JP4439870B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4439870B2
JP4439870B2 JP2003357719A JP2003357719A JP4439870B2 JP 4439870 B2 JP4439870 B2 JP 4439870B2 JP 2003357719 A JP2003357719 A JP 2003357719A JP 2003357719 A JP2003357719 A JP 2003357719A JP 4439870 B2 JP4439870 B2 JP 4439870B2
Authority
JP
Japan
Prior art keywords
separator
electrode plate
negative electrode
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003357719A
Other languages
Japanese (ja)
Other versions
JP2005123058A (en
Inventor
耕三 渡邉
修司 堤
光弘 武野
幹也 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003357719A priority Critical patent/JP4439870B2/en
Publication of JP2005123058A publication Critical patent/JP2005123058A/en
Application granted granted Critical
Publication of JP4439870B2 publication Critical patent/JP4439870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、非水電解質二次電池に係り、特に正極板および負極板を積層し、捲回した極板群を備えた非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to a non-aqueous electrolyte secondary battery including a group of electrode plates in which a positive electrode plate and a negative electrode plate are stacked and wound.

近年、携帯電話やノートパソコン等のポータブル、コードレス機器の普及により、これらの機器に電力を供給する電池の需要が高まっている。なかでも、小型軽量で、エネルギー密度が高く、繰り返し充放電が可能な二次電池の需要が高まっている。このような二次電池として、非水電解質二次電池が挙げられる。   In recent years, with the spread of portable and cordless devices such as mobile phones and notebook computers, the demand for batteries for supplying power to these devices has increased. In particular, there is an increasing demand for secondary batteries that are small and light, have high energy density, and can be repeatedly charged and discharged. Examples of such secondary batteries include non-aqueous electrolyte secondary batteries.

非水電解質二次電池は、正極板、負極板およびセパレータからなる極板群と、前記極板群を収納した電池ケースと前記極板群に保持された非水電解質により構成される。   The non-aqueous electrolyte secondary battery includes an electrode plate group including a positive electrode plate, a negative electrode plate, and a separator, a battery case that houses the electrode plate group, and a non-aqueous electrolyte that is held by the electrode plate group.

正極、負極が捲回され、正極と負極が交互に積層することによって極板群を形成する捲回型非水電解質二次電池では、正極と負極はセパレータを配して隔離している。一般にセパレータには過充電などにより温度が上昇したときに、多孔質高分子樹脂であるセパレータは、シャットダウン(その内部、表面に存在する孔が塞がる)し、両極板の電気的接触を絶つような機能をもたせてある。   In a wound non-aqueous electrolyte secondary battery in which a positive electrode and a negative electrode are wound and a positive electrode and a negative electrode are alternately stacked to form a plate group, the positive electrode and the negative electrode are separated by a separator. In general, when the temperature of the separator rises due to overcharge, etc., the separator that is a porous polymer resin shuts down (the pores that exist inside and close the surface) and breaks the electrical contact between the bipolar plates. It has a function.

しかし、このシャットダウンはより低温で起こる方が安全性からみて好ましいが、さらに温度が上昇したときに起こるメルトダウン(セパレータそのものの溶融)との差を設けることが難しいため、瞬時に高温に達するような場合には安全性への信頼性が下がる。   However, it is preferable for this shutdown to occur at a lower temperature from the viewpoint of safety, but since it is difficult to provide a difference from the meltdown (melting of the separator itself) that occurs when the temperature further increases, In this case, the reliability of safety is reduced.

これに対して、非水電解質二次電池の安全性を向上するための技術開発が行われている。例えば、捲回型の極板群の正極板と負極板の最外周部に設けた集電体露出部を有する極板群にて、集電体露出部同士が重なりあう部分の間に捲回構造極板群内部と異なる仕様の絶縁体のセパレータを設け、材料の異なる2種類のセパレータが配されることが開示されている。(特許文献1参照。)これによりクラッシュ試験時などの電池に機械的圧力が電池に対して与えられた場合、集電体部を先に短絡させ、電池の安全性を確保できる。また、加熱試験においても、集電体部を隔てるセパレータがメルトダウンし、低抵抗部短絡をおこし、放電を安全に行うことができる。
特開2000−315489号公報
On the other hand, technical development for improving the safety of non-aqueous electrolyte secondary batteries has been performed. For example, in the electrode plate group having the current collector exposed portion provided on the outermost peripheral portion of the positive electrode plate and the negative electrode plate of the wound type electrode plate group, winding is performed between the portions where the current collector exposed portions overlap each other. It is disclosed that an insulator separator having different specifications from the inside of the structural electrode plate group is provided, and two types of separators having different materials are arranged. (Refer patent document 1.) Thereby, when mechanical pressure is given with respect to the battery at the time of a crash test etc., a collector part can be short-circuited first and the safety | security of a battery can be ensured. Also in the heating test, the separator separating the current collector part melts down, short-circuits the low resistance part, and can be discharged safely.
JP 2000-315489 A

しかしながら、上記のような発明では、捲回構造を有する最外周集電構造がないとき、集電体同士の低抵抗部短絡が確保できず、正極負極合剤部同士での短絡が起こり、発熱が大きくなるため発熱抑制に対する構成をとる必要がある。特に加熱試験では、セパレータが融点以上の温度で、電池の信頼性が低下する問題を払拭することができない。   However, in the invention as described above, when there is no outermost current collecting structure having a winding structure, a short circuit between the current collectors cannot be secured, and a short circuit occurs between the positive and negative electrode mixture parts, and heat is generated. Therefore, it is necessary to take a configuration for suppressing heat generation. In particular, in the heat test, the problem that the reliability of the battery decreases at a temperature where the separator is equal to or higher than the melting point cannot be eliminated.

捲回型構造の極板群では、正極板の集電体の外周側に設けた正極合剤部と対向する、負極板の集電体の内周側に設けた負極合剤部では、対向する正極合剤部の合剤量は水平型(スタック構造)極板群のときより小さくなる。反対に、正極板の集電体の内周部に設けた正極合剤部と対向する、負極板の集電体の外周部に設けた負極合剤部では、対向する正極合剤部の合剤量は水平型極板群のときより大きくなる。   In the electrode plate group having a wound structure, facing the positive electrode mixture portion provided on the outer peripheral side of the current collector of the positive electrode plate, facing the negative electrode mixture portion provided on the inner peripheral side of the current collector of the negative electrode plate The amount of the positive electrode mixture portion to be reduced is smaller than that of the horizontal (stacked structure) electrode plate group. On the other hand, in the negative electrode mixture part provided on the outer peripheral part of the current collector of the negative electrode plate, which faces the positive electrode mixture part provided on the inner peripheral part of the current collector of the positive electrode plate, The amount of the agent is larger than that of the horizontal electrode group.

原因は、(1)極板の積層が湾曲していることにより、その湾曲半径の差から生じるものである。また、(2)集電体の表面と裏面との間にリチウム(Li)イオンが拡散できる孔がない金属箔を用いるためである。   The cause is (1) the stack of electrode plates is curved, resulting from the difference in curvature radius. Moreover, (2) This is because a metal foil having no hole capable of diffusing lithium (Li) ions between the front surface and the back surface of the current collector is used.

捲回式の非水電解質二次電池が充電されたとき、上記の(1)(2)の原因により、負極板の集電体の外周部に設けた負極合剤部では、対向する正極合剤部の合剤量は水平型極板群のときより大きくなる。   When the wound nonaqueous electrolyte secondary battery is charged, the negative electrode mixture portion provided on the outer peripheral portion of the current collector of the negative electrode plate causes the opposite positive electrode mixture due to the causes (1) and (2) above. The amount of mixture in the agent part is larger than that in the horizontal electrode plate group.

つまり、負極板の集電体の外周側に設けた負極合剤部には水平部設計より大きなLiイオン量が挿入され、反対に、負極板の集電体の内周側に設けた負極合剤部には水平部設計より小さなLiイオン量しか挿入されない。   In other words, a larger amount of Li ions is inserted in the negative electrode mixture portion provided on the outer peripheral side of the current collector of the negative electrode plate than in the horizontal portion design, and conversely, the negative electrode mixture provided on the inner peripheral side of the current collector of the negative electrode plate. Only a smaller amount of Li ions is inserted into the agent part than in the horizontal part design.

このような捲回式構造の極板群を有する非水系電解質二次電池が4.2V以上過充電モードにさらされると、上記のようにLi析出が生じる量に差異が生じるため、負極板の集電体の外周側に設けた負極合剤部は、負極板の集電体の内周側に設けた負極合剤部よりLi析出量が多くなるため熱的不安定性が大きくなる。このように、熱的安定性に電池内部
で差異が現れる。また4.2V以下でも同様に負極の熱安定性に差異が生じる。
When a non-aqueous electrolyte secondary battery having such a wound electrode group is exposed to an overcharge mode of 4.2 V or more, a difference occurs in the amount of Li precipitation as described above. Since the negative electrode mixture portion provided on the outer peripheral side of the current collector has a larger Li deposition amount than the negative electrode mixture portion provided on the inner peripheral side of the current collector of the negative electrode plate, thermal instability increases. Thus, a difference appears in the thermal stability inside the battery. Similarly, a difference occurs in the thermal stability of the negative electrode even at 4.2 V or less.

上記のように、部分的に熱的安定性に電池内に差異が生じるため、大きな部分が現れるため同じ充電容量率(=充電容量/電池容量)でも、水平型極板群より捲回型極板群の方が、熱的に不安定な電池となる。   As described above, there is a difference in the thermal stability in the battery partially, so that a large part appears, so even with the same charge capacity ratio (= charge capacity / battery capacity), the wound electrode is more wound than the horizontal electrode plate group. The plate group is a thermally unstable battery.

従来の技術では、捲回型極板群を有する非水電解質二次電池の捲回させた極板の湾曲部分の熱的安定性悪化について、問題視されることなく、この部分への対策はされていなかった。   In the prior art, the deterioration of the thermal stability of the curved portion of the wound electrode plate of the nonaqueous electrolyte secondary battery having the wound electrode plate group is not regarded as a problem, and countermeasures to this portion are not Was not.

また、上記のように電池内部で活物質重量当たりのLiの挿入・脱離反応に差異が請じる部分があるとき、特に負板上にLi金属が析出したりすると、負極活物質の劣化によりサイクル特性が悪化することがあった。   In addition, when there is a portion that requires a difference in the Li insertion / extraction reaction per active material weight inside the battery as described above, especially when Li metal is deposited on the negative plate, the negative electrode active material deteriorates. As a result, the cycle characteristics may deteriorate.

そこで、本発明では上記のような問題に鑑みて、電池が充電状態にあるとき、負極板がよりLiが挿入された負極板の集電体の外周側に設けた負極合剤部と、前記負極板の集電体の外周側に設けた負極合剤部と比較して、Liの挿入が少ない負極板の集電体の内周側に設けた負極合剤部があることに着目し、電池内で内部短絡が生じるとき、熱的に安定な負極板の集電体の内周側に設けた負極合剤部で短絡を発生させることにより、電池の発熱を抑制し、電池の電圧を低下させ活物質を安定化させることができる。また、セパレータの組み合わせによっては、同時にサイクル特性を向上させることができる、高信頼性の非水電解質二次電池を提供することを目的とする。   Therefore, in view of the above problems in the present invention, when the battery is in a charged state, the negative electrode mixture portion provided on the outer peripheral side of the current collector of the negative electrode plate into which Li is inserted, Paying attention to the negative electrode mixture part provided on the inner peripheral side of the current collector of the negative electrode plate with less insertion of Li, compared with the negative electrode mixture part provided on the outer peripheral side of the current collector of the negative electrode plate, When an internal short circuit occurs in the battery, a short circuit is generated in the negative electrode mixture portion provided on the inner peripheral side of the current collector of the thermally stable negative electrode plate, thereby suppressing the heat generation of the battery and reducing the battery voltage. The active material can be stabilized by lowering. It is another object of the present invention to provide a highly reliable non-aqueous electrolyte secondary battery that can simultaneously improve cycle characteristics depending on the combination of separators.

本発明の非水電解質二次電池は、正極板および負極板を前記正極板および負極板の極板間に設けたセパレータと共に積層し、捲回された極板群を備えた非水電解質二次電池において、前記セパレータは、第1のセパレータと第2のセパレータのそれぞれ異なる仕様を有した2枚のセパレータを用いており、前記正極板の内周側に第1のセパレータのみを配置し、前記正極板の外周側には第2のセパレータのみを配置することにより、前記極板群内において第1のセパレータと第2のセパレータが交互に積層されたものである。 A non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode plate and a negative electrode plate laminated together with a separator provided between the positive electrode plate and the negative electrode plate, and a non-aqueous electrolyte secondary battery including a wound electrode plate group. In the battery, the separator uses two separators having different specifications of the first separator and the second separator, only the first separator is disposed on the inner peripheral side of the positive electrode plate, By disposing only the second separator on the outer peripheral side of the positive electrode plate, the first separator and the second separator are alternately stacked in the electrode plate group.

さらに、本発明の非水電解質二次電池は、第1のセパレータと第2のセパレータは、融点または熱収縮の大きさの仕様が、下記の様に異なることが好ましい。 Furthermore, in the nonaqueous electrolyte secondary battery of the present invention, it is preferable that the first separator and the second separator have different specifications of melting point or thermal shrinkage as follows.

第2のセパレータは、第1のセパレータより、融点が低いことが好ましい。   The second separator preferably has a lower melting point than the first separator.

第2のセパレータは、第1のセパレータより、熱収縮が大きいことが好ましい。   The second separator preferably has a larger thermal shrinkage than the first separator.

上記のように配置することによって、負極板の集電体の外周側に設けた負極合剤部より熱的に安定な負極板の集電体の内周側に設けた負極合剤部と対向する正極合剤部の接触を促すことにより、発熱を抑制し電池電圧を低下させ、活物質を安定化させる目的を果たすことができる。   By disposing as described above, it is opposite to the negative electrode mixture part provided on the inner peripheral side of the current collector of the negative electrode plate, which is more thermally stable than the negative electrode mixture part provided on the outer peripheral side of the current collector of the negative electrode plate By promoting the contact of the positive electrode material mixture portion, the purpose of suppressing heat generation, lowering the battery voltage, and stabilizing the active material can be achieved.

前記第2のセパレータは、前記第1のセパレータより、厚みが薄いことが好ましい。The second separator is preferably thinner than the first separator.

前記第2のセパレータは、前記第1のセパレータより、空隙率が大きいことが好ましい。  The second separator preferably has a larger porosity than the first separator.

前記第2のセパレータは、延伸方向が捲回方向と直行するように設け、前記第1のセパレータは延伸方向が捲回方向と平行するように設けることが好ましい。   The second separator is preferably provided so that the extending direction is perpendicular to the winding direction, and the first separator is preferably provided so that the extending direction is parallel to the winding direction.

前記第2のセパレータは、1軸延伸して作成したセパレータを設け、前記第1のセパレータは多軸延伸して作製したセパレータを設けることが好ましい。   It is preferable that the second separator is provided with a separator produced by uniaxial stretching, and the first separator is provided with a separator produced by multiaxial stretching.

前記第2のセパレータは、前記第1のセパレータより、架橋重合度が小さいことが好ましい。   The second separator preferably has a smaller degree of crosslinking polymerization than the first separator.

前記第2のセパレータは、前記第1のセパレータより、分子量が小さいことが好ましい。   The second separator preferably has a molecular weight smaller than that of the first separator.

このように配置することによって、負極板の集電体の内周側に設けた負極合剤部より熱的に安定な負極板の集電体の内周側に設けた負極合剤部と、対向する正極合剤部の短絡を促すことにより、サイクル特性に悪影響をおよぼすことなく、発熱を抑制し電池電圧を低下させ、活物質を安定化させる目的を果たすことができる。   By arranging in this way, a negative electrode mixture portion provided on the inner peripheral side of the current collector of the negative electrode plate, which is more thermally stable than a negative electrode mixture portion provided on the inner peripheral side of the current collector of the negative electrode plate, By facilitating a short circuit between the positive electrode mixture portions facing each other, the purpose of suppressing heat generation and lowering the battery voltage and stabilizing the active material can be achieved without adversely affecting the cycle characteristics.

以上のように本発明の非水電解質二次電池は、加熱試験に電池内部での短絡により起こる発熱を抑制することができる。また、サイクル特性も向上させることができる。 As described above, the nonaqueous electrolyte secondary battery of the present invention can suppress heat generation caused by a short circuit inside the battery during the heating test. In addition, cycle characteristics can be improved.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

非水電解質二次電池の一例として円筒型リチウム二次電池の概略断面図の縦断面図を図1、横断面図を図2に示す。また、極板積層部の湾曲部を拡大した概略断面図を図3に示す。このように本発明の非水電解質二次電池は、円筒型に限定されず、極板積層部の湾曲部を拡大した図3のように、捲回型極板群で重なり合う極板部分が湾曲していれば適用され、電池の形状には限定されない。   As an example of the nonaqueous electrolyte secondary battery, FIG. 1 shows a longitudinal sectional view of a schematic sectional view of a cylindrical lithium secondary battery, and FIG. 2 shows a transverse sectional view thereof. Moreover, the schematic sectional drawing which expanded the curved part of the electrode-plate laminated part is shown in FIG. Thus, the nonaqueous electrolyte secondary battery of the present invention is not limited to the cylindrical type, and the electrode plate portions that overlap in the wound electrode plate group are curved as shown in FIG. If it does, it is applied and it is not limited to the shape of a battery.

図1において、非水電解液二次電池は、正極板5と、負極板6を挟みこんだ、第2のセパレータ7と第1のセパレータ8でそれぞれ仕様の異なる2種類のセパレータを用いている。極板群4は、第2のセパレータ7、正極板5、第1のセパレータ8、負極板6の順に重ね合わせ、負極板6を内側に設けるように重ねたままの状態で渦巻き状に捲回して作成されている。極板群4を上部絶縁板9と下部絶縁板10で挟み、電解液と共に電池ケース1内に収容する。極板群4からは正極リード5dで封口板2と電気的に接続し、負極リード6dでケース1に電気的に接続されている。ケース1と封口板2は、絶縁パッキング3で密封されている。   In FIG. 1, the nonaqueous electrolyte secondary battery uses two types of separators, each having different specifications, a second separator 7 and a first separator 8 sandwiching a positive electrode plate 5 and a negative electrode plate 6. . The electrode plate group 4 is laminated in the order of the second separator 7, the positive electrode plate 5, the first separator 8, and the negative electrode plate 6, and is wound in a spiral shape with the negative electrode plate 6 being provided so as to be provided inside. Has been created. The electrode plate group 4 is sandwiched between the upper insulating plate 9 and the lower insulating plate 10 and accommodated in the battery case 1 together with the electrolytic solution. From the electrode plate group 4, the positive electrode lead 5 d is electrically connected to the sealing plate 2, and the negative electrode lead 6 d is electrically connected to the case 1. The case 1 and the sealing plate 2 are sealed with an insulating packing 3.

セパレータが異なる2種類の仕様をもつとは、例えばポリエチレンやポリプロピレンといった異なる分子構造を持つものも適用され、同一分子構造であっても、融点、熱収縮、シャットダウン温度が異なるものがよい。これらの仕様を決定する要素には、セパレータの延伸度、延伸方向、延伸軸の数、架橋重合度、分子量、分子構造があげられる。 For the separator having two different specifications, for example, those having different molecular structures such as polyethylene and polypropylene are applied, and even those having the same molecular structure are preferably different in melting point, heat shrinkage, and shutdown temperature. Factors that determine these specifications include the degree of stretching of the separator, the stretching direction, the number of stretching axes, the degree of crosslinking polymerization, the molecular weight, and the molecular structure.

本発明では検証の結果、次のような2種類の仕様をもつセパレータの組み合わせで効果が高いことがわかった。   As a result of verification in the present invention, it has been found that a combination of separators having the following two types of specifications is highly effective.

1)前記第2のセパレータ7は、前記第1のセパレータ8より、 融点が低いセパレータとする。 1) The second separator 7 is a separator having a melting point lower than that of the first separator 8.

2)前記第2のセパレータ7は、前記第1のセパレータ8より、熱収縮が大きいセパレータとする。 2) The second separator 7 is a separator having a larger thermal shrinkage than the first separator 8.

1)〜2)で、セパレータの仕様に差異を生じさせるには、セパレータの延伸度、厚み、延伸方向、延伸軸の数、架橋重合度、分子量、分子構造で差異をつける方法がある。 In 1) to 2), in order to make a difference in the specifications of the separator, there is a method of making a difference in the degree of stretching, thickness, stretching direction, number of stretching axes, degree of crosslinking polymerization, molecular weight, and molecular structure of the separator.

また、1)〜2)では、図3も示す様に、負極板6cの集電体の外周側に設けた負極合剤部6bより熱的に安定な負極板6cの集電体の内周側に設けた負極合剤部6aと対向する正極合剤部の接触を促すことにより、短絡時の発熱挙動を抑制することができ、さらに1)〜3)に限ると、前記第1のセパレータ8のLiの拡散抵抗を高くすることにより、負極合剤部6bと対向する正極間で反応抵抗が大きくなるため、負極へのLi挿入反応が抑制され、負極合剤部6aと負極合剤部6bのLiの挿入脱離反応の反応速度を合わせる効果があり、サイクル特性も向上させることもできる。 Also, in 1) to 2) , as shown in FIG. 3 , the current collector of the negative electrode plate 6c that is more thermally stable than the negative electrode mixture portion 6b provided on the outer peripheral side of the current collector of the negative electrode plate 6c. By urging the contact of the positive electrode mixture portion facing the negative electrode mixture portion 6a provided on the peripheral side, the heat generation behavior at the time of short circuit can be suppressed. Further, when limited to 1) to 3), the first By increasing the Li diffusion resistance of the separator 8, the reaction resistance increases between the positive electrode facing the negative electrode mixture portion 6 b, so that the Li insertion reaction into the negative electrode is suppressed, and the negative electrode mixture portion 6 a and the negative electrode mixture are suppressed. This has the effect of adjusting the reaction rate of the Li insertion / release reaction of the part 6b, and the cycle characteristics can also be improved.

セパレータに用いる材料は特に限定されるものではなく、電気的に導通しないものであればよく、その素材としてはポリエチレン、ポリプロピレン、ポリエステル、ポリアミド、ポリオレフィン、ポリアクリレート、ポリメタクリレート、ポリスルホン、ポリカーボネート、ポリテトラフルオロエチレンなどが用いられる。   The material used for the separator is not particularly limited as long as it is not electrically conductive, and the material is polyethylene, polypropylene, polyester, polyamide, polyolefin, polyacrylate, polymethacrylate, polysulfone, polycarbonate, polytetra Fluoroethylene or the like is used.

正極板5は、Lixy1-y2(式中、xは、1.10≧x≧0.98、およびyは、1≧y≧0を満たす。また、M、Nは、M≠Nであり、Co、Ni、Mn、Cr、Fe、Mg、Al、Znのうち少なくとも1種類を含む。)からなる正極活物質を含む正極合剤を、AlあるいはAl合金からなる正極集電体上に塗着することにより得られた正極板であることが好ましい。 Positive electrode plate 5, Li x M y N 1- y O 2 ( wherein, x represents, 1.10 ≧ x ≧ 0.98, and y satisfies 1 ≧ y ≧ 0. Further, M, N is , M ≠ N, and at least one of Co, Ni, Mn, Cr, Fe, Mg, Al, and Zn.), A positive electrode mixture made of Al or an Al alloy. A positive electrode plate obtained by coating on a current collector is preferred.

負極板6は、Liを充放電可能な炭素材、黒鉛材、合金系、または金属酸化物からなる負極活物質を含む負極合剤を、Cu、Ni、またはCu−Ni合金からなる負極集電体上に塗着することにより得られた負極板であることが好ましい。   The negative electrode plate 6 is a negative electrode current collector made of Cu, Ni, or a Cu—Ni alloy, and a negative electrode mixture containing a negative electrode active material made of carbon, graphite, alloy, or metal oxide capable of charging and discharging Li. A negative electrode plate obtained by coating on the body is preferred.

上記構成電池は、耐熱試験や過充電試験でセパレータが溶融して、正負極の極板間で内部短絡がおこり、電池の自己発熱が生じ、電池温度が上昇するのを抑制するために、正極集電体5cを挟んで正極板5の外側に設けられる正極合剤部5bと対向しあう、負極集電体6cを挟んで負極板6の内側に設けられた負極合剤部6aとの間で短絡を起こしやすくし、負極合剤部6aより不安定な負極合剤部6bと正極合剤部5aとの短絡が生じる前に、電池発熱を抑制し、電池電圧を下げて、活物質を安定化させることができる。   In the above battery, the separator is melted in the heat resistance test or overcharge test, the internal short circuit occurs between the positive and negative electrode plates, the battery self-heat is generated, and the battery temperature is prevented from rising. Between the negative electrode mixture portion 6a provided inside the negative electrode plate 6 with the negative electrode current collector 6c interposed therebetween, facing the positive electrode mixture portion 5b provided outside the positive electrode plate 5 with the current collector 5c interposed therebetween. Before the short circuit between the negative electrode mixture part 6b and the positive electrode mixture part 5a which is more unstable than the negative electrode mixture part 6a occurs, the battery heat generation is suppressed, the battery voltage is lowered, and the active material is reduced. Can be stabilized.

また、本発明では同時にサイクル特性を向上させることができる場合もあり、高信頼性の非水電解質二次電池を提供することを目的とする。   Another object of the present invention is to provide a highly reliable non-aqueous electrolyte secondary battery, which may improve cycle characteristics at the same time.

次に本発明の具体例を説明する。   Next, specific examples of the present invention will be described.

《実施例1》
実施の形態における図1〜3に示す構成と同様の円筒形リチウム二次電池を下記のように作製した。
Example 1
A cylindrical lithium secondary battery having the same configuration as that shown in FIGS. 1 to 3 in the embodiment was produced as follows.

正極板は、厚さ20μmのAl箔からなる正極集電体5cの両面における正極合剤部5a、5bに、リチウム複合酸化物LiCoO2と導電剤のアセチレンブラック、結着剤のPVdFを重量比で100:3:3で混合したものを塗布した後、乾燥、圧延して、厚さ170μmの正極板5を作製した。   The positive electrode plate is composed of a lithium composite oxide LiCoO2, a conductive agent acetylene black, and a binder PVdF in a weight ratio on the positive electrode mixture portions 5a and 5b on both surfaces of a positive electrode current collector 5c made of an Al foil having a thickness of 20 μm. After applying a mixture of 100: 3: 3, it was dried and rolled to produce a positive electrode plate 5 having a thickness of 170 μm.

負極板は、厚さ20μmのCu箔からなる負極集電体6cの両面における負極合剤部6
a、6bに、負極活物質として炭素材料に、結着剤のラバー樹脂を混合したものを塗布した後、乾燥、圧延して、厚さ170μmの負極板6を作製した。
The negative electrode plate is made of a negative electrode mixture portion 6 on both surfaces of a negative electrode current collector 6c made of Cu foil having a thickness of 20 μm.
A carbon material as a negative electrode active material mixed with a binder rubber resin was applied to a and 6b, followed by drying and rolling to prepare a negative electrode plate 6 having a thickness of 170 μm.

セパレータの作製は、ポリエチレンをダイから200℃で溶融塗出し、冷却ロールに導き、40μmのポリエチレンフィルムを得た。前記フィルムを延伸工程にて、130℃の加熱空気循環オーブン中、230%まで延伸した。この延伸することによって得られた多孔質フィルムを115℃に加熱したロールで熱固定して、25μmの多孔質ポリエチレンフィルムを得た。空隙率は測定より40%であった。このようにして得られたセパレータを第1のセパレータ8に用いた。第2のセパレータ7には、第1のセパレータで原料に用いた未延伸ポリエチレンフィルムを270%まで延伸し、その後、150℃で加熱したロールで熱固定して、20μmにして得られた多孔質ポリエチレンフィルムセパレータを用いた。空隙率は測定より、40%であった。   For the production of the separator, polyethylene was melt-coated at 200 ° C. from a die and led to a cooling roll to obtain a 40 μm polyethylene film. In the stretching process, the film was stretched to 230% in a heated air circulation oven at 130 ° C. The porous film obtained by stretching was heat-set with a roll heated to 115 ° C. to obtain a 25 μm porous polyethylene film. The porosity was 40% from the measurement. The separator thus obtained was used as the first separator 8. The second separator 7 is a porous film obtained by stretching the unstretched polyethylene film used as a raw material in the first separator to 270% and then heat-fixing it with a roll heated at 150 ° C. to 20 μm. A polyethylene film separator was used. The porosity was 40% from the measurement.

上記の正極板5と負極板6と第2のセパレータ7と第1のセパレータ8を用いて、捲回状の極板群を作製し、この極板群に保持された非水電解質からなる発電部をステンレス製ケース1に収納し、封口板2からなる端子を取り付け、電池を作製した。電池サイズは高さ65mm、直径18mmの円筒形リチウム二次電池を作製し、容量は1800mAhとした。このとき、非水電解質にはLiPF6を1mol/l含むEC:EMCの混合溶媒(体積比1:1)を用いた。 Using the positive electrode plate 5, the negative electrode plate 6, the second separator 7, and the first separator 8, a wound electrode plate group is produced, and power generation is made of a nonaqueous electrolyte held by the electrode plate group. The part was housed in a stainless steel case 1 and a terminal made of a sealing plate 2 was attached to produce a battery. A cylindrical lithium secondary battery with a battery size of 65 mm in height and a diameter of 18 mm was produced, and the capacity was 1800 mAh. At this time, an EC: EMC mixed solvent (volume ratio of 1: 1) containing 1 mol / l of LiPF 6 was used as the non-aqueous electrolyte.

用いたセパレータの仕様については、以下の方法で空隙率、熱収縮率を測定した。   About the specification of the used separator, the porosity and the heat shrinkage were measured by the following methods.

〔セパレータ評価〕
空隙率は、ユアサアイオニクス社製、水銀ポロシメータを用いて求めた。熱収縮は、5cm×5cmに切り出したセパレータをガラス板で挟み100gの加重を掛け、130℃の加熱後に、幅方向に収縮したセパレータの幅を測定して、加熱前後で比較し下記の式で算出した。
[Separator evaluation]
The porosity was determined using a mercury porosimeter manufactured by Yuasa Ionics. The thermal shrinkage is performed by measuring the width of the separator shrunk in the width direction after heating at 130 ° C. by sandwiching a separator cut into 5 cm × 5 cm with a glass plate and applying a load of 100 g, and comparing it with the following formula before and after heating. Calculated.

熱収縮率(%)=収縮後の幅(cm)/5cm×100
この電池について下記のような評価を行った。
Thermal shrinkage rate (%) = width after shrinkage (cm) / 5 cm × 100
This battery was evaluated as follows.

〔電池評価〕
(1)加熱試験
130℃で設定した恒温槽内に開回路電圧4.2Vに充電した電池を設置し、電池温度が130℃に達し、電池温度が130℃以上にオーバーシュートするかの有無と、オーバーシュートしてから130℃の温度に安定するまでの時間を測定して電池の熱安定性を測定した。電池温度は最高138℃に達し、オーバーシュート時間は13minであった。
[Battery evaluation]
(1) Heat test A battery charged to an open circuit voltage of 4.2 V is installed in a thermostat set at 130 ° C, the battery temperature reaches 130 ° C, and whether or not the battery temperature overshoots 130 ° C or more. The thermal stability of the battery was measured by measuring the time from the overshoot until the temperature was stabilized at 130 ° C. The battery temperature reached a maximum of 138 ° C. and the overshoot time was 13 min.

(2)サイクル試験
20℃環境にて、サイクル試験前容量1800mAhで設計した電池を用意し、放電電圧3.0Vまで充電電圧4.2Vまでで、サイクル試験を行い50サイクル後の放電容量を測定した。このときの充電・放電電流は1.8Aとした。50サイクルでの放電容量は1710mAhであった。
(2) Cycle test In a 20 ° C environment, a battery designed with a capacity of 1800 mAh before the cycle test is prepared, the cycle test is performed at a discharge voltage of 3.0 V up to a charge voltage of 4.2 V, and the discharge capacity after 50 cycles is measured. did. The charging / discharging current at this time was 1.8A. The discharge capacity at 50 cycles was 1710 mAh.

《実施例2》
第1のセパレータ8に、実施例1の第1のセパレータ8で用いた厚さ25μm、空隙率40%の多孔質ポリエチレンフィルムセパレータを用いた。第2のセパレータ7には、実施例1で用いた未延伸ポリエチレンフィルムを、延伸工程にて、260%まで延伸し、その後、150℃で加熱したロールで熱固定して、25μmにして得られた多孔質ポリエチレンフィルムセパレータを用いた。空隙率は測定より、50%であった。第2のセパレー
タ7に上記多孔質ポリエチレンフィルムセパレータを用いた以外は実施例1と同様の方法により電池を作製した。
Example 2
As the first separator 8, a porous polyethylene film separator having a thickness of 25 μm and a porosity of 40% used in the first separator 8 of Example 1 was used. For the second separator 7, the unstretched polyethylene film used in Example 1 was stretched to 260% in the stretching step, and then heat-set with a roll heated at 150 ° C. to obtain 25 μm. A porous polyethylene film separator was used. The porosity was 50% from the measurement. A battery was produced in the same manner as in Example 1 except that the porous polyethylene film separator was used as the second separator 7.

加熱試験では、最高温度は139℃でオーバーシュート時間は17minであった。サイクル試験では1705mAhであった。   In the heating test, the maximum temperature was 139 ° C. and the overshoot time was 17 minutes. In the cycle test, it was 1705 mAh.

《実施例3》
第2のセパレータ7に、実施例1の第1のセパレータ8で用いた厚さ25μm、空隙率40%の多孔質ポリエチレンフィルムセパレータを用いた。第2のセパレータ7には、ポリプロピレンをダイから200℃で溶融塗出し、冷却ロールに導き、40μmのポリエチレンフィルムを得た。前記フィルムを延伸工程にて、150℃の加熱空気循環オーブン中、230%まで延伸した。この延伸することによって得られた多孔質フィルムを125℃に加熱したロールで熱固定して、25μmの多孔質ポリプロピレンフィルムセパレータを得た。測定より空隙度は40%であった。
Example 3
A porous polyethylene film separator having a thickness of 25 μm and a porosity of 40% used in the first separator 8 of Example 1 was used as the second separator 7. For the second separator 7, polypropylene was melt coated from a die at 200 ° C. and led to a cooling roll to obtain a 40 μm polyethylene film. In the stretching process, the film was stretched to 230% in a heated air circulation oven at 150 ° C. The porous film obtained by stretching was heat-set with a roll heated to 125 ° C. to obtain a 25 μm porous polypropylene film separator. From the measurement, the porosity was 40%.

第2のセパレータ7に実施例1で用いた厚さ25μm、空隙率40%の多孔質ポリエチレンフィルムセパレータ、第1のセパレータ7に上記多孔質ポリプロピレンフィルムセパレータを用いた以外は実施例1と同様の方法により電池を作製した。   A porous polyethylene film separator having a thickness of 25 μm and a porosity of 40% used in Example 1 was used for the second separator 7, and the same porous polypropylene film separator as that of Example 1 was used for the first separator 7. A battery was produced by the method.

加熱試験では、最高温度は133℃でオーバーシュート時間は9minであった。サイクル試験では1650mAhであった。   In the heating test, the maximum temperature was 133 ° C. and the overshoot time was 9 minutes. In the cycle test, it was 1650 mAh.

《実施例4》
第2のセパレータ7に、実施例1の第1のセパレータ8で用いた厚さ25μm、空隙率40%の多孔質ポリエチレンフィルムセパレータを用いた。第1のセパレータ8にはポリプロピレン(PP)でポリエチレンを挟み込んで積層した3層セパレータ(Celgard 2300)を用いた。上記PP/PE/PP3層セパレータは厚み25μmのものを用いた。空隙率は測定より40%であった。第2のセパレータ7に上記3層セパレータを用いた以外は実施例3と同様に方法により電池を作製した。
Example 4
A porous polyethylene film separator having a thickness of 25 μm and a porosity of 40% used in the first separator 8 of Example 1 was used as the second separator 7. The first separator 8 was a three-layer separator (Celgard 2300) in which polyethylene was sandwiched between polypropylene (PP). The PP / PE / PP three-layer separator having a thickness of 25 μm was used. The porosity was 40% from the measurement. A battery was produced in the same manner as in Example 3 except that the above three-layer separator was used as the second separator 7.

加熱試験では、最高温度は132℃でオーバーシュート時間は5minであった。サイクル試験では1650mAhであった。   In the heating test, the maximum temperature was 132 ° C. and the overshoot time was 5 minutes. In the cycle test, it was 1650 mAh.

《実施例5》
第1のセパレータ8に、実施例1の第1のセパレータ8で用いた厚さ25μm、空隙率40%の多孔質ポリエチレンフィルムセパレータ8aを用いた。第2のセパレータ7には、実施例1の第1のセパレータ8で用いたセパレータの原料で用いた未延伸ポリエチレンフィルムを、延伸工程にて、260%まで延伸し、その後さらに前記延伸とは垂直方向(電池極板幅方向)に120%延伸した。その後、150℃で加熱したロールで熱固定して、25μmにして得られた多孔質ポリエチレンフィルムセパレータを用いた。空隙率は測定より、40%であった。第2のセパレータ7に上記多孔質ポリエチレンフィルムセパレータを用いた以外は実施例1と同様の方法により電池を作製した。
Example 5
As the first separator 8, the porous polyethylene film separator 8 a having a thickness of 25 μm and a porosity of 40% used in the first separator 8 of Example 1 was used. For the second separator 7, the unstretched polyethylene film used as the raw material of the separator used in the first separator 8 of Example 1 is stretched to 260% in the stretching step, and then further perpendicular to the stretching. The film was stretched 120% in the direction (battery electrode plate width direction). Then, the porous polyethylene film separator obtained by heat-fixing with the roll heated at 150 degreeC to 25 micrometers was used. The porosity was 40% from the measurement. A battery was produced in the same manner as in Example 1 except that the porous polyethylene film separator was used as the second separator 7.

耐熱試験では、最高温度は140℃でオーバーシュート時間は19minであった。サイクル試験では1680mAhであった。   In the heat resistance test, the maximum temperature was 140 ° C. and the overshoot time was 19 min. In the cycle test, it was 1680 mAh.

《比較例1》
第2のセパレータ7および第1のセパレータ8に、実施例1の第1のセパレータ8で用いた厚さ25μm、空隙率40%の多孔質ポリエチレンフィルムセパレータを用い、第2のセパレータ7と第1のセパレータ8を同一仕様として、実施例1と同様の方法により電
池を作製した。
<< Comparative Example 1 >>
As the second separator 7 and the first separator 8, a porous polyethylene film separator having a thickness of 25 μm and a porosity of 40% used in the first separator 8 of Example 1 was used. A battery was produced in the same manner as in Example 1 with the separator 8 having the same specifications.

耐熱試験では、最高温度は142℃でオーバーシュート時間は65minであった。サイクル試験では1650mAhであった。   In the heat resistance test, the maximum temperature was 142 ° C. and the overshoot time was 65 minutes. In the cycle test, it was 1650 mAh.

次に上記の実施例と比較例の各リチウム二次電池についてセパレータ仕様、加熱試験およびサイクル試験の評価結果をまとめたものを表1、2に示す。
Next, Tables 1 and 2 summarize the evaluation results of the separator specifications, the heating test, and the cycle test for each of the lithium secondary batteries of the above Examples and Comparative Examples.

表2に示すように、まず、加熱試験での最高温度、オーバーシュートの時間を実施例3と比較例1を比較する。第2のセパレータ7に用いたポリエチレンより、融点の高いポリプロピレンを第1のセパレータ8に用いることにより、第2のセパレータ7のメルトダウンによる短絡を早めることができるため、負極合剤部6bと正極合剤部5aより、負極合剤部6aと正極合剤部5bを先に短絡させ、放電ができるため、サイクル特性悪化させることなく、実施例1と同様に発熱を抑制することができた。 As shown in Table 2, Example 3 and Comparative Example 1 are first compared for the maximum temperature and overshoot time in the heating test . By using polypropylene having a melting point higher than that of polyethylene used for the second separator 7 for the first separator 8, the short-circuit due to the melt-down of the second separator 7 can be accelerated, so that the negative electrode mixture portion 6 b and the positive electrode Since the negative electrode mixture portion 6a and the positive electrode mixture portion 5b can be short-circuited earlier than the mixture portion 5a and discharge can be performed, heat generation can be suppressed as in Example 1 without deteriorating cycle characteristics.

次に実施例4と比較例1を比較する。第2のセパレータ7に用いたポリエチレンより、融点の高いポリプロピレンをポリエチレンに積層したPP/PE/PP3層セパレータを第1のセパレータ8に用いることにより、第2のセパレータ7のメルトダウンによる短絡を早めることができるため、負極合剤部6bと正極合剤部5aより、負極合剤部6aと正極合剤部5bを先に短絡させ、放電ができるため、サイクル特性悪化させることなく、実施例1と同様に発熱を抑制することができた。   Next, Example 4 and Comparative Example 1 are compared. By using a PP / PE / PP three-layer separator in which polypropylene having a higher melting point than polyethylene used for the second separator 7 is laminated on the first separator 8, a short circuit due to meltdown of the second separator 7 is accelerated. Therefore, the negative electrode mixture portion 6a and the positive electrode mixture portion 5b are first short-circuited from the negative electrode mixture portion 6b and the positive electrode mixture portion 5a, and discharge can be performed. It was possible to suppress heat generation in the same manner as

次に実施例5と比較例1を比較する。第1のセパレータ8より幅方向の熱収縮率が大きなセパレータを用いた特性をもつセパレータを第2のセパレータ7に用いることにより、電池加熱に負極合剤部6bと正極合剤部5aより、負極合剤部6aと正極合剤部5bの短絡面積が大きくなり、この部分での放電を大きくすることができ、サイクル特性悪化させることなく、実施例1と同様に発熱を抑制することができた。   Next, Example 5 and Comparative Example 1 are compared. By using as the second separator 7 a separator having a characteristic that uses a separator having a larger thermal contraction rate in the width direction than that of the first separator 8, the negative electrode mixture portion 6 b and the positive electrode mixture portion 5 a are used for battery heating. The short-circuit area between the mixture portion 6a and the positive electrode mixture portion 5b is increased, the discharge at this portion can be increased, and heat generation can be suppressed as in Example 1 without deteriorating cycle characteristics. .

本発明の非水電解質二次電池は、安全性の優れた寿命の長いポータブル用電源等として有用である。   The nonaqueous electrolyte secondary battery of the present invention is useful as a portable power source having excellent safety and a long life.

本発明の実施の形態にかかる電池の一例の縦断面図The longitudinal cross-sectional view of an example of the battery concerning embodiment of this invention 本発明の実施の形態にかかる電池の一例の横断面図1 is a cross-sectional view of an example of a battery according to an embodiment of the present invention. 本発明の実施の形態にかかる電池の極板群の極板積層部の湾曲部の拡大図The enlarged view of the curved part of the electrode-plate lamination | stacking part of the electrode plate group of the battery concerning embodiment of this invention.

符号の説明Explanation of symbols

1 ケース
2 封口板
3 絶縁パッキング
4 極板群
5 正極板
5a、5b 正極合剤部
5c 正極集電体
5d 正極リード
6 負極板
6a、6b 負極合剤部
6c 負極集電体
6d 負極リード
7 第2のセパレータ
8 第1のセパレータ
9 上部絶縁板
10 下部絶縁板
DESCRIPTION OF SYMBOLS 1 Case 2 Sealing plate 3 Insulation packing 4 Electrode plate group 5 Positive electrode plate 5a, 5b Positive electrode mixture part 5c Positive electrode collector 5d Positive electrode lead 6 Negative electrode plate 6a, 6b Negative electrode mixture part 6c Negative electrode collector 6d Negative electrode lead 7 1st 2 separator 8 first separator 9 upper insulating plate 10 lower insulating plate

Claims (1)

正極板および負極板を前記正極板および負極板の極板間に設けたセパレータと共に積層し、捲回された極板群を備えた非水電解質二次電池において、
前記セパレータは、第1のセパレータと第2のセパレータのそれぞれ異なる仕様を有した2枚のセパレータを用いており、
前記正極板の内周側に第1のセパレータのみを配置し、前記正極板の外周側には第2のセパレータのみを配置することにより、前記極板群内において第1のセパレータと第2のセパレータが交互に積層され、第2のセパレータは、第1のセパレータより、融点が低い、または、第2のセパレータは、第1のセパレータより、熱収縮が大きいことを特徴とする非水電解質二次電池。
In a nonaqueous electrolyte secondary battery comprising a positive electrode plate and a negative electrode plate laminated together with a separator provided between the positive electrode plate and the negative electrode plate, and a wound electrode plate group,
The separator uses two separators having different specifications for the first separator and the second separator,
By disposing only the first separator on the inner peripheral side of the positive electrode plate and disposing only the second separator on the outer peripheral side of the positive electrode plate, the first separator and the second separator are disposed in the electrode plate group. The separators are alternately stacked , and the second separator has a lower melting point than the first separator, or the second separator has a larger thermal shrinkage than the first separator. Next battery.
JP2003357719A 2003-10-17 2003-10-17 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4439870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003357719A JP4439870B2 (en) 2003-10-17 2003-10-17 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003357719A JP4439870B2 (en) 2003-10-17 2003-10-17 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005123058A JP2005123058A (en) 2005-05-12
JP4439870B2 true JP4439870B2 (en) 2010-03-24

Family

ID=34614533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003357719A Expired - Fee Related JP4439870B2 (en) 2003-10-17 2003-10-17 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4439870B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4404612B2 (en) * 2002-11-29 2010-01-27 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4737949B2 (en) * 2004-06-03 2011-08-03 株式会社東芝 Nonaqueous electrolyte secondary battery
KR101507499B1 (en) 2011-01-25 2015-04-01 주식회사 엘지화학 Electrode assembly for secondary battery
KR101579575B1 (en) * 2013-06-18 2015-12-22 주식회사 엘지화학 Lithium secondary battery with improved life and safety
JP6003929B2 (en) * 2014-03-06 2016-10-05 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2023008011A1 (en) * 2021-07-29 2023-02-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2005123058A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP4999292B2 (en) Non-aqueous electrolyte battery
KR101407772B1 (en) Electorde assembly and secondary battery using the same
JP4927064B2 (en) Secondary battery
KR100587438B1 (en) Nonaqueous Secondary Battery and Method of Manufacturing Thereof
KR101362322B1 (en) Cylindrical-type secondary battery
WO2017014245A1 (en) Lithium ion secondary battery
JP2006032246A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2004119383A (en) Electrode assembly of lithium ion battery, and lithium ion battery using it
KR20060044822A (en) Nonaqueous electrolyte secondary battery
KR101629499B1 (en) Electrode assembly and secondary battery comprising the same
JP2007200795A (en) Lithium ion secondary battery
KR100908977B1 (en) Electrode Assembly of Secondary Battery
US6727021B1 (en) Lithium ion secondary battery
JP4382557B2 (en) Non-aqueous secondary battery
JP4439226B2 (en) Nonaqueous electrolyte secondary battery
KR100611940B1 (en) Electrochemical cell having an improved safety
JP4218792B2 (en) Non-aqueous secondary battery
JP5213003B2 (en) Nonaqueous electrolyte secondary battery
KR101841306B1 (en) Electrode assembly comprising dfferent kind of separator comprising taping part for improving safety and lithium secondary batteries comprising the same
JP4439870B2 (en) Nonaqueous electrolyte secondary battery
JP5352075B2 (en) Lithium secondary battery
JP3700683B2 (en) Non-aqueous electrolyte secondary battery
KR20140072794A (en) Non-aqueous electrolyte rechargeable battery pack
KR20150000159A (en) Electrode assembly and secondary battery comprising the same
JP2013073794A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060926

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees