the thickness direction, it is produced by controlling at least one factor such as material, porosity, pore diameter, production method, layer type (microporous membrane, nonwoven fabric, etc.), etc. It is possible, but not particularly limited.

ところで、正極は、例えば集電体の片側または両面に、正極活物質と結着剤及び必要に応じて導電剤、増粘剤等を溶剤に混練分散させたスラリー状の合剤を塗着、乾燥、圧延して活物質層を形成し、活物質層のない集電体の無地部に正極リードを溶接したものである。   By the way, the positive electrode is applied, for example, to one side or both sides of the current collector with a slurry-like mixture in which a positive electrode active material, a binder and, if necessary, a conductive agent, a thickener and the like are kneaded and dispersed in a solvent, An active material layer is formed by drying and rolling, and a positive electrode lead is welded to a plain portion of a current collector without an active material layer.

正極の集電体としては、アルミニウム製の箔やラス加工やエッチング処理された厚さ10μm〜60μmの箔が好ましい。   As the current collector of the positive electrode, an aluminum foil or a foil having a thickness of 10 μm to 60 μm subjected to lath processing or etching treatment is preferable.

正極活物質としては、特に限定されるものではないが、例えば、リチウムイオンをゲストとして受け入れ得るリチウム含有遷移金属化合物が使用される。例えば、コバルト、マンガン、ニッケル、クロム、鉄及びバナジウムから選ばれる少なくとも一種の金属とリチウムとの複合金属酸化物、LiCoO2、LiMnO2、LiNiO2、LiCoxNi(1−x)2(0<x<1)、LiCrO2、αLiFeO2、LiVO2等が好ましい。 Although it does not specifically limit as a positive electrode active material, For example, the lithium containing transition metal compound which can accept a lithium ion as a guest is used. For example, cobalt, manganese, nickel, chromium, complex metal oxide of at least one metal and lithium selected from iron and vanadium, LiCoO 2, LiMnO 2, LiNiO 2, LiCo x Ni (1-x) O 2 (0 <X <1), LiCrO 2 , αLiFeO 2 , LiVO 2 and the like are preferable.

結着剤としては、溶剤に溶解または分散できるものであれば特に限定されるものではないが、例えば、フッ素系結着剤やアクリルゴム、変性アクリルゴム、スチレンーブタジエンゴム(SBR)、アクリル系重合体、ビニル系重合体等を単独、或いは二種類以上を組み合わせて用いることができる。フッ素系結着剤としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデンと六フッ化プロピレンとの共重合体や、ポリテトラフルオロエチレン樹脂のディスパージョンが好ましい。   The binder is not particularly limited as long as it can be dissolved or dispersed in a solvent. For example, fluorine binder, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber (SBR), acrylic Polymers, vinyl polymers and the like can be used alone or in combination of two or more. As the fluorine-based binder, for example, polyvinylidene fluoride, a copolymer of vinylidene fluoride and propylene hexafluoride, or a dispersion of a polytetrafluoroethylene resin is preferable.

必要に応じて加えることができる導電剤としては、アセチレンブラック、グラファイト、炭素繊維等を単独、或いは二種類以上を組み合わせて用いることが好ましく、増粘剤としてはエチレン−ビニルアルコール共重合体、カルボキシメチルセルロース、メチルセルロースなどが好ましい。   As the conductive agent that can be added as necessary, acetylene black, graphite, carbon fiber, etc. are preferably used alone or in combination of two or more, and as the thickener, ethylene-vinyl alcohol copolymer, carboxy is used. Methyl cellulose, methyl cellulose and the like are preferable.

溶剤としては、結着剤が溶解または分散可能な溶剤が適切である。有機溶剤に溶解または分散可能な結着剤を用いる場合は、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、テトラヒドロフラン、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルスルホルアミド、テトラメチル尿素、アセトン、メチルエチルケトン等の有機溶剤を単独またはこれらを混合して用いることが好ましく、水溶性結着剤を用いる場合は、水や温水が好ましい。   As the solvent, a solvent in which the binder can be dissolved or dispersed is suitable. When using a binder that can be dissolved or dispersed in an organic solvent, N-methyl-2-pyrrolidone, N, N-dimethylformamide, tetrahydrofuran, dimethylacetamide, dimethylsulfoxide, hexamethylsulfuramide, tetramethylurea, acetone It is preferable to use an organic solvent such as methyl ethyl ketone alone or as a mixture thereof, and when using a water-soluble binder, water or warm water is preferable.

また、上記スラリー状合剤の混練分散時に、各種分散剤、界面活性剤、安定剤等を必要に応じて添加することも可能である。   In addition, various dispersants, surfactants, stabilizers, and the like can be added as necessary when the slurry mixture is kneaded and dispersed.

塗着の方法は、特に限定されるものではなく、上記のように混錬分散させたスラリー状合剤を、例えば、スリットダイコーター、リバースロールコーター、リップコーター、ブレードコーター、ナイフコーター、グラビアコーター、ディップコーター等を用いて、容易に集電体に塗着することができる。乾燥の方法は、自然乾燥に近い乾燥が好ましいが、生産性を考慮すると70℃〜300℃の温度で1分間〜5時間合剤を乾燥させるのが好ましい。   The coating method is not particularly limited, and the slurry-like mixture kneaded and dispersed as described above, for example, slit die coater, reverse roll coater, lip coater, blade coater, knife coater, gravure coater. It can be easily applied to the current collector using a dip coater or the like. As the drying method, drying close to natural drying is preferable, but considering the productivity, it is preferable to dry the mixture at a temperature of 70 ° C. to 300 ° C. for 1 minute to 5 hours.

圧延は、ロールプレス機によって所定の厚みになるまで、線圧1000kg/cm〜2000kg/cmで数回を行うか、線圧を変えて圧延するのが好ましい。   Rolling is preferably carried out several times at a linear pressure of 1000 kg / cm to 2000 kg / cm or by changing the linear pressure until a predetermined thickness is reached by a roll press.

負極は、例えば集電体の一面に、負極活物質、結着剤及び必要に応じて導電助剤を有機溶剤に混練分散させたスラリー状の合剤を塗着、乾燥し、集電体の他面にも塗着、乾燥した後、圧延して活物質層を形成し、活物質層のない集電体の無地部に負極リードを溶接したものである。   The negative electrode is, for example, coated on one surface of a current collector with a negative electrode active material, a binder and, if necessary, a slurry-like mixture in which a conductive additive is kneaded and dispersed in an organic solvent, and dried. After coating and drying on the other side, the active material layer is formed by rolling, and the negative electrode lead is welded to the plain portion of the current collector without the active material layer.

負極の集電体としては、銅製の箔、ラス加工やエッチング処理された厚さ5μm〜50μmの箔が好ましい。   As the negative electrode current collector, a copper foil, a foil having a thickness of 5 μm to 50 μm subjected to lath processing or etching treatment is preferable.

負極活物質としては、特に限定されるものではないが、例えば、有機高分子化合物(フェノール樹脂、ポリアクリロニトリル、セルロース等)を焼成することにより得られる炭素材料、コークスやピッチを焼成することにより得られる炭素材料、或いは人造グラファイト、天然グラファイト等を用いることができる。その形状としては、球状、鱗片状、塊状のものを用いることができる。   Although it does not specifically limit as a negative electrode active material, For example, it obtains by baking the carbon material obtained by baking organic polymer compounds (Phenol resin, polyacrylonitrile, cellulose, etc.), coke, and pitch. Carbon material, artificial graphite, natural graphite or the like can be used. As the shape, a spherical shape, a scale shape or a lump shape can be used.

結着剤、必要に応じて加えることができる増粘剤としては、正極と同様の結着剤、増粘剤を用いることができ、導電助剤としては正極と同様の導電剤を用いることができる。   As the binder and the thickener that can be added as necessary, the same binder and thickener as the positive electrode can be used, and as the conductive assistant, the same conductive agent as the positive electrode can be used. it can.

非水電解質は、非水溶媒に溶質を溶解することにより、調製することができる。前記非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジクロロエタン、1,3−ジメトキシプロパン、4−メチル−2−ペンタノン、1,4−ジオキサン、アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、ベンゾニトリル、スルホラン、3−メチル−スルホラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルホルムアミド、リン酸トリメチル、リン酸トリエチル等を用いることができる。これらの非水溶媒は、単独或いは二種類以上の混合溶媒として使用することができる。   A non-aqueous electrolyte can be prepared by dissolving a solute in a non-aqueous solvent. Examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-dichloroethane, 1,3-dimethoxypropane, 4- Methyl-2-pentanone, 1,4-dioxane, acetonitrile, propionitrile, butyronitrile, valeronitrile, benzonitrile, sulfolane, 3-methyl-sulfolane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylformamide, dimethylsulfoxide, dimethylformamide, Trimethyl phosphate, triethyl phosphate and the like can be used. These non-aqueous solvents can be used alone or as a mixed solvent of two or more.

非水電解質に含まれる溶質としては、例えば、電子吸引性の強いリチウム塩を使用する。例えば、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33等が挙げられる。これらの溶質は、一種類で使用しても良く、二種類以上組み合わせて使用しても良い。これらの溶質は、前記非水溶媒中に0.5〜1.5M(モル/リットル)の濃度で溶解させることが好ましい。 As the solute contained in the nonaqueous electrolyte, for example, a lithium salt having a strong electron withdrawing property is used. For example, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 and the like can be mentioned. It is done. These solutes may be used alone or in combination of two or more. These solutes are preferably dissolved in the non-aqueous solvent at a concentration of 0.5 to 1.5 M (mol / liter).

非水電解質には、添加剤としてC=C不飽和結合を有する環状化合物であるビニレンカーボネート及びその誘導体から選ばれる少なくとも1種を0.01〜5.0重量%添加することが好ましい。ビニレンカーボネートは、負極上に非水電解質の分解を抑制する緻密な皮膜を形成するため、電池の充放電サイクル特性をさらに向上させる効果がある。   The non-aqueous electrolyte is preferably added with 0.01 to 5.0% by weight of at least one selected from vinylene carbonate, which is a cyclic compound having a C═C unsaturated bond, and derivatives thereof as an additive. Since vinylene carbonate forms a dense film that suppresses decomposition of the non-aqueous electrolyte on the negative electrode, it has the effect of further improving the charge / discharge cycle characteristics of the battery.

《実施例1》
図1に示すような円筒形18650(直径18mm、高さ65mm)の非水電解質二次電池を作製した。
Example 1
A non-aqueous electrolyte secondary battery having a cylindrical shape 18650 (diameter 18 mm, height 65 mm) as shown in FIG. 1 was produced.

(i)正極の作製
正極活物質であるLiCoO2を100重量部と、導電剤であるカーボンブラックを3.5重量部と、結着剤であるポリテトラフルオロエチレンのディスパージョン(固形分60重量%)を7重量部と、増粘剤であるカルボキシメチルセルロースの水溶液(固形分1重量%)を80重量部とを混練分散して、ペースト状の正極合剤を得た。この正極合剤を、厚さ20μmのアルミニウム箔からなる集電体の両面に塗布し、圧延し、ドライエアー(露点:−50℃以下)中200℃で5時間乾燥後、所定の寸法に切断して正極11を得た。正極11には、アルミニウム製のリード14を接続した。
(I) Production of positive electrode 100 parts by weight of LiCoO 2 as a positive electrode active material, 3.5 parts by weight of carbon black as a conductive agent, and a dispersion of polytetrafluoroethylene as a binder (solid content 60% by weight) %) And 7 parts by weight of an aqueous solution of carboxymethyl cellulose (solid content 1% by weight) as a thickener were kneaded and dispersed to obtain a paste-like positive electrode mixture. This positive electrode mixture was applied to both sides of a current collector made of aluminum foil having a thickness of 20 μm, rolled, dried in dry air (dew point: −50 ° C. or lower) at 200 ° C. for 5 hours, and then cut into predetermined dimensions. Thus, the positive electrode 11 was obtained. An aluminum lead 14 was connected to the positive electrode 11.

(ii)負極の作製
負極活物質である人造黒鉛を100重量部と、結着剤であるスチレンブタジエンゴムのディスパージョン(固形分48重量%)を5重量部と、増粘剤であるカルボキシメチルセルロースの水溶液(固形分1重量%)140重量部とを混練分散して、負極合剤を得た。この負極合剤を、厚さ14μmの銅箔からなる集電体の両面に塗布し、圧延し、ドライエアー(露点:−50℃以下)中110℃で5時間乾燥後、所定の寸法に切断して負極12を得た。負極12には、ニッケル製リード15を接続した。
(Ii) Production of negative electrode 100 parts by weight of artificial graphite as a negative electrode active material, 5 parts by weight of a dispersion of styrene butadiene rubber (solid content 48% by weight) as a binder, and carboxymethylcellulose as a thickener 140 parts by weight of an aqueous solution (solid content: 1% by weight) was kneaded and dispersed to obtain a negative electrode mixture. This negative electrode mixture was applied to both sides of a current collector made of copper foil having a thickness of 14 μm, rolled, dried in dry air (dew point: −50 ° C. or lower) at 110 ° C. for 5 hours, and then cut into predetermined dimensions. Thus, the negative electrode 12 was obtained. A nickel lead 15 was connected to the negative electrode 12.

(iii)非水電解質の調製
エチレンカーボネートとエチルメチルカーボネートとの体積比1:2の混合溶媒に、LiPF6を1.2モル/リットルの割合で溶解、ビニレンカーボネートを2.0重量部添加して、非水電解質を得た。
(Iii) Preparation of non-aqueous electrolyte LiPF 6 was dissolved at a ratio of 1.2 mol / liter in a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 2, and 2.0 parts by weight of vinylene carbonate was added. Thus, a non-aqueous electrolyte was obtained.

(iv)セパレータの構成
ポリプロピレン樹脂からなる空孔率42%、厚み方向の弾性率35N/m2、厚さ10μmの層と、ポリエチレン樹脂からなる空孔率42%、厚み方向の弾性率20N/m2、厚さ10μmの層からなる2層セパレータ13を用いた。
(Iv) Composition of separator 42% porosity composed of polypropylene resin, 35N / m 2 thickness modulus in the thickness direction, 10μm thick layer, 42% porosity composed of polyethylene resin, 20N modulus in the thickness direction A two-layer separator 13 having a layer of m 2 and a thickness of 10 μm was used.

厚み方向の弾性率の測定は、株式会社オリエンテック製RTC−1150Aの試験装置を用いた。圧縮試験端子はφ30mm、サンプルは適当枚数積み重ねて試験を行った。試験で得られた歪−応力曲線から厚み方向の弾性率を求めた。   For measuring the elastic modulus in the thickness direction, an RTC-1150A test apparatus manufactured by Orientec Co., Ltd. was used. The compression test terminal was 30 mm in diameter, and an appropriate number of samples were stacked for testing. The elastic modulus in the thickness direction was determined from the strain-stress curve obtained in the test.

(v)電池の組み立て
ドライエアー中で以下の操作を行った。まず、正極11と負極12とを、それらの間にセパレータ13を配して積層し、捲回して、円筒形の極板群を得た。この際、厚み方向の弾性率の大きい層を負極と接するように構成した(K-/K=1.75)。得られた極板群は、内部にニッケルメッキを施した円筒形の鉄製電池ケース18に収容した。極板群の上下にはそれぞれ上部絶縁板16及び下部絶縁板17を配した。負極のニッケル製リード15はケース18の内底面に接続し、ケース18の上部に溝部を形成し、次いで正極のアルミニウム製リード14を封口体19の金属部と溶接した。さらに、ケース18に非水電解質を注入した後、ケース18の開口部に正極端子20を有する封口体19をあてがい、ケース18の開口端部を封口体19の上部周縁部にかしめ、電池を密封した。このようにして、図1に示すような円筒形電池An(n=1〜5)を完成した。電池Anの電池容量は2000mAhであった。
(V) Assembly of battery The following operation was performed in dry air. First, the positive electrode 11 and the negative electrode 12 were laminated with the separator 13 disposed between them, and wound to obtain a cylindrical electrode plate group. At this time, the layer having a large elastic modulus in the thickness direction was configured to be in contact with the negative electrode (K− / K = 1.75). The obtained electrode plate group was accommodated in a cylindrical iron battery case 18 having a nickel plating inside. An upper insulating plate 16 and a lower insulating plate 17 are arranged above and below the electrode plate group, respectively. The negative nickel lead 15 was connected to the inner bottom surface of the case 18, a groove was formed in the upper part of the case 18, and then the positive aluminum lead 14 was welded to the metal part of the sealing body 19. Further, after injecting a non-aqueous electrolyte into the case 18, the sealing body 19 having the positive electrode terminal 20 is applied to the opening of the case 18, and the opening end of the case 18 is caulked to the upper peripheral edge of the sealing body 19 to seal the battery. did. In this way, a cylindrical battery An (n = 1 to 5) as shown in FIG. 1 was completed. The battery capacity of the battery An was 2000 mAh.

(vi)電池の評価
[充放電サイクル特性]
仕上げ工程を経た電池An(n=1〜5)を、20℃環境下で2000mAの定電流で端子間電圧が3Vになるまで放電し、上限電圧4.2V、上限電流2000mAで2時間充電する充放電サイクルを500サイクル繰り返した。1サイクル目の放電容量をC1、500サイクル目の放電容量をC2とし、容量維持率X1を
X(%)=(C2/C1)×100
により求めた。その結果の平均値を表1に示す。
(Vi) Battery evaluation [Charge / discharge cycle characteristics]
The battery An (n = 1 to 5) that has undergone the finishing process is discharged at a constant current of 2000 mA under a 20 ° C. environment until the voltage between terminals reaches 3 V, and is charged for 2 hours at an upper limit voltage of 4.2 V and an upper limit current of 2000 mA. The charge / discharge cycle was repeated 500 cycles. The discharge capacity at the first cycle is C1, the discharge capacity at the 500th cycle is C2, and the capacity retention ratio X1 is X (%) = (C2 / C1) × 100.
Determined by The average value of the results is shown in Table 1.

《比較例1》
ポリエチレン樹脂からなる空孔率42%、厚み方向の弾性率K=20N/m2、厚さ20μmの層からなる単層セパレータを用いたこと以外は実施例1と同様にして、電池R1n(n=1〜5)を作製した。電池R1nは実施例1と同様に評価した。その結果の平均値を表1に示す。
<< Comparative Example 1 >>
A battery R1n (n) is formed in the same manner as in Example 1 except that a single-layer separator made of a polyethylene resin-made porosity of 42%, a thickness direction elastic modulus K = 20 N / m 2 , and a thickness of 20 μm is used. = 1 to 5). Battery R1n was evaluated in the same manner as in Example 1. The average value of the results is shown in Table 1.

《実施例2》
ポリエチレン樹脂からなる空孔率42%、厚み方向の弾性率20N/m2、厚さ10μmの層と、ポリエチレン樹脂からなる空孔率36%、厚み方向の弾性率23N/m2、厚さ10μmの層からなる2層セパレータを用い、厚み方向の弾性率の大きい層を負極と接するように構成(K-/K=1.15)したこと以外は実施例1と同様にして、電池Bn(n=1〜5)を作製した。電池Bnは実施例1と同様に評価した。その結果の平均値を表1に示す。
Example 2
Porosity 42% made of polyethylene resin, elastic modulus 20N / m 2 in the thickness direction, 10 μm thick layer, porosity made of polyethylene resin 36%, elastic modulus 23 N / m 2 in the thickness direction, thickness 10 μm In the same manner as in Example 1, except that a layer having a large elastic modulus in the thickness direction was configured to be in contact with the negative electrode (K− / K = 1.15), a battery Bn ( n = 1-5) were produced. Battery Bn was evaluated in the same manner as in Example 1. The average value of the results is shown in Table 1.

《比較例2》
実施例2と同じセパレータを用い、厚み方向の弾性率の小さい層を負極と接するように構成(K-/K=1.00)したこと以外は実施例1と同様にして、電池R2n(n=1〜5)を作製した。電池R2nは実施例1と同様に評価した。その結果の平均値を表1に示す。
<< Comparative Example 2 >>
A battery R2n (n) is formed in the same manner as in Example 1 except that the same separator as in Example 2 is used and a layer having a small elastic modulus in the thickness direction is configured to be in contact with the negative electrode (K− / K = 1.00). = 1 to 5). Battery R2n was evaluated in the same manner as in Example 1. The average value of the results is shown in Table 1.

《実施例3》
ポリエチレン樹脂からなる空孔率50%、厚み方向の弾性率17N/m2、厚さ10μmの層と、ポリエチレン樹脂からなる空孔率36%、厚み方向の弾性率23N/m2、厚さ10μmの層からなる2層セパレータを用い、厚み方向の弾性率の大きい層を負極と接するように構成(K-/K=1.35)したこと以外は実施例1と同様にして、電池Cn(n=1〜5)を作製した。電池Cnは実施例1と同様に評価した。その結果の平均値を表1に示す。
Example 3
Porosity 50% of polyethylene resin, elastic modulus 17N / m 2 in the thickness direction, a layer of thickness 10 [mu] m, porosity 36% of polyethylene resin, the thickness direction modulus 23N / m 2, a thickness of 10 [mu] m In the same manner as in Example 1, except that a two-layer separator composed of the above layer was used and a layer having a large elastic modulus in the thickness direction was configured to be in contact with the negative electrode (K− / K = 1.35), the battery Cn ( n = 1-5) were produced. The battery Cn was evaluated in the same manner as in Example 1. The average value of the results is shown in Table 1.

《比較例3》
実施例3と同じセパレータを用い、厚み方向の弾性率の小さい層を負極と接するように構成(K-/K=1.00)したこと以外は実施例3と同様にして、電池R3n(n=1〜5)を作製した。電池R3nは実施例1と同様に評価した。その結果の平均値を表1に示す。
<< Comparative Example 3 >>
A battery R3n (n) is formed in the same manner as in Example 3, except that the same separator as in Example 3 is used and a layer having a small elastic modulus in the thickness direction is configured to be in contact with the negative electrode (K− / K = 1.00). = 1 to 5). Battery R3n was evaluated in the same manner as in Example 1. The average value of the results is shown in Table 1.

《実施例4》
ポリプロピレン樹脂からなる空孔率42%、厚み方向の弾性率35N/m2、厚さ6μmの層と、ポリエチレン樹脂からなる空孔率42%、厚み方向の弾性率20N/m2、厚さ8μmの層をポリプロピレン層/ポリエチレン層/ポリプロピレン層の順で積層してなる厚さ20μmの3層セパレータ(K-/K=1.75)を用いたこと以外は実施例1と同様にして、電池Dn(n=1〜5)を作製した。電池Dnは実施例1と同様に評価した。その結果の平均値を表1に示す。
Example 4
A porosity of 42% made of polypropylene resin, an elastic modulus in the thickness direction of 35 N / m 2 and a thickness of 6 μm, a porosity of 42% made of polyethylene resin, an elastic modulus in the thickness direction of 20 N / m 2 , and a thickness of 8 μm A battery was fabricated in the same manner as in Example 1 except that a 20 μm thick three-layer separator (K− / K = 1.75) formed by laminating the layers in order of polypropylene layer / polyethylene layer / polypropylene layer was used. Dn (n = 1-5) was produced. The battery Dn was evaluated in the same manner as in Example 1. The average value of the results is shown in Table 1.

Figure 2006004873
Figure 2006004873

表1から明らかなように、比較例1に対して、実施例はサイクル特性が向上していることがわかる。比較例2と実施例2の比較、比較例3と実施例3の比較から、同じセパレータを用いても、負極と接するセパレータの厚み方向の弾性率が小さい場合、サイクル特性は向上せず、むしろ低下している。これらのことからK-/K比が大きい程サイクル特性が向上することがわかる。これは充放電時のセパレータの収縮・膨張によって負極上の電解液分解生成物及び負極合剤がセパレータ中に吸収されていくことを、K-/K比を大きくすることにより負極と接しているセパレータの収縮・膨張を抑制している効果と推測される。また、実施例1と実施例4はK-/K比は同じだが、実施例4の方がサイクル特性がよい。これは正極と接するセパレータも厚み方向の弾性率が高いことにより正極合剤のセパレータへの食い込みが抑制されているためと考えられる。   As is apparent from Table 1, it can be seen that the cycle characteristics of the example are improved with respect to the comparative example 1. From the comparison between Comparative Example 2 and Example 2 and the comparison between Comparative Example 3 and Example 3, even if the same separator is used, if the elastic modulus in the thickness direction of the separator in contact with the negative electrode is small, the cycle characteristics are not improved, rather It is falling. From these facts, it can be seen that the larger the K− / K ratio, the better the cycle characteristics. This is because the electrolytic solution decomposition product and the negative electrode mixture on the negative electrode are absorbed in the separator due to the shrinkage and expansion of the separator during charging and discharging, and the negative electrode is in contact with the negative electrode by increasing the K− / K ratio. This is presumed to be an effect of suppressing the shrinkage / expansion of the separator. Further, Example 1 and Example 4 have the same K− / K ratio, but Example 4 has better cycle characteristics. This is presumably because the separator in contact with the positive electrode also has a high elastic modulus in the thickness direction, so that the positive electrode mixture is prevented from biting into the separator.

本発明によれば、充放電サイクル特性に優れた非水電解質二次電池を得ることができ、ポータブル化機器の駆動用電源として有用である。   ADVANTAGE OF THE INVENTION According to this invention, the nonaqueous electrolyte secondary battery excellent in the charge / discharge cycle characteristic can be obtained, and it is useful as a drive power source for portable equipment.

本発明の非水電解質二次電池の一例の縦断面図A longitudinal sectional view of an example of the nonaqueous electrolyte secondary battery of the present invention

符号の説明Explanation of symbols

11 正極
12 負極
13 セパレータ
14 正極リード
15 負極リード
16 上部絶縁板
17 下部絶縁板
18 電池ケース
19 封口体
20 正極端子
DESCRIPTION OF SYMBOLS 11 Positive electrode 12 Negative electrode 13 Separator 14 Positive electrode lead 15 Negative electrode lead 16 Upper insulating plate 17 Lower insulating plate 18 Battery case 19 Sealing body 20 Positive electrode terminal

Claims (8)

正極板と負極板とを多孔質樹脂の2層以上からなるセパレータを介して捲回してなる極板群、非水電解質、ならびに前記極板群と非水電解質とを収容する外装体からなる非水電解質二次電池であって、(1)前記セパレータは厚み方向の弾性率が異なる2層以上のセパレータを積層して成り、(2)負極と接する層の厚み方向の弾性率をK-、厚み方向の弾性率が最も小さい層のその弾性率をKとした時、(K-/K)>1.1である非水電解液二次電池。 An electrode plate group formed by winding a positive electrode plate and a negative electrode plate through a separator composed of two or more layers of porous resin, a non-aqueous electrolyte, and a non-aqueous electrolyte comprising an outer package housing the electrode plate group and the non-aqueous electrolyte. A water electrolyte secondary battery, wherein (1) the separator is formed by laminating two or more separators having different elastic modulus in the thickness direction, and (2) the elastic modulus in the thickness direction of the layer in contact with the negative electrode is K −, A non-aqueous electrolyte secondary battery in which (K− / K)> 1.1, where K is the elastic modulus of the layer having the smallest elastic modulus in the thickness direction. 厚み方向の弾性率が異なる2層以上を積層したセパレータは、材質を変えることにより作製される請求項1記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the separator in which two or more layers having different elastic moduli in the thickness direction are laminated is manufactured by changing a material. 厚み方向の弾性率が異なる2層以上を積層したセパレータは、空孔率を変えることにより作製される請求項1記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the separator in which two or more layers having different elastic moduli in the thickness direction are laminated is produced by changing the porosity. 請求項1記載の厚み方向の弾性率の比が(K-/K)>1.3である非水電解質二次電池。 The non-aqueous electrolyte secondary battery in which the ratio of elastic modulus in the thickness direction according to claim 1 is (K- / K)> 1.3. 全体の厚みが5μm〜50μm、厚み方向の弾性率の最も小さい層の厚みが3μm〜47μmである請求項1記載の非水電解質二次電池。 2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the total thickness is 5 μm to 50 μm, and the thickness of the layer having the smallest elastic modulus in the thickness direction is 3 μm to 47 μm. 厚み方向の弾性率の最も小さい層の空孔率が30%〜80%である請求項1記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the porosity of the layer having the smallest elastic modulus in the thickness direction is 30% to 80%. セパレータがポリオレフィン樹脂からなる請求項1記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the separator is made of a polyolefin resin. 厚み方向の弾性率が異なる層を積層したセパレータは、3層以上のセパレータを積層して成り、厚み方向の弾性率の最も小さい層が負極とも正極とも接しないように構成する請求項1記載の非水電解液二次電池。 The separator in which layers having different elastic moduli in the thickness direction are laminated, and is formed by laminating three or more separators, and the layer having the smallest elastic modulus in the thickness direction is configured not to contact the negative electrode and the positive electrode. Non-aqueous electrolyte secondary battery.
JP2004182662A 2004-06-21 2004-06-21 Nonaqueous electrolyte secondary battery Active JP5017769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182662A JP5017769B2 (en) 2004-06-21 2004-06-21 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182662A JP5017769B2 (en) 2004-06-21 2004-06-21 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2006004873A true JP2006004873A (en) 2006-01-05
JP5017769B2 JP5017769B2 (en) 2012-09-05

Family

ID=35773072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182662A Active JP5017769B2 (en) 2004-06-21 2004-06-21 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5017769B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234458A (en) * 2006-03-02 2007-09-13 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
WO2008127829A2 (en) * 2007-04-15 2008-10-23 3M Innovative Properties Company Separator for an electrochemical cell
JP2009238752A (en) * 2008-03-27 2009-10-15 Samsung Sdi Co Ltd Electrode assembly and secondary battery having the same
JPWO2008059806A1 (en) * 2006-11-14 2010-03-04 旭化成イーマテリアルズ株式会社 Separator for lithium ion secondary battery and method for producing the same
JP2015053134A (en) * 2013-09-05 2015-03-19 株式会社豊田自動織機 Power storage device
JP2019029336A (en) * 2017-07-31 2019-02-21 住友化学株式会社 Nonaqueous electrolyte secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074502A (en) * 1996-08-30 1998-03-17 Sony Corp Nonaqueous electrolyte secondary battery
JP2000212322A (en) * 1999-01-22 2000-08-02 Asahi Chem Ind Co Ltd Finely porous polyolefin-based membrane
JP2002216734A (en) * 2001-01-16 2002-08-02 Asahi Kasei Corp Separator for lithium battery
JP2002246000A (en) * 2001-02-14 2002-08-30 Sony Corp Non-aqueous electrolyte secondary battery
JP2002279956A (en) * 2001-03-16 2002-09-27 Sony Corp Nonaqueous electrolyte battery
JP2002319386A (en) * 2001-04-20 2002-10-31 Sony Corp Nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074502A (en) * 1996-08-30 1998-03-17 Sony Corp Nonaqueous electrolyte secondary battery
JP2000212322A (en) * 1999-01-22 2000-08-02 Asahi Chem Ind Co Ltd Finely porous polyolefin-based membrane
JP2002216734A (en) * 2001-01-16 2002-08-02 Asahi Kasei Corp Separator for lithium battery
JP2002246000A (en) * 2001-02-14 2002-08-30 Sony Corp Non-aqueous electrolyte secondary battery
JP2002279956A (en) * 2001-03-16 2002-09-27 Sony Corp Nonaqueous electrolyte battery
JP2002319386A (en) * 2001-04-20 2002-10-31 Sony Corp Nonaqueous electrolyte secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234458A (en) * 2006-03-02 2007-09-13 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JPWO2008059806A1 (en) * 2006-11-14 2010-03-04 旭化成イーマテリアルズ株式会社 Separator for lithium ion secondary battery and method for producing the same
US8628873B2 (en) 2006-11-14 2014-01-14 Asahi Kasei Chemicals Corporation Separator for lithium ion secondary battery and method for manufacturing the same
WO2008127829A2 (en) * 2007-04-15 2008-10-23 3M Innovative Properties Company Separator for an electrochemical cell
WO2008127829A3 (en) * 2007-04-15 2009-03-05 3M Innovative Properties Co Separator for an electrochemical cell
JP2009238752A (en) * 2008-03-27 2009-10-15 Samsung Sdi Co Ltd Electrode assembly and secondary battery having the same
US8530097B2 (en) 2008-03-27 2013-09-10 Samsung Sdi Co., Ltd. Electrode assembly including film-like separator combined with ceramic separator and secondary battery having the same
JP2015053134A (en) * 2013-09-05 2015-03-19 株式会社豊田自動織機 Power storage device
JP2019029336A (en) * 2017-07-31 2019-02-21 住友化学株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5017769B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP4884774B2 (en) Method for producing electrode for electrochemical cell
JP6192146B2 (en) Lithium electrode and lithium secondary battery including the same
KR101440884B1 (en) Anode comprising surface treated anode active material and lithium battery using the same
US10637097B2 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly
JP5426763B2 (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
KR102407049B1 (en) Binder for rechargeable battery, separator for rechargeable battery inclduing same, and rechargeable battery including same
US20180248220A1 (en) Nonaqueous electrolyte secondary batteries
US9484599B2 (en) Non-aqueous electrolyte secondary battery
KR102167590B1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
JP2003086162A (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
WO2010131401A1 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2007287677A (en) Nonaqueous electrolyte secondary battery
WO2013038672A1 (en) Nonaqueous electrolyte secondary cell
KR101992124B1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
US10403891B2 (en) Positive electrode material and lithium ion battery
WO2018025469A1 (en) Lithium ion secondary battery and method for manufacturing same
CN111684627A (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery comprising same
JP5017769B2 (en) Nonaqueous electrolyte secondary battery
JP2015517174A (en) Separator for electrochemical cells containing polymer particles
JPWO2013084840A1 (en) Nonaqueous electrolyte secondary battery and assembled battery using the same
JP2007172879A (en) Battery and its manufacturing method
JP2011192445A (en) Positive electrode active material particle for lithium ion battery, and lithium ion battery
KR102651783B1 (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising the same
JP2018174077A (en) Battery separator and lithium ion secondary battery
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070712

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R151 Written notification of patent or utility model registration

Ref document number: 5017769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3