JP2006261093A - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery Download PDF

Info

Publication number
JP2006261093A
JP2006261093A JP2005321051A JP2005321051A JP2006261093A JP 2006261093 A JP2006261093 A JP 2006261093A JP 2005321051 A JP2005321051 A JP 2005321051A JP 2005321051 A JP2005321051 A JP 2005321051A JP 2006261093 A JP2006261093 A JP 2006261093A
Authority
JP
Japan
Prior art keywords
secondary battery
separator
fluorine
hydrogen
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005321051A
Other languages
Japanese (ja)
Other versions
JP4367951B2 (en
Inventor
Yuji Yamamichi
裕司 山道
Hitoshi Moriizumi
仁 森井泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Hokuriku Seiki Ltd
Original Assignee
Maxell Hokuriku Seiki Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Hokuriku Seiki Ltd filed Critical Maxell Hokuriku Seiki Ltd
Priority to JP2005321051A priority Critical patent/JP4367951B2/en
Publication of JP2006261093A publication Critical patent/JP2006261093A/en
Application granted granted Critical
Publication of JP4367951B2 publication Critical patent/JP4367951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous secondary battery which prevents overcharge and sharp object breakage from causing ignition and explosion even under special environment and the like due to increasing the capacity of a unit cell or assembling the unit cells and is excellent in safety. <P>SOLUTION: A separator of the non-aqueous secondary battery is composed in a plurality of layers, and a non-aqueous electrolyte of the non-aqueous secondary battery is doped with an aromatic compound having a benzene ring and/or a phosphagen derivative. The non-aqueous electrolyte is doped preferably with both of the aromatic compound and the phosphagen derivative, where a mass ratio of the aromatic compound to the electrolyte is 3 to 15%, and a mass ratio of the phosphagen derivative to the electrolyte is 1 to 15%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、非水二次電池に関し、特に、単位セルである素電池容量で1.5Ahを越えるような高容量の非水二次電池に関する。   The present invention relates to a non-aqueous secondary battery, and more particularly to a high-capacity non-aqueous secondary battery having a unit cell capacity exceeding 1.5 Ah.

近年、電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小形・軽量で、且つ高容量、高電圧を有する二次電池への要望が高い。このような点で非水電解質系の二次電池、特にリチウムイオン二次電池は、とりわけ高エネルギー密度を有する電池として期待が大きい。しかし、高エネルギー化するに伴い電池の安全性確保が困難になり、過充電時の異常事態では発火、破裂を引き起こし非常に危険であった。   2. Description of the Related Art In recent years, electronic devices have become rapidly portable and cordless, and there is a strong demand for secondary batteries that are small and lightweight, have high capacity, and high voltage as power sources for driving these devices. In this respect, non-aqueous electrolyte secondary batteries, particularly lithium ion secondary batteries, are particularly expected as batteries having high energy density. However, as the energy becomes higher, it becomes difficult to ensure the safety of the battery, and an abnormal situation at the time of overcharging causes ignition and explosion, which is very dangerous.

そこで、従来、各種セパレータの改良、特許文献1に示されるようなホスファゼン化合物などのような添加剤を含む難燃性あるいは不燃性電解液、物理的安全機構(電流遮断弁、ガス抜きベント)等の安全対策がとられている。また、特許文献2〜4に開示されているように、芳香族化合物を電解液に添加することで、過充電時の素電池の安全性を確保する手段も多く用いられている。   Therefore, conventionally, improvement of various separators, flame-retardant or non-flammable electrolytes containing additives such as phosphazene compounds as disclosed in Patent Document 1, physical safety mechanism (current cutoff valve, vent vent), etc. Safety measures are taken. Moreover, as disclosed in Patent Documents 2 to 4, many means for ensuring the safety of the unit cell during overcharge by adding an aromatic compound to the electrolytic solution are also used.

又、鋭利物による電池の破損などの異常事態においても、発火、破裂を引き起こし非常に危険な状態となる場合があるため、一般には、素電池電極捲回体や積層体の最外周に電極活物質未塗布部を設けたり、金属箔を挿入したりすることが行われている。また、電解液に各種添加物を混合し、エージング等により電極表面被膜を構成する等の安全対策も施されている。   In addition, even in abnormal situations such as damage to the battery due to sharp objects, ignition and rupture may occur, resulting in a very dangerous state. A substance uncoated part is provided or a metal foil is inserted. In addition, safety measures are taken such as mixing various additives into the electrolytic solution and forming an electrode surface coating by aging or the like.

さらに別の方法として、特許文献5には、釘刺し等による短絡で大電流が流れるのを防止するために、2種類のセパレータを電極間に配置したものもが開示されている。さらに、特許文献6、7には、電極表面や電池容器に伸張性の膜を設けて、釘刺し等に際しては、その膜が釘等とともに伸びて電極間に挟み込まれ、電極間に大電流が流れるのを防止するものが開示されている。
特開2002−83628号公報 特開平05−036439号公報 特開2001−015155号公報 特開2004−006164号公報 特開平10−302749号公報 特開2000−21386号公報 特開2002−151159号公報
As another method, Patent Document 5 discloses a technique in which two types of separators are arranged between electrodes in order to prevent a large current from flowing due to a short circuit due to nail penetration or the like. Further, in Patent Documents 6 and 7, an extensible film is provided on the electrode surface or the battery container, and when the nail is stabbed, the film is stretched together with the nail or the like and is sandwiched between the electrodes. What prevents flow is disclosed.
JP 2002-83628 A JP 05-036439 A JP 2001-015155 A JP 2004-006164 A JP-A-10-302749 JP 2000-21386 A JP 2002-151159 A

しかしながら、電池が大型化、特に高容量化すると、従来の安全対策では過充電時の莫大な発熱量に追随できず、発火、破裂に至る可能性が残る。また、大型化や高容量化した素電池を複数接続し組み電池化した際には、素電池からの熱が組み電池ケース内に蓄積され、高温環境下で過充電が進行し、発火に至る可能性がある。また、保護回路の故障時に素電池は過充電状態に晒されるが、その際、組み電池内にある素電池の直列接続数により充電器電源電圧は変わり、素電池には12V,30V,50V,100Vと様々なレベルで電圧がかかることになる。そして、その上限電圧により素電池過充電状態は変わり、特に50V以上では安全性確保が困難となるものであった。   However, when the battery size is increased, especially when the capacity is increased, the conventional safety measures cannot follow the enormous amount of heat generated during overcharging, and there is a possibility of ignition and explosion. In addition, when multiple large-sized and high-capacity unit cells are connected to form an assembled battery, heat from the unit cells is accumulated in the assembled battery case, and overcharging proceeds in a high-temperature environment, resulting in ignition. there is a possibility. In addition, when the protection circuit fails, the unit cell is exposed to an overcharged state. At that time, the charger power supply voltage varies depending on the number of units connected in series in the assembled battery, and the unit cell has 12V, 30V, 50V, Voltage is applied at various levels of 100V. And the unit cell overcharged state changes depending on the upper limit voltage, and it is difficult to ensure safety especially at 50V or more.

一方、500mAh程度の携帯端末向け小型電池(小容量)では、特許文献2〜4のように、芳香族化合物を電解液に添加することで過充電時の素電池安全性を確保する手段が多く用いられている。しかし、この安全対策では、素電池の高容量化に伴い、過充電時の発火、破裂などの危険を防ぐ事は難しくなり、特に、1.5Ah以上の容量になると問題の発生が顕著となっていた。   On the other hand, in small batteries (small capacity) for portable terminals of about 500 mAh, there are many means for ensuring unit cell safety during overcharge by adding an aromatic compound to the electrolyte as in Patent Documents 2 to 4. It is used. However, with this safety measure, it becomes difficult to prevent dangers such as ignition and explosion during overcharge as the capacity of the unit cell increases. In particular, the occurrence of problems becomes significant when the capacity exceeds 1.5 Ah. It was.

これは、以下のような理由によると思われる。通常、ベンゼン環を有する芳香族化合物は、4.2V〜4.7V付近で正極表面において重合分解反応を開始し、ポリマー重合被膜を構成する。さらに、同時に生成されるガスにより、局所的にセパレータが正極から剥離する現象が起こり、この箇所は正極と負極の間のリチウムイオンの移動が困難になる。そのため、二次電池内での充電電流を抑制することになる。一方、正極からセパレータが剥離せず密着した箇所は、一時、正極表面に重合被膜を構成するが、重合が進行する際の発熱反応により、一般に使用されている多孔質フィルム状セパレータは収縮・溶解し、正極重合被膜を破壊し、正極と負極は4.2V(満充電)以上の不安定な状態で内部短絡を起し、発火・破裂に至る可能性が残るものである。   This seems to be due to the following reasons. Usually, an aromatic compound having a benzene ring starts a polymerization decomposition reaction on the surface of the positive electrode in the vicinity of 4.2 V to 4.7 V to constitute a polymer polymerization film. Further, the gas generated at the same time causes a phenomenon in which the separator is locally peeled from the positive electrode, which makes it difficult for lithium ions to move between the positive electrode and the negative electrode. Therefore, the charging current in the secondary battery is suppressed. On the other hand, the part where the separator does not peel from the positive electrode is in contact with the surface of the positive electrode for a while, but the porous film separator that is generally used shrinks and dissolves due to the exothermic reaction when the polymerization proceeds. However, the positive electrode polymerized film is destroyed, and the positive electrode and the negative electrode may cause an internal short circuit in an unstable state of 4.2 V (full charge) or more, resulting in ignition and rupture.

又、電池が高エネルギー密度化並びに高容量化すると、従来の安全対策では、鋭利物による素電池破壊の際、内部短絡時の莫大な発熱量を抑制できず、発火、破裂が発生する問題があった。例えば、釘等の鋭利物が素電池に刺さった際、正・負電極間にあるセパレータが鋭利物と供に電極の亀裂間に侵入し電極を被うが、そのセパレータの電極被覆状態が完全でないと正・負電極間で内部短絡する問題がある。鋭利物が素電池に刺さった際の内部短絡防止策としては、セパレータの厚みを厚くする方法が考えられる。例えば、通常25μmを2倍の50μmにすることなどである。しかし、厚くしたセパレータでも、鋭利物が刺さった際、セパレータは不均一に裂け電極を完全に被う事が出来ないため、電極と接触する可能性が残る。この場合、鋭利物を介して内部短絡すると、莫大な発熱量による電解液の沸騰や正極熱暴走を誘発し大量の発煙、破裂、発火に至る可能性がある。   In addition, when the battery has a high energy density and a high capacity, the conventional safety measures cannot suppress the enormous amount of heat generated at the time of internal short-circuiting when the unit cell is destroyed by sharps, and there is a problem that ignition and explosion occur. there were. For example, when a sharp object such as a nail pierces a unit cell, the separator between the positive and negative electrodes enters the crack of the electrode together with the sharp object, and covers the electrode. Otherwise, there is a problem of internal short circuit between the positive and negative electrodes. As a measure for preventing an internal short circuit when a sharp object is stuck in a unit cell, a method of increasing the thickness of the separator can be considered. For example, 25 μm is usually doubled to 50 μm. However, even with a thicker separator, when a sharp object is pierced, the separator does not tear uniformly and cannot completely cover the electrode, so that there is a possibility of contact with the electrode. In this case, if an internal short circuit occurs through a sharp object, boiling of the electrolyte solution due to an enormous amount of heat generation or positive electrode thermal runaway may be induced, resulting in a large amount of smoke, rupture, or ignition.

又、真夏などの高温環境下や組み電池化による放熱性低下により、素電池の穿刺事故による電池破裂等の危険性が高くなる恐れもあった。   In addition, there is a risk that the risk of battery rupture due to a puncture accident of a unit cell may increase due to a decrease in heat dissipation due to high temperature environment such as midsummer or battery assembly.

一方、特許文献5〜7のような方法によれば、鋭利物による素電池破壊の対策としてはある程度の効果はあるものの、高容量電池では、微小な短絡が生じた場合でも、正極の熱暴走により電池が危険な状態に陥るため、安全対策としては不十分であった。   On the other hand, according to the methods as disclosed in Patent Documents 5 to 7, although there is a certain effect as a measure against unit cell destruction by sharps, in a high-capacity battery, even if a minute short circuit occurs, the thermal runaway of the positive electrode As a result, the battery falls into a dangerous state, which is insufficient as a safety measure.

この発明は、上記従来技術の問題に鑑みて成されたもので、素電池の高エネルギー化、高容量化、又は組み電池化の際に、高温環境等による特殊環境下でも、電池の熱暴走を防ぐことを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and when a unit cell is increased in energy, capacity, or assembled battery, even if it is in a special environment such as a high temperature environment, the thermal runaway of the battery The purpose is to prevent.

すなわち、本発明は、電子回路の故障などにより生じる過充電時にも安全性に優れた非水二次電池を提供することを第一の目的とする。また、鋭利物破損時の発火、破裂を防ぎ、安全性に優れた非水二次電池を提供することを第二の目的とする。   That is, the first object of the present invention is to provide a non-aqueous secondary battery that is excellent in safety even when overcharge occurs due to a failure of an electronic circuit. Another object of the present invention is to provide a non-aqueous secondary battery that prevents ignition and rupture when a sharp object is damaged and is excellent in safety.

本発明は、リチウムイオンを吸蔵・放出できる活物質を含む負極と、リチウム含有酸化物を含む正極とがセパレータを介して積層或いは捲回され、非水電解質とともに収容容器に収納された非水二次電池において、前記セパレータが複数層で構成されており、前記電解質に、ベンゼン環を有する芳香族化合物を添加した非水二次電池を提供するものである。   The present invention relates to a non-aqueous two-component battery in which a negative electrode containing an active material capable of occluding and releasing lithium ions and a positive electrode containing a lithium-containing oxide are laminated or wound through a separator and housed in a container with a non-aqueous electrolyte. In the secondary battery, the separator is composed of a plurality of layers, and a non-aqueous secondary battery in which an aromatic compound having a benzene ring is added to the electrolyte is provided.

また、本発明は、リチウムイオンを吸蔵・放出できる活物質を含む負極と、リチウム含有酸化物を含む正極とがセパレータを介して積層或いは捲回され、非水電解質とともに収容容器に収納された非水二次電池において、前記セパレータが複数層で構成されており、前記電解質に、ホスファゼン誘導体を添加した非水二次電池を提供するものである。   Further, the present invention provides a non-contained structure in which a negative electrode containing an active material capable of occluding and releasing lithium ions and a positive electrode containing a lithium-containing oxide are laminated or wound through a separator and stored in a storage container together with a non-aqueous electrolyte. In the water secondary battery, the separator is composed of a plurality of layers, and a non-aqueous secondary battery in which a phosphazene derivative is added to the electrolyte is provided.

本発明の非水二次電池によれば、セパレータを複数層で構成し、電解質にベンゼン環を有する芳香族化合物を添加することによって、高容量化された電池においても、過充電時の安全性を向上させることができる。また、同じくセパレータを複数層で構成し、電解質にホスファゼン誘導体を添加することによって、高容量化された電池においても、釘等の鋭利物による破損の際の安全性を向上させることができる。   According to the non-aqueous secondary battery of the present invention, the separator is composed of a plurality of layers, and an aromatic compound having a benzene ring is added to the electrolyte, so that even when the capacity is increased, the safety at the time of overcharge is achieved. Can be improved. Similarly, by forming a separator with a plurality of layers and adding a phosphazene derivative to the electrolyte, safety can be improved in the case of damage due to sharp objects such as nails, even in a battery with an increased capacity.

さらに、上記芳香族化合物とホスファゼン誘導体を共に添加することにより、特に優れた安全性を実現することができる。   Furthermore, by adding both the aromatic compound and the phosphazene derivative, particularly excellent safety can be realized.

以下、本発明の非水二次電池の実施形態について説明を行う。図1は、本発明の非水二次電池10の外観および内部を模式的に表したものであり、負極と正極とが複数層で構成されたセパレータを介して交互に積層された積層体12が、非水電解質とともにアルミラミネート製の収容容器14に収納されている様子を表す。ここで、上記負極、正極、セパレータおよび非水電解質は図示されていない。   Hereinafter, embodiments of the non-aqueous secondary battery of the present invention will be described. FIG. 1 schematically shows the appearance and the inside of a nonaqueous secondary battery 10 of the present invention, in which a laminate 12 in which negative electrodes and positive electrodes are alternately laminated via a separator composed of a plurality of layers. Represents the state of being accommodated in the aluminum laminate container 14 together with the non-aqueous electrolyte. Here, the negative electrode, the positive electrode, the separator, and the nonaqueous electrolyte are not shown.

上記負極は、負極集電体上に、負極活物質と、導電助剤およびポリフッ化ビニリデンやポリテトラフルオロエチレン等のバインダとを溶剤でペースト状にして塗布し乾燥して、30〜300μm厚の負極活物質含有塗膜を形成することにより作製される。上記負極活物質としては、特に限定はされないが、リチウムイオンをドープ、脱ドープ可能な黒鉛類、熱分解炭素類、コークス類、ガラス状炭素類などの炭素材を使用するのが好ましく、上記負極集電体には、5〜60μm厚の銅箔を用いるのが好適である。また、負極集電体には、負極リード端子18が電気的に接続され、収容容器14の外部に導出される。   The negative electrode has a negative electrode active material, a conductive auxiliary agent and a binder such as polyvinylidene fluoride and polytetrafluoroethylene applied in a paste form with a solvent, dried, and dried to a thickness of 30 to 300 μm. It is produced by forming a negative electrode active material-containing coating film. The negative electrode active material is not particularly limited, but it is preferable to use carbon materials such as graphite, pyrolytic carbons, cokes, and glassy carbons that can be doped and dedoped with lithium ions. It is preferable to use a copper foil having a thickness of 5 to 60 μm for the current collector. Further, the negative electrode lead terminal 18 is electrically connected to the negative electrode current collector, and is led out of the container 14.

上記正極も、上記負極と同様にして作製されるが、正極活物質としては、例えば、LiCoO等のリチウムコバルト酸化物、LiMn等のリチウムマンガン酸化物、LiNiO等のリチウムニッケル酸化物で例示されるリチウム複合酸化物が好適に用いられる。これら活物質のCo、MnまたはNiは、それぞれ他の元素で置換されていてもよく、複数の活物質を混合して用いてもよい。また、正極集電体としては、5〜60μm厚のアルミ箔が好適であり、正極集電体には、正極リード端子16が電気的に接続され、収容容器14の外部に導出される。 The positive electrode is also manufactured in the same manner as the negative electrode. Examples of the positive electrode active material include lithium cobalt oxide such as LiCoO 2 , lithium manganese oxide such as LiMn 2 O 4 , and lithium nickel oxide such as LiNiO 2. Lithium composite oxides exemplified by these materials are preferably used. Co, Mn, or Ni of these active materials may be substituted with other elements, respectively, or a plurality of active materials may be mixed and used. Further, as the positive electrode current collector, an aluminum foil having a thickness of 5 to 60 μm is suitable, and the positive electrode lead terminal 16 is electrically connected to the positive electrode current collector and led out of the housing container 14.

本発明において、上記正極と負極の間には、複数層のセパレータを介在させる。それぞれの層を構成する個々のセパレータは、積層一体化された積層体であってもよいし、また、2枚以上の独立したセパレータを単に重ね合わせたものであってもよい。各層の材質としては、ポリエチレン、ポリプロピレン、ポリエチレンとポリプロピレンの融合体、ポリエチレンテレフタレート、ポリブチレンテレフタレートなど特に限定されないが、透気度が600(s/100ml)以下で、セパレータ1層分の厚みが5μm〜50μmであり、空孔率が30%〜80%であるものが好ましい。特に、透気度は300(s/100ml)以下であるものがより好ましく、セパレータ1層分の厚みは30μm以下であるものがより好ましく、空孔率は45%〜70%であるものがより好ましく、少なくとも一層はこの範囲のものとするのが望ましい。   In the present invention, a multilayer separator is interposed between the positive electrode and the negative electrode. The individual separators constituting each layer may be a laminated body that is laminated and integrated, or may be a simple laminate of two or more independent separators. The material of each layer is not particularly limited, such as polyethylene, polypropylene, a fusion of polyethylene and polypropylene, polyethylene terephthalate, polybutylene terephthalate, etc., but the air permeability is 600 (s / 100 ml) or less and the thickness of one separator layer is 5 μm. It is preferably ˜50 μm and a porosity of 30% to 80%. In particular, the air permeability is more preferably 300 (s / 100 ml) or less, the thickness of one separator layer is more preferably 30 μm or less, and the porosity is 45% to 70%. Preferably, at least one layer is in this range.

また、セパレータの各層の形態についても、特に限定されるものではなく、織布、不織布(例えば、繊維から構成され方向性を有しないもの)、多孔質フィルム(例えば、製造時におけるフィルム樹脂の引き取り方向とこれと直交する方向とで熱収縮率が異なるなど方向性のあるもの)などのいずれも用いることができ、各層が不織布同士あるいは多孔質フィルム同士の組み合わせのように、同じ形態のものであってもよく、不織布と多孔質フィルムとの組み合わせのように、異なる形態のものであってもよい。   Also, the form of each layer of the separator is not particularly limited, and a woven fabric, a non-woven fabric (for example, composed of fibers and having no directionality), a porous film (for example, taking a film resin at the time of manufacture) Any one having a directional property such as a different heat shrinkage rate in a direction and a direction perpendicular thereto can be used, and each layer has the same form as a combination of nonwoven fabrics or porous films. There may be different forms such as a combination of a nonwoven fabric and a porous film.

セパレータの両面で材質や形態が異なる場合は、配置の仕方により効果に差が生じる場合がある。セパレータの両面で空孔率が異なる場合は、正極側の空孔率が負極側の空孔率よりも高くなるようにセパレータを配置することが望ましい。ここで、正極および負極のどちらにも不織布が対向している場合は、正極側のセパレータの空孔率を60%以上とし、負極側のセパレータの空孔率を60%より低くするのが望ましい。また、正極および負極のどちらにも多孔質フィルムが対向している場合は、正極側のセパレータの空孔率を50%以上とし、負極側のセパレータの空孔率を50%より低くするのが望ましい。ただし、空孔率を低くしすぎると、電解液量不足によりサイクル性能、低温性能、負荷性能が著しく低下するので、空孔率は30%以上とするのがよい。   When the material and form are different on both sides of the separator, the effect may vary depending on the arrangement. In the case where the porosity is different on both sides of the separator, it is desirable to dispose the separator so that the porosity on the positive electrode side is higher than the porosity on the negative electrode side. Here, when the nonwoven fabric faces both the positive electrode and the negative electrode, it is desirable that the porosity of the separator on the positive electrode side is 60% or more, and the porosity of the separator on the negative electrode side is lower than 60%. . When the porous film faces both the positive electrode and the negative electrode, the porosity of the separator on the positive electrode side should be 50% or more, and the porosity of the separator on the negative electrode side should be lower than 50%. desirable. However, if the porosity is too low, the cycle performance, the low temperature performance, and the load performance are remarkably reduced due to insufficient amount of the electrolyte, so the porosity should be 30% or more.

上記配置により、正極側のセパレータの保液性が高くなり、正極表面により多くの芳香族添加剤を保持させることができる。このため、正極に強固な被膜が生成され、かつ多量のガスが発生することになる。発生したガスは、セパレータの層間やセパレータと負極との間での剥離を促進し、正極の熱暴走を防ぐ効果が高まる。一方、負極側の保液性が低くなることにより、負極における電解液の分解による発熱を抑制することもできる。   With the above arrangement, the liquid retention of the positive electrode separator is increased, and more aromatic additives can be held on the positive electrode surface. For this reason, a strong film is produced on the positive electrode and a large amount of gas is generated. The generated gas promotes peeling between the separator layers and between the separator and the negative electrode, and the effect of preventing thermal runaway of the positive electrode is enhanced. On the other hand, heat generation due to decomposition of the electrolyte in the negative electrode can be suppressed by reducing the liquid retention on the negative electrode side.

また、上記と同じ理由から、不織布と多孔質フィルムの組み合わせの場合は、不織布を正極側に配置するのが望ましい。ホスファゼン誘導体が添加された場合にも、正極側のセパレータの保液性が高ければ、正極の熱安定性が高まるので、より安全性を向上させることができる。   For the same reason as described above, in the case of a combination of a nonwoven fabric and a porous film, it is desirable to dispose the nonwoven fabric on the positive electrode side. Even when a phosphazene derivative is added, if the liquid retention property of the positive electrode separator is high, the thermal stability of the positive electrode is increased, and thus the safety can be further improved.

さらに、セパレータの両面で平坦性が異なる場合は、負極側のセパレータ表面の凹凸が正極側よりも小さくなり、より平坦性に優れた面が負極側にくるようセパレータを配置することが望ましい。負極側のセパレータ表面の平坦性が高くなれば、異常時に発生するガスにより、負極とセパレータとの間あるいはセパレータ各層の層間が容易に剥離することになり、電極の反応を停止させて、異常時の安全性を高めるからである。   Furthermore, when the flatness differs between both surfaces of the separator, it is desirable to dispose the separator so that the unevenness of the separator surface on the negative electrode side is smaller than that on the positive electrode side, and the surface with better flatness is on the negative electrode side. If the flatness of the separator surface on the negative electrode side becomes high, the gas generated at the time of abnormality will easily peel off the gap between the negative electrode and the separator or between each layer of the separator, stopping the electrode reaction, This is because it increases the safety.

本発明において用いる非水電解質としては、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、エチレンカーボネート等の有機溶媒に、LiPF,LiBF,LiAsF,LiCFSO等の溶質を溶解したもの、またはこれに樹脂、架橋剤を混合しゲル状化、又は固形化させたものを例示することができるが、液状の電解質(いわゆる電解液)の方が本発明の効果がよりよく発揮され好ましい。これら非水電解質には、さらに、ベンゼン環を有する芳香族化合物およびホスファゼン誘導体より選択される少なくとも1種の添加剤が添加される。 As the non-aqueous electrolyte used in the present invention, a solute such as LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 was dissolved in an organic solvent such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, propylene carbonate, ethylene carbonate. Examples thereof, or those obtained by mixing a resin and a cross-linking agent into a gel or solidifying it, can be exemplified by a liquid electrolyte (so-called electrolytic solution). preferable. These nonaqueous electrolytes are further added with at least one additive selected from aromatic compounds having a benzene ring and phosphazene derivatives.

上記芳香族化合物としては、4.2V〜4.7V付近で分解してガスを発生し、且つ正極表面にポリマー重合して被膜を形成するものであれば特に限定はされず、トルエン、キシレン、シクロへキシルベンゼンなどを代表とするアルキルベンゼン、芳香族ハロゲン、芳香族アミン、芳香族カルボン酸、ビフェニルなどを例示することができるが、被膜形成の点から、ビフェニルおよびシクロへキシルベンゼンより選択される少なくとも1種の化合物またはその誘導体(フッ素置換体など)が好ましく用いられる。   The aromatic compound is not particularly limited as long as it decomposes in the vicinity of 4.2 V to 4.7 V to generate gas, and polymerizes to form a film on the positive electrode surface, and includes toluene, xylene, Illustrative examples include alkylbenzenes such as cyclohexylbenzene, aromatic halogens, aromatic amines, aromatic carboxylic acids, and biphenyl, which are selected from biphenyl and cyclohexylbenzene from the viewpoint of film formation. At least one compound or a derivative thereof (such as a fluorine-substituted product) is preferably used.

また、上記ホスファゼン誘導体としては、環状型と鎖状型のいずれも用いうるが、負荷特性などの電池の特性を考えた場合、特に、下記一般式で表される環状の構造のものが好ましく用いられる。   In addition, as the phosphazene derivative, both a cyclic type and a chain type can be used. However, in consideration of battery characteristics such as load characteristics, those having a cyclic structure represented by the following general formula are preferably used. It is done.

Figure 2006261093
ただし、側鎖Rは、
1)−CH、−CHCHなどの炭素数1〜10のアルキル基(ただし、水素の一部または全部がフッ素などのハロゲン元素で置換されていてもよい)
2)−OCH、−OCHCH、−OC、−OCHOCHCHなどの炭素数1〜10のアルコキシ基(ただし、水素の一部または全部がフッ素などのハロゲン元素で置換されていてもよい)
3)−COOCH、−COOCHCH、−COOCなどの炭素数1〜10のカルボキシル基(ただし、水素の一部または全部がフッ素などのハロゲン元素で置換されていてもよい)
4)−COCH、−COCHCH、−COCなどの炭素数1〜10のカルボニル基(ただし、水素の一部または全部がフッ素などのハロゲン元素で置換されていてもよい)
5)−C、−CCH、−C(CHなどの炭素数1〜12のアリール基(ただし、水素の一部または全部がフッ素などのハロゲン元素で置換されていてもよい)
6)−CH=CH、−CH=CH、−CH=CHなどの炭素数1〜10のビニル基(ただし、水素の一部または全部がフッ素などのハロゲン元素で置換されていてもよい)
7)水素またはフッ素、塩素などのハロゲン元素
のいずれかであって、6個のRは互いに同じであっても異なっていてもよい。
Figure 2006261093
However, the side chain R is
1) -CH 3, alkyl group having 1 to 10 carbon atoms, such as -CH 2 CH 3 (although some hydrogen or all may be substituted with a halogen element such as fluorine)
2) Alkoxy groups having 1 to 10 carbon atoms such as —OCH 3 , —OCH 2 CH 3 , —OC 6 H 5 , —OCH 2 OCH 2 CH 3 (however, part or all of hydrogen is a halogen element such as fluorine) May be substituted)
3) -COOCH 3, -COOCH 2 CH 3, -COOC 6 H 5 carboxyl group having 1 to 10 carbon atoms, such as (but part of hydrogen or all may be substituted with a halogen element such as fluorine)
4) A carbonyl group having 1 to 10 carbon atoms such as —COCH 3 , —COCH 2 CH 3 , —COC 6 H 5 (however, part or all of hydrogen may be substituted with a halogen element such as fluorine)
5) an aryl group having 1 to 12 carbon atoms such as —C 6 H 5 , —C 6 H 4 CH 3 , —C 6 H 5 (CH 3 ) 2 (provided that part or all of hydrogen is halogen such as fluorine) May be substituted with an element)
6) A vinyl group having 1 to 10 carbon atoms such as —CH═CH 2 , —CH═CH 2 C 2 H 5 , —CH═CH 2 C 6 H 5 (provided that part or all of hydrogen is fluorine or the like) May be substituted with a halogen element)
7) Any of hydrogen, halogen elements such as fluorine and chlorine, and six Rs may be the same or different from each other.

上記添加剤の添加量は、芳香族化合物では、電解液に対して2%〜15%(質量比)とするのがよく、ホスファゼン誘導体では、電解液に対して1%〜15%(質量比)とするのがよい。また、これら化合物の両者を添加することが望ましい。   The addition amount of the additive is preferably 2% to 15% (mass ratio) with respect to the electrolyte solution for aromatic compounds, and 1% to 15% (mass ratio) with respect to the electrolyte solution for phosphazene derivatives. ). Moreover, it is desirable to add both of these compounds.

上述した負極および正極は、セパレータを間に介在させて積層体12とされ、これをそのままか、あるいは捲回した状態にして、非水電解質と共に収容容器14の内部に封入され、非水二次電池10が作製される。収容容器14としては、アルミまたはSUS等の缶や、これら材質の薄い金属箔をナイロン、ポリエチレン、ポリプロピレンでラミネートした外装材などを用いることができる。   The above-described negative electrode and positive electrode are formed into a laminated body 12 with a separator interposed therebetween, and the laminated body 12 is left as it is or is wound and enclosed in a storage container 14 together with a non-aqueous electrolyte. Battery 10 is produced. As the container 14, a can such as aluminum or SUS, or an exterior material obtained by laminating a thin metal foil of these materials with nylon, polyethylene, or polypropylene can be used.

本発明においては、セパレータを複数層で構成することにより、図2に記すように、電池に釘4などの鋭利な物が刺さった場合でも、セパレータ2,6がその釘4を十分に覆うことができるため、釘4を介しての正負極間の内部短絡を防ぐことが可能となる。   In the present invention, the separator is composed of a plurality of layers so that the separators 2 and 6 sufficiently cover the nail 4 even when a sharp object such as the nail 4 is stuck in the battery as shown in FIG. Therefore, an internal short circuit between the positive and negative electrodes via the nail 4 can be prevented.

一方、カッターなどの更に鋭利な物が電池に刺ささった場合は、セパレータでの短絡防止が不十分になり、一部むきだしになった正、負極間での短絡が生じやすくなる。しかし、ホスファゼン誘導体を電解質に添加することにより、正極の熱安定性が向上するため、上記短絡に起因する正極の熱暴走を防止することができる。   On the other hand, when a sharper object such as a cutter is stuck in the battery, short-circuit prevention at the separator becomes insufficient, and short-circuiting between the positive and negative electrodes, which are partially exposed, is likely to occur. However, since the thermal stability of the positive electrode is improved by adding the phosphazene derivative to the electrolyte, thermal runaway of the positive electrode due to the short circuit can be prevented.

以下、この発明の一実施例による非水二次電池の過充電試験結果を、表1及び表2に示す。この過充電試験には、積層体を形成する各正極、負極間に挿入されるセパレータの条件を変えた4種類の非水二次電池を用いている。一つは、ポリプロピレン繊維から形成された不織布であり、通気度7(s/100ml)で、厚みが25μm、空孔率70%のものを1枚或いは2枚用いたものである。もう一つは、ポリプロピレン製多孔質フィルムで形成され、通気度500(s/100ml)で厚み25μm、空孔率54%のものを1枚或いは2枚用いたものである。   Tables 1 and 2 show the overcharge test results of the non-aqueous secondary battery according to one embodiment of the present invention. In this overcharge test, four types of nonaqueous secondary batteries in which the conditions of the separator inserted between each positive electrode and negative electrode forming the laminate are changed are used. One is a non-woven fabric formed from polypropylene fibers, which uses one or two sheets having an air permeability of 7 (s / 100 ml), a thickness of 25 μm, and a porosity of 70%. The other is one made of a polypropylene porous film, having a permeability of 500 (s / 100 ml), a thickness of 25 μm, and a porosity of 54%.

また、それぞれの条件において、エチレンカーボネートとジエチルカーボネートを50:50の割合(質量比)で混合した混合溶媒に、LiPFを1mol/lの濃度で溶解し、さらに芳香族化合物であるビフェニルを、質量比で0%(無添加)、3%、5%、10%と比率を変えて添加したものを非水電解質として用いた。 Further, in each condition, LiPF 6 was dissolved at a concentration of 1 mol / l in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a ratio (mass ratio) of 50:50, and biphenyl as an aromatic compound was further dissolved. A non-aqueous electrolyte was used that was added at a mass ratio of 0% (no addition), 3%, 5%, and 10%.

このように形成されたそれぞれの電池を、2A(0.2C)の定電流及び4.2Vの定電圧にて満充電にした後、2Aの定電流により3Vまで放電し、容量10Ahの非水二次電池とした。この電池を用いて行った過充電試験の結果は、表1に示す通りであった。   Each battery formed in this way was fully charged with a constant current of 2A (0.2C) and a constant voltage of 4.2V, then discharged to 3V with a constant current of 2A, and a non-aqueous battery with a capacity of 10Ah. A secondary battery was obtained. The results of the overcharge test performed using this battery are as shown in Table 1.

なお、表1に示す試験は、充電方式:10A(1C)定電流/12V定電圧、環境温度:室温(20℃)にて、行ったものであり、各条件に5個の電池を使用して、試験後に異常が認められるか確認した。   The tests shown in Table 1 were conducted under a charging method: 10 A (1 C) constant current / 12 V constant voltage, and an environmental temperature: room temperature (20 ° C.). Five batteries were used for each condition. Thus, it was confirmed whether abnormalities were observed after the test.

さらに上記実施例と同様にして作製された非水二次電池を用いて、真夏で且つ組み電池にして充電した場合の放熱性低下による問題発生を想定して、環境温度を20℃から40℃、上限電圧を12Vから100Vにそれぞれ変更して、過充電試験を行なった。その試験結果は表2に示す通りであった。なお、試験は、充電方式:10A(1C)定電流/100V定電圧、環境温度:40℃で行い、表1の試験と同様に、各条件に5個の電池を使用して、試験後に異常が認められるか確認した。   Furthermore, using the non-aqueous secondary battery produced in the same manner as in the above example, the environmental temperature is set to 20 ° C. to 40 ° C., assuming that there is a problem due to a decrease in heat dissipation when charging as a battery pack in summer. The overcharge test was conducted by changing the upper limit voltage from 12V to 100V. The test results were as shown in Table 2. The test was conducted at a charging method: 10 A (1 C) constant current / 100 V constant voltage and an environmental temperature: 40 ° C., and in the same manner as in the test of Table 1, five batteries were used for each condition. Confirmed whether or not.

上記各試験において、異常の認められた電池の個数を表1および表2に示した。   Tables 1 and 2 show the number of batteries in which abnormalities were found in each of the above tests.

Figure 2006261093
Figure 2006261093

Figure 2006261093
Figure 2006261093

この過充電試験結果によれば、表1及び表2に示す通り、試験に用いた容量10Ahのような大容量の非水二次電池の単セル或いはそれを複数組み合わせた組み電池であっても、過充電という非常に危険な状態に晒された場合にも、安全性が確保されていることが確認できた。これは、セパレータ1枚では、添加剤の存在にもかかわらず過充電に耐える事は不可能であったが、2枚にすることで、新たに以下の機能が生じたことによると思われる。   According to this overcharge test result, as shown in Tables 1 and 2, even a single cell of a large capacity non-aqueous secondary battery such as a capacity of 10 Ah used in the test or a combination battery obtained by combining a plurality of them. It was confirmed that safety was ensured even when exposed to a very dangerous state of overcharging. This is because it was impossible for one separator to withstand overcharge in spite of the presence of the additive, but using two separators seems to have caused the following new functions.

すなわち、過充電により、電解質中の芳香族化合物が、正極表面で重合分解反応を開始し、セパレータと一体化し正極表面にポリマー重合被膜を構成するとともに、同時に生成されるガスによって、重合被膜により正極と一体化したセパレータから他のもう1枚のセパレータが剥離し、更にそのセパレータは負極とも剥離する。このため、正極と負極がセパレータを介して密着している箇所が無くなるので、充電電流の集中による発熱反応によりセパレータが溶解して短絡を生じる危険が減少する。   That is, by overcharging, the aromatic compound in the electrolyte starts a polymerization decomposition reaction on the surface of the positive electrode, and is integrated with the separator to form a polymer polymerization film on the surface of the positive electrode. The other separator is peeled off from the separator integrated with the separator, and the separator is also peeled off from the negative electrode. For this reason, since there is no portion where the positive electrode and the negative electrode are in close contact with each other through the separator, the risk that the separator is melted due to the exothermic reaction due to the concentration of the charging current is reduced.

以下、この発明の他の実施例による非水二次電池の釘刺し試験結果を表3に、カッター刺し試験結果を表4に示す。   Table 3 shows the nail penetration test results of the nonaqueous secondary battery according to another embodiment of the present invention, and Table 4 shows the cutter penetration test results.

なお、上記試験は、実施例1で用いた非水電解質に代えて、前記一般式で表される環状のホスファゼン誘導体であるホスライト(ブリヂストン社製、商品名)を、質量比で0%(無添加)、2%、3%、5%、10%と比率を変えて添加した非水電解質を用いた以外は実施例1の各電池と同様にして作製した電池を用いて行った。   In addition, in the above test, instead of the non-aqueous electrolyte used in Example 1, phoslite (trade name, manufactured by Bridgestone), which is a cyclic phosphazene derivative represented by the above general formula, was used in a mass ratio of 0% (none Addition) A battery manufactured in the same manner as each battery of Example 1 was used except that the nonaqueous electrolyte added at a ratio of 2%, 3%, 5%, and 10% was used.

上記それぞれの電池に対し、実施例1と同様の充放電を行い、容量10Ahの非水二次電池とした。   The respective batteries were charged and discharged in the same manner as in Example 1 to obtain a non-aqueous secondary battery having a capacity of 10 Ah.

なお、表3に示す釘刺し試験は、室温(20℃)にて、釘の直径3mm、釘刺し速度1mm/sで電池を貫通させて行ったものであり、各条件に5個の電池を使用して、試験後に異常が認められるか確認した。又、表4に示すカッター刺し試験は、室温(20℃)で、刃幅9mmのカッターを任意の速度で電池表面に刺し貫通させて行ったものであり、各条件に5個の電池を使用して、試験後に異常が認められるか確認した。更に表5には、組み電池にした場合の放熱性低下を想定して、表4の室温を20℃から40℃に変更して行った試験結果を示す。   In addition, the nail penetration test shown in Table 3 was conducted by passing a battery through a battery at room temperature (20 ° C.) with a nail diameter of 3 mm and a nail penetration speed of 1 mm / s. Used to check if any abnormalities were observed after the test. In addition, the cutter penetration test shown in Table 4 was conducted by inserting a cutter with a blade width of 9 mm into the battery surface at an arbitrary speed at room temperature (20 ° C.), and using 5 batteries for each condition. Thus, it was confirmed whether abnormalities were observed after the test. Further, Table 5 shows the test results obtained by changing the room temperature in Table 4 from 20 ° C. to 40 ° C., assuming a decrease in heat dissipation when an assembled battery is used.

上記各試験において、異常の認められた電池の個数を表3〜表5に示した。   Tables 3 to 5 show the number of batteries in which abnormality was observed in each of the above tests.

Figure 2006261093
Figure 2006261093

Figure 2006261093
Figure 2006261093

Figure 2006261093
Figure 2006261093

この表3〜表5の結果から明らかなように、単セルはもとよりそれを複数組み合わせた放熱性の悪い組み電池においても、鋭利物破損による電池破壊時に、発火や破裂などの異常の生じない安全性の高い電池を構成できることが確認された。   As is clear from the results of Tables 3 to 5, even in the case of a single battery or a combination battery with poor heat dissipation, which is a combination of a plurality of cells, safety that does not cause an abnormality such as ignition or rupture at the time of battery destruction due to sharp damage It was confirmed that a high-performance battery could be constructed.

以下、この発明のさらに他の実施例による非水二次電池の過充電試験結果、釘刺し試験結果、およびカッター刺し試験結果を表6に示す。   Hereinafter, Table 6 shows the overcharge test result, the nail penetration test result, and the cutter penetration test result of the non-aqueous secondary battery according to still another example of the present invention.

なお、上記試験は、実施例1で用いた非水電解質に代えて、ビフェニルを質量比で3%、ホスライトを質量比で3%添加した非水電解質を用い、セパレータを以下の構成とした以外は実施例1と同様にして作製した電池を用いて行った。すなわちこの実施例3では、実施例1と同様の不織布を2枚重ねてセパレータとしたもの、実施例1と同様の多孔質フィルムを2枚重ねてセパレータとしたもの、および、前記不織布と多孔質フィルムを1枚ずつ重ね、不織布を正極側に、多孔質フィルムを負極側に配置してセパレータとしたものの3種類の電池を作製した。   The above test was performed using a non-aqueous electrolyte in which 3% by weight of biphenyl and 3% by weight of phoslite were added instead of the non-aqueous electrolyte used in Example 1, and the separator was configured as follows. Was carried out using a battery produced in the same manner as in Example 1. That is, in Example 3, two sheets of non-woven fabric similar to Example 1 were stacked to form a separator, two porous films similar to Example 1 were stacked to form a separator, and the non-woven fabric and porous film Three types of batteries were prepared, one by one, and a non-woven fabric on the positive electrode side and a porous film on the negative electrode side to form a separator.

上記それぞれの電池に対し、実施例1と同様の充放電を行い、容量10Ahの非水二次電池とした。   The respective batteries were charged and discharged in the same manner as in Example 1 to obtain a non-aqueous secondary battery having a capacity of 10 Ah.

なお、表6に示す過充電試験は、充電方式:10A(1C)定電流/100V定電圧、環境温度:室温(20℃)で行い、釘刺し試験は、室温(20℃)で、釘の直径3mm、釘刺し速度1mm/sで電池を貫通させ、カッター刺し試験は、室温(20℃)で、刃幅9mmのカッターを任意の速度で電池表面に刺し、貫通させる方法にて行った。各試験に5個の電池を使用して、試験後に異常が認められるか確認した。   The overcharge test shown in Table 6 is performed at a charging method: 10 A (1 C) constant current / 100 V constant voltage, and the ambient temperature: room temperature (20 ° C.). The nail penetration test is performed at room temperature (20 ° C.). The battery was penetrated at a diameter of 3 mm and a nail penetration speed of 1 mm / s, and the cutter penetration test was performed at a room temperature (20 ° C.) by inserting a cutter with a blade width of 9 mm into the battery surface at an arbitrary speed. Five batteries were used for each test, and it was confirmed whether abnormality was recognized after the test.

さらに、組み電池化による放熱性低下を想定し、室温を20℃から40℃に変更して上記同様の試験を行った結果も表7に示した。   Further, Table 7 also shows the results of performing the same test as described above by changing the room temperature from 20 ° C. to 40 ° C., assuming that the heat dissipation is reduced due to the battery assembly.

上記各試験において、異常の認められた電池の個数を表6および表7に示した。   Tables 6 and 7 show the number of batteries in which abnormality was found in each of the above tests.

Figure 2006261093
Figure 2006261093

Figure 2006261093
Figure 2006261093

表6および表7の結果より明らかなように、高容量、高エネルギー密度化された大型非水二次電池の単セル又はそれを複数組み合わせた放熱性の悪い組み電池であっても、ベンゼン環を有する芳香族化合物とホスファゼン誘導体とを非水電解質に添加することにより、特に高い安全性を確保できることが確認された。   As is clear from the results in Tables 6 and 7, even a single cell of a large-capacity non-aqueous secondary battery with high capacity and high energy density or a combination battery with a combination of a plurality of them that has poor heat dissipation, It was confirmed that particularly high safety can be ensured by adding an aromatic compound having a phosphazene derivative and a phosphazene derivative to a non-aqueous electrolyte.

本発明の非水二次電池の外観を示す概略図である。It is the schematic which shows the external appearance of the non-aqueous secondary battery of this invention. 非水二次電池に釘が刺さった時に、セパレータが釘を覆っている様子を示す概略図である。It is the schematic which shows a mode that the separator has covered the nail when the nail stabbed in the non-aqueous secondary battery.

符号の説明Explanation of symbols

2 1枚目セパレータ
4 釘
6 2枚目セパレータ
10 非水二次電池
12 積層体
14 収容容器
16 正極リード端子
18 負極リード端子
2 1st sheet separator 4 Nail 6 2nd sheet separator 10 Non-aqueous secondary battery 12 Laminated body 14 Container 16 Positive electrode lead terminal 18 Negative electrode lead terminal

Claims (15)

リチウムイオンを吸蔵・放出できる活物質を含む負極と、リチウム含有酸化物を含む正極とがセパレータを介して積層或いは捲回され、非水電解質とともに収容容器に収納された非水二次電池において、前記セパレータが複数層で構成されており、前記電解質に、ベンゼン環を有する芳香族化合物を添加したことを特徴とする非水二次電池。   In a non-aqueous secondary battery in which a negative electrode including an active material capable of inserting and extracting lithium ions and a positive electrode including a lithium-containing oxide are stacked or wound through a separator and stored in a storage container together with a non-aqueous electrolyte. A non-aqueous secondary battery, wherein the separator is composed of a plurality of layers, and an aromatic compound having a benzene ring is added to the electrolyte. 前記電解質に、ホスファゼン誘導体を添加したことを特徴とする請求項1記載の非水二次電池。   The non-aqueous secondary battery according to claim 1, wherein a phosphazene derivative is added to the electrolyte. 前記ホスファゼン誘導体が、下記一般式(1)で表される環状の化合物である請求項2記載の非水二次電池。
Figure 2006261093
ただし、側鎖Rは、
1)−CH、−CHCHなどの炭素数1〜10のアルキル基(ただし、水素の一部または全部がフッ素などのハロゲン元素で置換されていてもよい)
2)−OCH、−OCHCH、−OC、−OCHOCHCHなどの炭素数1〜10のアルコキシ基(ただし、水素の一部または全部がフッ素などのハロゲン元素で置換されていてもよい)
3)−COOCH、−COOCHCH、−COOCなどの炭素数1〜10のカルボキシル基(ただし、水素の一部または全部がフッ素などのハロゲン元素で置換されていてもよい)
4)−COCH、−COCHCH、−COCなどの炭素数1〜10のカルボニル基(ただし、水素の一部または全部がフッ素などのハロゲン元素で置換されていてもよい)
5)−C、−CCH、−C(CHなどの炭素数1〜12のアリール基(ただし、水素の一部または全部がフッ素などのハロゲン元素で置換されていてもよい)
6)−CH=CH、−CH=CH、−CH=CHなどの炭素数1〜10のビニル基(ただし、水素の一部または全部がフッ素などのハロゲン元素で置換されていてもよい)
7)水素またはフッ素、塩素などのハロゲン元素
のいずれかであって、6個のRは互いに同じであっても異なっていてもよい。
The non-aqueous secondary battery according to claim 2, wherein the phosphazene derivative is a cyclic compound represented by the following general formula (1).
Figure 2006261093
However, the side chain R is
1) -CH 3, alkyl group having 1 to 10 carbon atoms, such as -CH 2 CH 3 (although some hydrogen or all may be substituted with a halogen element such as fluorine)
2) Alkoxy groups having 1 to 10 carbon atoms such as —OCH 3 , —OCH 2 CH 3 , —OC 6 H 5 , —OCH 2 OCH 2 CH 3 (however, part or all of hydrogen is a halogen element such as fluorine) May be substituted)
3) -COOCH 3, -COOCH 2 CH 3, -COOC 6 H 5 carboxyl group having 1 to 10 carbon atoms such as (although some hydrogen or all may be substituted with a halogen element such as fluorine)
4) A carbonyl group having 1 to 10 carbon atoms such as —COCH 3 , —COCH 2 CH 3 , —COC 6 H 5 (however, part or all of hydrogen may be substituted with a halogen element such as fluorine)
5) an aryl group having 1 to 12 carbon atoms such as —C 6 H 5 , —C 6 H 4 CH 3 , —C 6 H 5 (CH 3 ) 2 (provided that part or all of hydrogen is halogen such as fluorine) May be substituted with an element)
6) A vinyl group having 1 to 10 carbon atoms such as —CH═CH 2 , —CH═CH 2 C 2 H 5 , —CH═CH 2 C 6 H 5 (provided that part or all of hydrogen is fluorine or the like) May be substituted with a halogen element)
7) Any of hydrogen, halogen elements such as fluorine and chlorine, and six Rs may be the same or different from each other.
前記ホスファゼン誘導体の添加量が、電解質に対して質量比で1〜15%である請求項2または3に記載の非水二次電池。   The non-aqueous secondary battery according to claim 2 or 3, wherein the addition amount of the phosphazene derivative is 1 to 15% by mass ratio with respect to the electrolyte. 前記ベンゼン環を有する芳香族化合物の添加量が、電解質に対して質量比で2〜15%である請求項1〜4のいずれか記載の非水二次電池。   The nonaqueous secondary battery according to any one of claims 1 to 4, wherein an addition amount of the aromatic compound having a benzene ring is 2 to 15% by mass ratio with respect to the electrolyte. 前記ベンゼン環を有する芳香族化合物が、ビフェニルおよびシクロへキシルベンゼンより選択される少なくとも1種の化合物またはその誘導体である請求項1〜5のいずれか記載の非水二次電池。   The nonaqueous secondary battery according to claim 1, wherein the aromatic compound having a benzene ring is at least one compound selected from biphenyl and cyclohexylbenzene or a derivative thereof. リチウムイオンを吸蔵・放出できる活物質を含む負極と、リチウム含有酸化物を含む正極とがセパレータを介して積層或いは捲回され、非水電解質とともに収容容器に収納された非水二次電池において、前記セパレータが複数層で構成されており、前記電解質に、ホスファゼン誘導体を添加したことを特徴とする非水二次電池。   In a non-aqueous secondary battery in which a negative electrode including an active material capable of inserting and extracting lithium ions and a positive electrode including a lithium-containing oxide are stacked or wound through a separator and stored in a storage container together with a non-aqueous electrolyte. A non-aqueous secondary battery, wherein the separator is composed of a plurality of layers, and a phosphazene derivative is added to the electrolyte. 前記ホスファゼン誘導体が、下記一般式(2)で表される環状の化合物である請求項7記載の非水二次電池。
Figure 2006261093
ただし、側鎖Rは、
1)−CH、−CHCHなどの炭素数1〜10のアルキル基(ただし、水素の一部または全部がフッ素などのハロゲン元素で置換されていてもよい)
2)−OCH、−OCHCH、−OC、−OCHOCHCHなどの炭素数1〜10のアルコキシ基(ただし、水素の一部または全部がフッ素などのハロゲン元素で置換されていてもよい)
3)−COOCH、−COOCHCH、−COOCなどの炭素数1〜10のカルボキシル基(ただし、水素の一部または全部がフッ素などのハロゲン元素で置換されていてもよい)
4)−COCH、−COCHCH、−COCなどの炭素数1〜10のカルボニル基(ただし、水素の一部または全部がフッ素などのハロゲン元素で置換されていてもよい)
5)−C、−CCH、−C(CHなどの炭素数1〜12のアリール基(ただし、水素の一部または全部がフッ素などのハロゲン元素で置換されていてもよい)
6)−CH=CH、−CH=CH、−CH=CHなどの炭素数1〜10のビニル基(ただし、水素の一部または全部がフッ素などのハロゲン元素で置換されていてもよい)
7)水素またはフッ素、塩素などのハロゲン元素
のいずれかであって、6個のRは互いに同じであっても異なっていてもよい。
The non-aqueous secondary battery according to claim 7, wherein the phosphazene derivative is a cyclic compound represented by the following general formula (2).
Figure 2006261093
However, the side chain R is
1) -CH 3, alkyl group having 1 to 10 carbon atoms, such as -CH 2 CH 3 (although some hydrogen or all may be substituted with a halogen element such as fluorine)
2) Alkoxy groups having 1 to 10 carbon atoms such as —OCH 3 , —OCH 2 CH 3 , —OC 6 H 5 , —OCH 2 OCH 2 CH 3 (however, part or all of hydrogen is a halogen element such as fluorine) May be substituted)
3) -COOCH 3, -COOCH 2 CH 3, -COOC 6 H 5 carboxyl group having 1 to 10 carbon atoms such as (although some hydrogen or all may be substituted with a halogen element such as fluorine)
4) A carbonyl group having 1 to 10 carbon atoms such as —COCH 3 , —COCH 2 CH 3 , —COC 6 H 5 (however, part or all of hydrogen may be substituted with a halogen element such as fluorine)
5) an aryl group having 1 to 12 carbon atoms such as —C 6 H 5 , —C 6 H 4 CH 3 , —C 6 H 5 (CH 3 ) 2 (provided that part or all of hydrogen is halogen such as fluorine) May be substituted with an element)
6) A vinyl group having 1 to 10 carbon atoms such as —CH═CH 2 , —CH═CH 2 C 2 H 5 , —CH═CH 2 C 6 H 5 (provided that part or all of hydrogen is fluorine or the like) May be substituted with a halogen element)
7) Any of hydrogen, halogen elements such as fluorine and chlorine, and six Rs may be the same or different from each other.
前記ホスファゼン誘導体の添加量が、電解質に対して質量比で1〜15%である請求項7または8記載の非水二次電池。   The non-aqueous secondary battery according to claim 7 or 8, wherein the addition amount of the phosphazene derivative is 1 to 15% by mass with respect to the electrolyte. 前記セパレータが、同種あるいは異種のセパレータが積層一体化された積層体であるか、または、同種あるいは異種の2枚以上のセパレータを重ねたものである請求項1〜9のいずれか記載の非水二次電池。   The non-water according to any one of claims 1 to 9, wherein the separator is a laminated body in which the same kind or different kinds of separators are laminated and integrated, or two or more separators of the same kind or different kinds are stacked. Secondary battery. 前記セパレータが、透気度が300(s/100ml)以下で、空孔率が30%〜80%であり、かつ厚みが5μm〜50μmである不織布、および、透気度が600(s/100ml)以下で、空孔率が30%〜80%であり、かつ厚みが5μm〜50μmである多孔質フィルムより選択される少なくとも1種で構成されたことを特徴とする請求項10記載の非水二次電池。   The separator is a non-woven fabric having an air permeability of 300 (s / 100 ml) or less, a porosity of 30% to 80%, and a thickness of 5 μm to 50 μm, and an air permeability of 600 (s / 100 ml). The non-water according to claim 10, wherein the non-water is composed of at least one selected from porous films having a porosity of 30% to 80% and a thickness of 5 μm to 50 μm. Secondary battery. 前記セパレータの材質が、ポリエチレン、ポリプロピレン、ポリエチレンとポリプロピレンの融合体、ポリエチレンテレフタレートおよびポリブチレンテレフタレートより選択される少なくとも1種である請求項11記載の非水二次電池。   The non-aqueous secondary battery according to claim 11, wherein a material of the separator is at least one selected from polyethylene, polypropylene, a fusion of polyethylene and polypropylene, polyethylene terephthalate, and polybutylene terephthalate. 前記セパレータにおいて、正極側の空孔率を負極側の空孔率よりも高くしたことを特徴とする請求項1〜12のいずれか記載の非水二次電池。   The nonaqueous secondary battery according to claim 1, wherein the separator has a higher porosity on the positive electrode side than on the negative electrode side. 前記セパレータにおいて、負極側表面の凹凸を正極側表面の凹凸よりも小さくしたことを特徴とする請求項1〜13のいずれか記載の非水二次電池。 The nonaqueous secondary battery according to any one of claims 1 to 13, wherein in the separator, the unevenness on the negative electrode side surface is smaller than the unevenness on the positive electrode side surface. 前記負極の活物質が炭素材である請求項1〜14のいずれか記載の非水二次電池。
The nonaqueous secondary battery according to claim 1, wherein the negative electrode active material is a carbon material.
JP2005321051A 2005-02-10 2005-11-04 Non-aqueous secondary battery Active JP4367951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005321051A JP4367951B2 (en) 2005-02-10 2005-11-04 Non-aqueous secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005033818 2005-02-10
JP2005040562 2005-02-17
JP2005321051A JP4367951B2 (en) 2005-02-10 2005-11-04 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2006261093A true JP2006261093A (en) 2006-09-28
JP4367951B2 JP4367951B2 (en) 2009-11-18

Family

ID=37100072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321051A Active JP4367951B2 (en) 2005-02-10 2005-11-04 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4367951B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234458A (en) * 2006-03-02 2007-09-13 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2009016107A (en) * 2007-07-03 2009-01-22 Ntt Facilities Inc Nonaqueous electrolyte battery
JP2009283463A (en) * 2008-05-21 2009-12-03 Samsung Sdi Co Ltd Electrolyte solution for lithium ion secondary battery, and lithium ion secondary battery
JP2011204822A (en) * 2010-03-25 2011-10-13 Jm Energy Corp Lithium-ion capacitor
JP2012048873A (en) * 2010-08-25 2012-03-08 Hitachi Ltd Lithium ion secondary battery
WO2012029654A1 (en) * 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery
JP2012113875A (en) * 2010-11-22 2012-06-14 Hitachi Maxell Energy Ltd Nonaqueous electrolyte battery module
JP2012123915A (en) * 2010-12-06 2012-06-28 Hitachi Ltd Lithium secondary battery
JP2012522340A (en) * 2009-03-31 2012-09-20 リ−テック・バッテリー・ゲーエムベーハー Galvanicel with separable junction area
WO2013032006A1 (en) * 2011-09-02 2013-03-07 株式会社Nttファシリティーズ Nonaqueous electrolytic solution battery
JP2014519499A (en) * 2011-05-13 2014-08-14 プリンセス エナジー システムズ、インコーポレイテッド Safe battery solvent
WO2015098626A1 (en) * 2013-12-27 2015-07-02 新神戸電機株式会社 Lithium-ion secondary cell
JP2016522970A (en) * 2013-05-14 2016-08-04 ハロップ、メイソン、カート Fluorinated phosphazenes for use in lithium ion batteries as electrolyte additives and cosolvents
WO2017014222A1 (en) * 2015-07-21 2017-01-26 日立化成株式会社 Lithium-ion secondary battery
WO2020054662A1 (en) * 2018-09-11 2020-03-19 マクセルホールディングス株式会社 Cylindrical non-aqueous electrolyte primary battery
CN111864270A (en) * 2019-04-24 2020-10-30 微宏动力系统(湖州)有限公司 Non-aqueous electrolyte and lithium ion secondary battery containing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302749A (en) * 1997-04-25 1998-11-13 Nissan Motor Co Ltd Non-aqueous electrolytic secondary battery
JP2000030740A (en) * 1998-07-15 2000-01-28 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2001023687A (en) * 1999-07-09 2001-01-26 Sony Corp Nonaqueous electrolyte battery
JP2001052736A (en) * 1999-08-04 2001-02-23 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2001516492A (en) * 1996-05-24 2001-09-25 エス・アール・アイ・インターナシヨナル Non-combustible / self-extinguishing electrolyte for batteries
JP2004006164A (en) * 2002-06-03 2004-01-08 Hitachi Maxell Ltd Non-aqueous secondary battery and electronic apparatus using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001516492A (en) * 1996-05-24 2001-09-25 エス・アール・アイ・インターナシヨナル Non-combustible / self-extinguishing electrolyte for batteries
JPH10302749A (en) * 1997-04-25 1998-11-13 Nissan Motor Co Ltd Non-aqueous electrolytic secondary battery
JP2000030740A (en) * 1998-07-15 2000-01-28 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2001023687A (en) * 1999-07-09 2001-01-26 Sony Corp Nonaqueous electrolyte battery
JP2001052736A (en) * 1999-08-04 2001-02-23 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2004006164A (en) * 2002-06-03 2004-01-08 Hitachi Maxell Ltd Non-aqueous secondary battery and electronic apparatus using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU,K ET AL.: "An Attempt to Formulate Nonflammable Lithium Ion Electrolytes with Alkyl Phosphates and Phosphazenes", J. ELECTROCHEMICAL SOC., vol. 149, no. 5, JPN6008059939, May 2002 (2002-05-01), US, pages 622 - 626, ISSN: 0001382980 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234458A (en) * 2006-03-02 2007-09-13 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2009016107A (en) * 2007-07-03 2009-01-22 Ntt Facilities Inc Nonaqueous electrolyte battery
JP2009283463A (en) * 2008-05-21 2009-12-03 Samsung Sdi Co Ltd Electrolyte solution for lithium ion secondary battery, and lithium ion secondary battery
US9368834B2 (en) 2008-05-21 2016-06-14 Samsung Sdi Co., Ltd. Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
US8771881B2 (en) 2008-05-21 2014-07-08 Samsung Sdi Co., Ltd. Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
JP2012522340A (en) * 2009-03-31 2012-09-20 リ−テック・バッテリー・ゲーエムベーハー Galvanicel with separable junction area
JP2011204822A (en) * 2010-03-25 2011-10-13 Jm Energy Corp Lithium-ion capacitor
JP2012048873A (en) * 2010-08-25 2012-03-08 Hitachi Ltd Lithium ion secondary battery
JP5920217B2 (en) * 2010-09-02 2016-05-18 日本電気株式会社 Secondary battery
US9219274B2 (en) 2010-09-02 2015-12-22 Nec Corporation Secondary battery
WO2012029654A1 (en) * 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery
JP2012113875A (en) * 2010-11-22 2012-06-14 Hitachi Maxell Energy Ltd Nonaqueous electrolyte battery module
JP2012123915A (en) * 2010-12-06 2012-06-28 Hitachi Ltd Lithium secondary battery
JP2014519499A (en) * 2011-05-13 2014-08-14 プリンセス エナジー システムズ、インコーポレイテッド Safe battery solvent
JP2016195118A (en) * 2011-05-13 2016-11-17 プリンセス エナジー システムズ、インコーポレイテッド Safety battery solvent
WO2013032006A1 (en) * 2011-09-02 2013-03-07 株式会社Nttファシリティーズ Nonaqueous electrolytic solution battery
JP2013054891A (en) * 2011-09-02 2013-03-21 Ntt Facilities Inc Nonaqueous electrolyte battery
JP2016522970A (en) * 2013-05-14 2016-08-04 ハロップ、メイソン、カート Fluorinated phosphazenes for use in lithium ion batteries as electrolyte additives and cosolvents
WO2015098626A1 (en) * 2013-12-27 2015-07-02 新神戸電機株式会社 Lithium-ion secondary cell
WO2017014222A1 (en) * 2015-07-21 2017-01-26 日立化成株式会社 Lithium-ion secondary battery
WO2020054662A1 (en) * 2018-09-11 2020-03-19 マクセルホールディングス株式会社 Cylindrical non-aqueous electrolyte primary battery
CN111864270A (en) * 2019-04-24 2020-10-30 微宏动力系统(湖州)有限公司 Non-aqueous electrolyte and lithium ion secondary battery containing same
CN111864270B (en) * 2019-04-24 2022-06-24 微宏动力系统(湖州)有限公司 Non-aqueous electrolyte and lithium ion secondary battery containing same

Also Published As

Publication number Publication date
JP4367951B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP4367951B2 (en) Non-aqueous secondary battery
Liu et al. Materials for lithium-ion battery safety
JP4126711B2 (en) Non-aqueous electrolyte battery
EP3965215A1 (en) Separator for electrochemical apparatus, electrochemical apparatus, and electronic apparatus
WO2011069331A1 (en) Lithium-ion battery
JP5010250B2 (en) Battery stack and battery pack
JP2012109123A (en) Heat-resistant microporous film and separator for batteries
JP2007103356A (en) Non-aqueous secondary battery
JP2015181110A (en) Heat resistance microporous film, separator for lithium ion secondary batteries, and lithium ion secondary battery
CN107851838A (en) Lithium rechargeable battery
KR100611940B1 (en) Electrochemical cell having an improved safety
JP2016143550A (en) Zigzag-folded laminate structure of secondary battery and battery module
JP4218792B2 (en) Non-aqueous secondary battery
JP2006260990A (en) Stacked battery
US20080199764A1 (en) Safer high energy battery
KR101841306B1 (en) Electrode assembly comprising dfferent kind of separator comprising taping part for improving safety and lithium secondary batteries comprising the same
JP2007087801A (en) Lithium ion secondary battery
JP2011249015A (en) Nonaqueous electrolyte battery module
JP2008059966A (en) Nonaqueous secondary battery
KR20140072794A (en) Non-aqueous electrolyte rechargeable battery pack
JP4940498B2 (en) Non-aqueous secondary battery
JP2004031138A (en) Thin battery
JP4439870B2 (en) Nonaqueous electrolyte secondary battery
KR20030005254A (en) A multi-layered polymer electrolyte and lithium secondary battery comprising the same
JP2003303581A (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20081029

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090724

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

R150 Certificate of patent or registration of utility model

Ref document number: 4367951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250