JP2013073794A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2013073794A
JP2013073794A JP2011212102A JP2011212102A JP2013073794A JP 2013073794 A JP2013073794 A JP 2013073794A JP 2011212102 A JP2011212102 A JP 2011212102A JP 2011212102 A JP2011212102 A JP 2011212102A JP 2013073794 A JP2013073794 A JP 2013073794A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
battery
current collector
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011212102A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Muraoka
芳幸 村岡
Tomohiko Yokoyama
智彦 横山
Masaya Ugaji
正弥 宇賀治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011212102A priority Critical patent/JP2013073794A/en
Publication of JP2013073794A publication Critical patent/JP2013073794A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To suppress locally generated heat originated from a winding end part of a positive electrode of an outermost periphery of a battery and suppress breakage of a portion of case near the winding end part of the positive electrode when heat is rapidly applied to the battery from outside.SOLUTION: The outermost of the electrode grope is arranged so as to be a negative electrode collector exposed part in which a negative electrode active material is not formed, a belt like positive electrode is arranged so that a winding end part in longitudinal direction has active material layer formed on both face of the collector and furthermore, a surface of the winding end part is coated with heat-resistant insulating tape having a softening temperature of 200°C or more.

Description

本発明は、非水電解質二次電池に関し、特に好適な電極群構造を持つものに関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and particularly to a battery having a particularly suitable electrode group structure.

従来、非水系の電解液を用いるリチウムイオン二次電池においては、一般にアルミニウム箔にリチウム複合酸化物を正極活物質として塗布して正極とし、また銅箔に炭素質材料を負極活物質として塗布して負極とし、得られたシート状の両極間にポリエチレン微多孔質膜等からなるセパレーターを間置し、これらを巻回積層して構成される巻回体が、外部電極、例えば外部負極である鉄缶内に収納されている。   Conventionally, in a lithium ion secondary battery using a non-aqueous electrolyte, a lithium composite oxide is generally applied to an aluminum foil as a positive electrode active material to form a positive electrode, and a carbonaceous material is applied to a copper foil as a negative electrode active material. The wound body formed by interposing a separator made of a polyethylene microporous membrane or the like between the obtained sheet-like electrodes and winding and laminating them is an external electrode, for example, an external negative electrode It is stored in an iron can.

このようなリチウムイオン二次電池は、高容量、高電圧、高出力等の特徴を有することから、回路の異常等により電池の正極と負極とが短絡して電池の温度が上昇する等の異常時に、電池の温度上昇を防ぐために、温度ヒューズ、電流ヒューズ、PTC素子等の各種保護手段を備え、電池の内圧上昇を防ぐための安全弁を備えることが行われている。   Since such lithium ion secondary batteries have characteristics such as high capacity, high voltage, and high output, abnormalities such as a short circuit between the positive electrode and the negative electrode of the battery due to an abnormality in the circuit, etc. Sometimes, in order to prevent the temperature rise of the battery, various protection means such as a temperature fuse, a current fuse, and a PTC element are provided, and a safety valve for preventing an increase in the internal pressure of the battery is provided.

また、特許文献1では、帯状の正極集電体の両面に正極活物質層が形成されてなる正極と、帯状の負極集電体の両面に負極活物質層が形成されてなる負極とが、セパレーターを介して巻回されてなる巻回体が記載されている。さらに正極は、長さ方向の一端部に、両面とも正極集電体が露呈している正極集電体露呈部分を有するとともに、上記負極は、長さ方向の一端部に、両面とも負極集電体が露呈している負極集電体露呈部分を有し、上記正極集電体露呈部分と上記負極集電体露呈部分とは、セパレーターを介して上記巻回体の外周を一周以上覆っていることが記載されている。そして、この構成により、巻回体の外周が正極集電体露呈部分と負極集電体露呈部分とで覆われているので、電池が外部からの衝撃で短絡する際に、初めに正極集電体露呈部分と負極集電体露呈部分とが初めに短絡する。そして、このような構造を有する非水電解液電池では、正極集電体露呈部分と負極集電体露呈部分との短絡により、発生する熱を拡散するので、電極活物質層への影響はほとんど少なく、電池全体の熱暴走に至りにくい。   In Patent Document 1, a positive electrode in which a positive electrode active material layer is formed on both surfaces of a strip-shaped positive electrode current collector and a negative electrode in which a negative electrode active material layer is formed on both surfaces of a strip-shaped negative electrode current collector, A wound body is described that is wound through a separator. Further, the positive electrode has a positive electrode current collector exposed portion where the positive electrode current collector is exposed on both surfaces at one end portion in the length direction, and the negative electrode has a negative electrode current collector on both ends on the length direction. A negative electrode current collector exposed portion exposed from the body, and the positive electrode current collector exposed portion and the negative electrode current collector exposed portion cover at least one circumference of the wound body via a separator. It is described. With this configuration, since the outer periphery of the wound body is covered with the positive electrode current collector exposed portion and the negative electrode current collector exposed portion, when the battery is short-circuited by an external impact, the positive electrode current collector is first The body exposed portion and the negative electrode current collector exposed portion are short-circuited first. In the non-aqueous electrolyte battery having such a structure, the generated heat is diffused due to a short circuit between the exposed portion of the positive electrode current collector and the exposed portion of the negative electrode current collector, so that there is almost no influence on the electrode active material layer. There are few, and it is hard to reach thermal runaway of the whole battery.

一方、特許文献2では、耐熱多孔質層とシャットダウン層からなるセパレーターを用いて、耐熱多孔質層を正極シート側に配置することにより安全性が著しく向上することが記載されている。これは、耐熱多孔質層が短絡時にセパレーターの収縮を抑制するため、短絡点に流れる電流を最小限に抑え、発熱が抑制されるためである。   On the other hand, Patent Document 2 describes that safety is significantly improved by disposing a heat-resistant porous layer on the positive electrode sheet side using a separator composed of a heat-resistant porous layer and a shutdown layer. This is because the heat-resistant porous layer suppresses the shrinkage of the separator at the time of a short circuit, so that the current flowing through the short circuit point is minimized and heat generation is suppressed.

また、電池内部での発熱に対して、電池外部への放熱性を高めるために電極群の最外周を負極集電体とし、前記負極集電体は外装ケースと接触する構造とすることで、電池内部で発生した熱を放熱しやすい構造とすることで安全性を高めることも行われている。   Further, in order to increase heat dissipation to the outside of the battery against heat generation inside the battery, the outermost periphery of the electrode group is a negative electrode current collector, and the negative electrode current collector has a structure in contact with the outer case. Safety is also improved by adopting a structure that easily dissipates heat generated inside the battery.

特開昭62−256371号公報JP 62-256371 A 特開2000−100408号公報JP 2000-100408 A

しかしながら、回路の異常や外部からの衝撃等により電池の正極と負極とが短絡する以外にも、様々な異常事態が想定される。例えば、電池を火中に投下されるたり、ホットプレート上で加熱されるような不慮の事態にあっては、外部から与えられる熱による急激な
上昇と共に内部短絡による発熱が加わり、電池のケースが破損するリスクが高まる。
However, various abnormal situations are assumed other than a short circuit between the positive electrode and the negative electrode of the battery due to a circuit abnormality or an external impact. For example, in an unforeseen situation where the battery is dropped into a fire or heated on a hot plate, heat is generated due to an internal short circuit along with a sudden rise due to heat applied from the outside. Increased risk of breakage.

ケースが損傷する理由をさらに説明する。   The reason why the case is damaged will be further described.

前述のように電池に外部から急激に加熱した場合、前記電極群のケースに近い外周側のセパレーターが外部から与えられた熱によってはじめに軟化する。この外周側のセパレーター軟化した際に、電極群の中でも応力がかかっている正極の巻き終わり端部に対向するセパレーターが最もダメージを受けやすいことがわかった。正極の巻き終わり端部に対向するセパレーターがダメージを受けることで、正極の巻き終わり端部とセパレーターを介して対向する負極が短絡し、短絡によるジュール発熱によって電池が急激に発熱することがわかった。   As described above, when the battery is rapidly heated from the outside, the outer separator near the case of the electrode group is first softened by the heat applied from the outside. When the separator on the outer peripheral side was softened, it was found that the separator facing the winding end of the positive electrode, which is under stress, in the electrode group is most susceptible to damage. It was found that when the separator facing the winding end of the positive electrode is damaged, the negative electrode facing the winding end of the positive electrode and the separator is short-circuited, and the battery suddenly generates heat due to Joule heating due to the short circuit. .

正極の巻き終わり端部を起点とした短絡による、局所的に急激な発熱が起こった場合、短絡部近傍では、短絡によるジュール発熱によってケースの熱的ダメージが最も大きくなるため、正極の巻き終わり端部に近い箇所を起点にケースが破損しやすい状況になることがわかった。   When sudden heat generation occurs locally due to a short circuit starting from the end of winding of the positive electrode, the thermal damage of the case is greatest due to Joule heat generation due to the short circuit near the short circuit, so the end of winding of the positive electrode It was found that the case was prone to breakage starting from a location close to the part.

本発明は上述したような従来の実情に鑑みて提案されたものであり、電池が加熱しても電池ケースの損傷のない非水電解液電池を提供することを目的とする。   The present invention has been proposed in view of the above-described conventional situation, and an object thereof is to provide a non-aqueous electrolyte battery that does not damage the battery case even when the battery is heated.

本発明の非水電解液電池は、帯状の正極集電体の両面の一部に正極活物質層が形成されてなる正極と、帯状の負極集電体の両面の一部に負極活物質層が形成されてなる負極とが、セパレーターを介して巻回されてなる電極群を有し、前記電極群の最外周は、前記負極活物質層が形成されていない負極集電体露出部となるよう構成され、前記帯状の正極は、長手方向の巻き終わり端部は、集電体の両面とも活物質層が形成されており、さらに前記巻き終わり端部の表面は、JIS K 7207準拠の18.6kg/cm荷重時の測定における荷重たわみ温度が200℃以上の樹脂からなる耐熱絶縁層で被覆されているものである。 The non-aqueous electrolyte battery of the present invention includes a positive electrode in which a positive electrode active material layer is formed on a part of both surfaces of a strip-shaped positive electrode current collector, and a negative electrode active material layer on a part of both surfaces of the strip-shaped negative electrode current collector A negative electrode formed with a negative electrode current collector exposed portion in which the negative electrode active material layer is not formed. The belt-like positive electrode has an end portion in the longitudinal direction where an active material layer is formed on both sides of the current collector, and the surface of the end portion in the winding is 18 in accordance with JIS K 7207. It is coated with a heat resistant insulating layer made of a resin having a deflection temperature under load of 200 ° C. or higher in the measurement at a load of 0.6 kg / cm 2 .

この最外周とは、正極と負極との関係を示すもので、負極集電体露出部と電池ケースの間にセパレーターや絶縁テープが存在してもかまわない。   The outermost periphery indicates the relationship between the positive electrode and the negative electrode, and a separator or an insulating tape may exist between the negative electrode current collector exposed portion and the battery case.

本発明に係る非水電解液電池では、巻回体における帯状正極の長手方向の巻き終わり端部が荷重たわみ温度が200℃以上の樹脂からなる耐熱絶縁層で被服されているため、電池の最外周部の正極の巻き終わり端部を基点に発熱を防ぐことができ、その結果、正極の巻き終わり端部での集中した短絡と異なり、より広範囲にわたるセパレーターの収縮による短絡が起こるため、短絡によるジュール発熱が広範囲に分散され局所的なケースの熱的ダメージを緩和することができ、ケースの破損を防止することができる。   In the non-aqueous electrolyte battery according to the present invention, the winding end of the belt-like positive electrode in the longitudinal direction in the wound body is covered with a heat-resistant insulating layer made of a resin having a load deflection temperature of 200 ° C. or higher. Heat generation can be prevented from the winding end end of the positive electrode at the outer periphery as a starting point. As a result, unlike the concentrated short circuit at the winding end end of the positive electrode, a short circuit occurs due to the contraction of the separator over a wider range. Joule heat is distributed over a wide range, and local case thermal damage can be mitigated, and damage to the case can be prevented.

耐熱絶縁層の材質として、JIS K 7207準拠の18.6kg/cm荷重時の測定における荷重たわみ温度が200℃以上の樹脂であるポリイミド、ポリアミドイミド、アラミド、ポリエーテルサルホン、ポリエーテルイミドからなる群から選ばれる少なくとも一つを用いることが好ましい。 As a material of the heat-resistant insulating layer, from polyimide, polyamideimide, aramid, polyethersulfone, polyetherimide, which is a resin having a deflection temperature under load of 200 ° C. or higher in the measurement under 18.6 kg / cm 2 load according to JIS K 7207 It is preferable to use at least one selected from the group consisting of

本発明の非水電解液電池では、電池に外部から急激に熱を加えた際に、電極の群外周の中でも応力がかかっている正極の巻き終わり端部に対向するセパレーターが軟化した際にダメージを受けても、電池の最外周部の正極の巻き終わり端部を基点とした局所的な発熱を抑制することができ、正極の巻き終わり端部に近い箇所のケースの破損を抑制すること
ができる。
In the non-aqueous electrolyte battery of the present invention, when a sudden heat is applied to the battery from the outside, damage is caused when the separator facing the winding end of the positive electrode, which is under stress in the outer periphery of the electrode group, is softened. Can suppress local heat generation starting from the winding end of the positive electrode at the outermost periphery of the battery, and can prevent damage to the case near the winding end of the positive electrode. it can.

従って、本発明では電池の損傷や周囲への影響を最小限に抑えることができ、安全性、信頼性に優れた非水電解液電池を実現することができる。   Therefore, in the present invention, damage to the battery and influence on the surroundings can be minimized, and a non-aqueous electrolyte battery excellent in safety and reliability can be realized.

本発明に係る非水電解液電池の一構成例を示す縦断面図The longitudinal cross-sectional view which shows one structural example of the nonaqueous electrolyte battery which concerns on this invention 本発明の非水電解質電池の電極群のまき終わりの形態を示す横断面図The cross-sectional view which shows the form of the rolling end of the electrode group of the nonaqueous electrolyte battery of this invention

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1は、発明に係る非水電解液電池の一構成例を示す縦断面図である。   FIG. 1 is a longitudinal sectional view showing a configuration example of a nonaqueous electrolyte battery according to the invention.

また、図2は本発明の非水電解質電池の電極群のまき終わりの形態を示す横断面図である。   FIG. 2 is a cross-sectional view showing the form of the end of the electrode group of the nonaqueous electrolyte battery of the present invention.

この非水電解液電池は、帯状の正極10と、帯状の負極20とが、セパレーターである耐熱絶縁層15を介して密着状態で巻回されてなる電極群30が、円筒型の電池ケース40の内部に挿入されてなる。   In this non-aqueous electrolyte battery, an electrode group 30 in which a belt-like positive electrode 10 and a belt-like negative electrode 20 are wound in close contact via a heat-resistant insulating layer 15 as a separator is a cylindrical battery case 40. It is inserted inside.

正極は、図2に示すように、正極活物質、導電材および結着剤を含む正極合剤層12を正極集電体11上に担持したものを用いる。具体的には、該正極活物質として、リチウムイオンをドープ・脱ドープ可能な材料を含み、導電材として炭素質材料を含み、結着剤として熱可塑性樹脂などを含むものを用いることができる。   As the positive electrode, as shown in FIG. 2, a positive electrode mixture layer 12 containing a positive electrode active material, a conductive material and a binder is carried on a positive electrode current collector 11. Specifically, as the positive electrode active material, a material containing a material that can be doped / undoped with lithium ions, a carbonaceous material as a conductive material, and a thermoplastic resin as a binder can be used.

また電極群30を形成する正極10の巻き終わり終端部は正極集電体11両面に正極合剤層12が形成されている。正極巻き終わり端部に正極合剤層12が形成されていることで、構造上不要な正極集電体部分がなくなり、電池ケース40内に空間が確保され、高容量化が可能となる。   In addition, at the end of winding end of the positive electrode 10 forming the electrode group 30, the positive electrode mixture layer 12 is formed on both surfaces of the positive electrode current collector 11. Since the positive electrode mixture layer 12 is formed at the end of the positive electrode winding, the positive electrode current collector portion unnecessary for the structure is eliminated, a space is secured in the battery case 40, and the capacity can be increased.

また、本発明の非水電解質二次電池は正極終端部の集電体両面に形成された活物質層の表面に、荷重たわみ温度が200℃以上の耐熱絶縁層である耐熱絶縁テープ50で被覆されている。   Further, the nonaqueous electrolyte secondary battery of the present invention is coated with a heat resistant insulating tape 50 which is a heat resistant insulating layer having a deflection temperature under load of 200 ° C. or more on the surface of the active material layer formed on both surfaces of the current collector of the positive electrode termination portion. Has been.

耐熱絶縁テープ50は、正極10の長手方向に少なくとも、0.5mm以上、2mm以下で被服されていることが好ましい。0.5mm以下であると、剥がれてしまう可能性がある。一方、被覆されている長さが長すぎると充放電に寄与しない正極の面積が増加するため2mm以下であることが好ましい。   The heat-resistant insulating tape 50 is preferably coated at least 0.5 mm or more and 2 mm or less in the longitudinal direction of the positive electrode 10. If it is 0.5 mm or less, there is a possibility of peeling off. On the other hand, since the area of the positive electrode which does not contribute to charging / discharging will increase when the length covered is too long, it is preferably 2 mm or less.

また耐熱絶縁テープ50は、正極10の幅方向に全面覆われていることが好ましい。正極の巻き終わり端部に活物質層の露出部分があると、正極合剤層12の露出箇所で短絡してしまうリスクが生じる。前述の観点で耐熱絶縁テープ50の幅は、正極10の幅と同等以上であることが好ましい。   The heat-resistant insulating tape 50 is preferably entirely covered in the width direction of the positive electrode 10. If there is an exposed portion of the active material layer at the end of winding of the positive electrode, there is a risk that a short circuit occurs at the exposed portion of the positive electrode mixture layer 12. From the above viewpoint, the width of the heat resistant insulating tape 50 is preferably equal to or greater than the width of the positive electrode 10.

耐熱絶縁テープ50の材質として、JIS K 7207準拠の18.6kg/cm荷重時の測定における荷重たわみ温度が200℃以上の樹脂から選ばれた少なくとも1種の耐熱樹脂であることが好ましい。この荷重たわみ温度が200℃以上の樹脂としては、ポリイミド、ポリアミドイミド、アラミド、ポリエーテルサルホン、ポリエーテルイミドなどが挙げられる。さらに、電気化学的、耐薬品性に優れた材料として、ポリイミド、ポ
リアミドイミドおよびアラミドからなる群から選ぶことが特に好ましい。
The material of the heat-resistant insulating tape 50 is preferably at least one heat-resistant resin selected from resins having a deflection temperature under load of 200 ° C. or higher in the measurement under 18.6 kg / cm 2 load according to JIS K 7207. Examples of the resin having a deflection temperature under load of 200 ° C. or higher include polyimide, polyamideimide, aramid, polyethersulfone, and polyetherimide. Furthermore, it is particularly preferable that the material excellent in electrochemical and chemical resistance is selected from the group consisting of polyimide, polyamideimide and aramid.

リチウムイオンをドープ・脱ドープ可能な正極活物質材料としては、V、Mn、Fe、Co、Niなどの遷移金属を少なくとも1種含むリチウム複合酸化物が挙げられる。中でも好ましくは、平均放電電位が高いという点で、ニッケル酸リチウム、コバルト酸リチウムなどのα−NaFeO型構造を母体とする層状リチウム複合酸化物、リチウムマンガンスピネルなどのスピネル型構造を母体とするリチウム複合酸化物が挙げられる。 Examples of the positive electrode active material that can be doped / undoped with lithium ions include lithium composite oxides containing at least one transition metal such as V, Mn, Fe, Co, and Ni. Among these, a layered lithium composite oxide based on an α-NaFeO 2 type structure such as lithium nickelate or lithium cobaltate, or a spinel type structure such as lithium manganese spinel is preferable based on a high average discharge potential. Examples include lithium composite oxides.

正極に使われる結着剤としての熱可塑性樹脂としては、ポリビニリデンフロライド、ビニリデンフロライドの共重合体、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフロロプロピレンの共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテルの共重合体、エチレン−テトラフルオロエチレンの共重合体、熱可塑性ポリイミド、ポリエチレン、ポリプロピレンなどが挙げられる。   The thermoplastic resin used as the binder for the positive electrode includes polyvinylidene fluoride, vinylidene fluoride copolymer, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-per Fluoroalkyl vinyl ether copolymer, ethylene-tetrafluoroethylene copolymer, thermoplastic polyimide, polyethylene, polypropylene and the like.

該導電剤としての炭素質材料としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラックなどが挙げられる。   Examples of the carbonaceous material as the conductive agent include natural graphite, artificial graphite, cokes, and carbon black.

負極20は、図2に示すように、負極集電体21の両面に負極合剤層22が形成されてなるものである。負極活物質としては、例えばリチウムイオンをドープ・脱ドーブ可能な炭素材料を用いることができる。リチウムイオンをドープ・脱ドープ可能な材料としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体などの炭素質材料が挙げられる。炭素質材料として、電位平坦性が高く、また平均放電電位が低いため正極と組み合わせた場合大きなエネルギー密度が得られるという点で、天然黒鉛、人造黒鉛等の黒鉛材料を主成分とする炭素質材料が好ましい。   As shown in FIG. 2, the negative electrode 20 is formed by forming a negative electrode mixture layer 22 on both surfaces of a negative electrode current collector 21. As the negative electrode active material, for example, a carbon material that can be doped / dedoped with lithium ions can be used. Examples of materials that can be doped / undoped with lithium ions include carbonaceous materials such as natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and fired organic polymer compounds. As a carbonaceous material, a carbonaceous material mainly composed of graphite materials such as natural graphite and artificial graphite, because it has a high potential flatness and a low average discharge potential, so that a large energy density can be obtained when combined with a positive electrode. Is preferred.

負極合剤層22は必要に応じて結着剤や増粘剤を添加することができる。   The negative electrode mixture layer 22 can be added with a binder or a thickener as necessary.

また電極群を形成する負極20の巻き終わり端部は、負極集電体21の両面に形成される負極合剤層22のうち、少なくとも巻外側一周は負極集電体21が露出するように負極合剤層が形成されていない箇所を有する。   In addition, the end of winding of the negative electrode 20 forming the electrode group is a negative electrode so that the negative electrode current collector 21 is exposed at least around the outer circumference of the negative electrode mixture layer 22 formed on both surfaces of the negative electrode current collector 21. It has a portion where the mixture layer is not formed.

このように、電極群30の巻外側一周は負極集電体21が露出していることで、電池を作製した際に、電池内部で正極と負極の短絡によって発生した熱を外部に放出しやすくなり、安全性の向上が見込まれる。   Thus, the negative electrode current collector 21 is exposed around the outer circumference of the electrode group 30, so that when the battery is manufactured, heat generated by a short circuit between the positive electrode and the negative electrode inside the battery is easily released to the outside. Therefore, improvement in safety is expected.

本発明の非水電解液二次電池で用いる負極集電体21としては、Cu、Ni、ステンレスなどを用いることができるが、特にリチウム二次電池においてはリチウムと合金を作り難く、かつ薄膜に加工しやすいという点でCuが好ましい。   As the negative electrode current collector 21 used in the non-aqueous electrolyte secondary battery of the present invention, Cu, Ni, stainless steel and the like can be used. In particular, in a lithium secondary battery, it is difficult to form an alloy with lithium, and a thin film is used. Cu is preferable because it is easy to process.

負極集電体21に負極活物質を含む負極合剤層22を担持させる方法としては、加圧成型する方法、または溶媒などを用いてペースト化し集電体上に塗布乾燥後プレスするなどして圧着する方法が挙げられる。   As a method for supporting the negative electrode mixture layer 22 containing the negative electrode active material on the negative electrode current collector 21, a method of pressure molding, or pasting using a solvent or the like, applying the coating to the current collector, pressing the current collector, etc. The method of crimping is mentioned.

電極群30は、正極10と、耐熱絶縁層15と、負極20と、耐熱絶縁層15とをこの順に積層してなる積層体が渦巻状に巻回されてなる。さらに電極群30の巻外側一周は負極集電体21が露出するように多孔質絶縁層の終端位置を調整する。   The electrode group 30 is formed by winding a laminated body in which the positive electrode 10, the heat-resistant insulating layer 15, the negative electrode 20, and the heat-resistant insulating layer 15 are laminated in this order. Furthermore, the end position of the porous insulating layer is adjusted so that the negative electrode current collector 21 is exposed around the outer circumference of the electrode group 30.

ここで、耐熱絶縁層15には、絶縁性であるセパレーター等を用いることができる。   Here, an insulating separator or the like can be used for the heat-resistant insulating layer 15.

非水電解液電池は、上述したような電極群30が電池ケース40に収納されてなる。   The non-aqueous electrolyte battery includes the electrode group 30 as described above housed in a battery case 40.

電極群30を電池ケース40に収納して非水電解液電池とするには、まず、例えば鉄からなるとともに予めニッケルメッキが施された電池ケース40の底部に絶縁板45を挿入し電極群30を収納し、上部にも絶縁板44を挿入する。   In order to house the electrode group 30 in the battery case 40 to make a non-aqueous electrolyte battery, first, an insulating plate 45 is inserted into the bottom of the battery case 40 made of, for example, iron and pre-plated with nickel, to form the electrode group 30. And an insulating plate 44 is also inserted into the upper part.

そして、負極の集電をとるために、例えばニッケルからなる負極リード46の一端を負極に溶接させ、他端を電池ケース40に溶接する。これにより、電池ケース40は負極と導通をもつこととなり、非水電解液電池の外部負極となる。また、正極の集電をとるために、例えばアルミニウムからなる正極リード41の一端を正極に取り付け、他端を電流遮断用薄板を介して封口板42と電気的に接続する。この電流遮断用薄板は、電池内圧に応じて電流を遮断するものである。これにより、電池蓋は正極と導通をもつこととなり、非水電解液電池の外部正極となる。   In order to collect the negative electrode, for example, one end of a negative electrode lead 46 made of nickel, for example, is welded to the negative electrode, and the other end is welded to the battery case 40. As a result, the battery case 40 is electrically connected to the negative electrode, and becomes an external negative electrode of the nonaqueous electrolyte battery. In order to collect the positive electrode, for example, one end of a positive electrode lead 41 made of, for example, aluminum is attached to the positive electrode, and the other end is electrically connected to the sealing plate 42 through a thin plate for current interruption. This thin plate for current interruption interrupts current according to the battery internal pressure. As a result, the battery lid is electrically connected to the positive electrode, and becomes the external positive electrode of the nonaqueous electrolyte battery.

次に、この電池ケース40の中に非水電解液を注入する。   Next, a non-aqueous electrolyte is injected into the battery case 40.

リチウム二次電池で用いる非水電解質溶液としては、例えばリチウム塩を有機溶媒に溶解させた非水電解質溶液を用いることができる。有機溶媒炉してはカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネート、または環状カーボネートとエーテル類の混合溶媒がさらに好ましい。かつ負極の活物質として天然黒鉛、人造黒鉛等の黒鉛材料を用いた場合でも難分解性であるという点で、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合溶媒が好ましい。   As the non-aqueous electrolyte solution used in the lithium secondary battery, for example, a non-aqueous electrolyte solution in which a lithium salt is dissolved in an organic solvent can be used. As the organic solvent furnace, a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate or cyclic carbonate and ether is more preferable. In addition, a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable in that it is hardly decomposable even when a graphite material such as natural graphite or artificial graphite is used as the active material of the negative electrode.

開口にはガスケット43を介して封口板42が、かしめつけられており、封口板42をかしめつけることにより開口は封じられている。円筒型の非水電解液電池が作製される。   A sealing plate 42 is caulked to the opening via a gasket 43, and the opening is sealed by caulking the sealing plate 42. A cylindrical nonaqueous electrolyte battery is produced.

なお、この非水電解液電池においては、正極リード41及び負極リード46に接続するセンターピンが設けられているとともに、電池内部の圧力が所定値よりも高くなったときに内部の気体を抜くための安全弁装置及び電池内部の温度上昇を防止するためのPTC素子が設けられている。   In this nonaqueous electrolyte battery, a center pin connected to the positive electrode lead 41 and the negative electrode lead 46 is provided, and the internal gas is extracted when the internal pressure of the battery becomes higher than a predetermined value. A safety valve device and a PTC element for preventing temperature rise inside the battery are provided.

以下、本発明を実施例に基づいて具体的に説明するが、本発明は以下の実施例に限定されない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to a following example.

−電池の作製方法−
(正極の作製)
まず、平均粒子径が13μmであるLiNi0.82Co0.15Al0.03を正極活物質として用いた。正極活物質100質量部に対して1.0質量部のアセチレンブラック(導電剤)とポリフッ化ビニリデン(PVDF,結着剤)のN−メチル−2−ピロリドン(NMP)溶液((株)SOLVAY製の#5130)とを混合して、正極合剤スラリーを得た。PVDFの添加量は、正極活物質100質量部あたり0.9質量部とした。
-Battery manufacturing method-
(Preparation of positive electrode)
First, LiNi 0.82 Co 0.15 Al 0.03 O 2 having an average particle diameter of 13 μm was used as the positive electrode active material. An N-methyl-2-pyrrolidone (NMP) solution of 1.0 part by mass of acetylene black (conductive agent) and polyvinylidene fluoride (PVDF, binder) with respect to 100 parts by mass of the positive electrode active material (manufactured by Solvay Co., Ltd.) No. 5130) was mixed to obtain a positive electrode mixture slurry. The amount of PVDF added was 0.9 parts by mass per 100 parts by mass of the positive electrode active material.

次に、得られた正極合剤スラリーを、正極集電体である厚さ15μの鉄含有アルミニウム箔(住軽(株)製の8021の両面に塗布した。塗布の際に正極の集電リードを溶接する箇所として幅6mmの未塗布部分を授けた。ついで正極合剤スラリーを乾燥させた後、正極活物質等が表面に設けられた正極集電体を圧延して、正極活物質密度3.65g/ccで厚さが0.166mmである正極板を得た。   Next, the obtained positive electrode mixture slurry was applied to both surfaces of a 15 μm thick iron-containing aluminum foil (8021 made by Sumigar Co., Ltd.) as a positive electrode current collector. Then, an uncoated portion with a width of 6 mm was given as a position to be welded.After drying the positive electrode mixture slurry, the positive electrode current collector provided with the positive electrode active material or the like on the surface was rolled to obtain a positive electrode active material density of 3 A positive electrode plate having a thickness of .65 g / cc and a thickness of 0.166 mm was obtained.

続いて、得られた正極板を幅58.5mm及び長さ560mmに裁断して、正極を得た

正極の裁断の際に、帯状の正極の長さ方向の中央部に正極合剤層が未塗工の部分が位置するように裁断を行った。
Subsequently, the obtained positive electrode plate was cut into a width of 58.5 mm and a length of 560 mm to obtain a positive electrode.
During the cutting of the positive electrode, the cutting was performed so that the uncoated portion of the positive electrode mixture layer was located at the center in the length direction of the belt-shaped positive electrode.

それから、得られた正極を195℃の熱間ロールに7秒間接触させて熱処理を行った。   Then, the obtained positive electrode was subjected to heat treatment by bringing it into contact with a hot roll at 195 ° C. for 7 seconds.

ついで、長さ3mm幅59.5mmの日東電工製のポリイミドテープ(JIS K 7207準拠の18.6kg/cm荷重時の測定における荷重たわみ温度が200℃)を準備し、正極の終端部となる側の正極端部の合剤層の両面に長さ方向に2mm、幅方向に58.5mm合剤層表面を覆うように前述のポリイミドテープを貼り付けた。 Next, a polyimide tape made of Nitto Denko with a length of 3 mm and a width of 59.5 mm (a deflection temperature under load of 18.6 kg / cm 2 in accordance with JIS K 7207 is 200 ° C.) is prepared, and serves as a terminal portion of the positive electrode. The aforementioned polyimide tape was applied to both surfaces of the mixture layer at the positive electrode end on the side so as to cover the surface of the mixture layer in the length direction by 2 mm and in the width direction by 58.5 mm.

(負極の作製)
まず、平均粒子径が約20μmの黒鉛を負極活物質(日立化成製)として用いた。負極活物質100質量部に対して1質量部のスチレンブタジエンゴム(結着剤)とカルボキシメチルセルロースを1重量%含む水溶液100質量部とを混合し、負極合剤スラリーを得た。
(Preparation of negative electrode)
First, graphite having an average particle size of about 20 μm was used as a negative electrode active material (manufactured by Hitachi Chemical). 1 part by mass of styrene butadiene rubber (binder) and 100 parts by mass of an aqueous solution containing 1% by weight of carboxymethylcellulose were mixed with respect to 100 parts by mass of the negative electrode active material to obtain a negative electrode mixture slurry.

次に、得られた負極合剤スラリーを厚さ8μmの電解銅箔(日本電解製)の両面に塗布した。負極合剤スラリーを乾燥させた後、負極活物質等が表面に設けられた負極集電体を圧延して、負極活物質密度1.60g/cc厚さが0.195μmである負極板を得た。   Next, the obtained negative electrode mixture slurry was applied to both sides of an electrolytic copper foil (manufactured by Nippon Electrolytic Co., Ltd.) having a thickness of 8 μm. After drying the negative electrode mixture slurry, the negative electrode current collector provided with the negative electrode active material on the surface is rolled to obtain a negative electrode plate having a negative electrode active material density of 1.60 g / cc and a thickness of 0.195 μm. It was.

続いて、得られた負極板を幅59.5mm及び長さ640mmに裁断して、負極を得た。   Subsequently, the obtained negative electrode plate was cut into a width of 59.5 mm and a length of 640 mm to obtain a negative electrode.

なお帯状負極において電極群の終端となる端部の巻内側に25mm、巻外側に60mm負極合剤層が形成されていない未塗布部分を授けた。   In the strip-shaped negative electrode, an uncoated portion in which the negative electrode mixture layer was not formed on the inner side of the end portion of the electrode group at the end of 25 mm and the outer side of the 60 mm negative electrode mixture layer was given.

それから、得られた負極を、窒素雰囲気中、190℃の熱風で10時間熱処理した。   Then, the obtained negative electrode was heat-treated in a nitrogen atmosphere with hot air at 190 ° C. for 10 hours.

(非水電解質の調製)
エチレンカーボネートとジメチルカーボネートとを1:3の体積比で含む混合溶媒に、5wt%の濃度でビニレンカーボネートを添加すると共に、LiPFを1.4mol/Lの濃度で溶解させた。
(Preparation of non-aqueous electrolyte)
Vinylene carbonate was added at a concentration of 5 wt% to a mixed solvent containing ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 3, and LiPF 6 was dissolved at a concentration of 1.4 mol / L.

(円筒電池の組み立て)
まず、正極の合剤層の形成されていない集電体露出部分にアルミニウム製の正極リードを取り付け、負極も同様に巻き終わりから5mmの部分に負極集電体にニッケル製の負極リードを取り付けた。その後、正極リードと負極リードとが互いに逆方向に延びるように正極と負極とを互いに対向させ、その正極と負極との間にポリエチレン製のセパレータ(多孔質絶縁層)を配置した。次いで巻芯にセパレーターを介して配置された正極と負極とを巻き付けた。これにより、捲回型の電極群が作製された。なおこの電極群の最外周は、負極集電体露出部が一週露出するように電極群を作製した。
(Assembly of cylindrical battery)
First, the positive electrode lead made of aluminum was attached to the exposed portion of the current collector where the positive electrode mixture layer was not formed, and the negative electrode lead made of nickel was similarly attached to the negative electrode current collector at a portion 5 mm from the end of winding. . Thereafter, the positive electrode and the negative electrode were opposed to each other so that the positive electrode lead and the negative electrode lead extended in opposite directions, and a polyethylene separator (porous insulating layer) was disposed between the positive electrode and the negative electrode. Subsequently, the positive electrode and negative electrode which were arrange | positioned through the separator around the winding core were wound. Thereby, a wound-type electrode group was produced. The electrode group was prepared on the outermost periphery of the electrode group such that the exposed portion of the negative electrode current collector was exposed for one week.

次に、電極群の上面に上部絶縁板を配置し、電極群の下に下部絶縁板を配置した。その後、負極リードを電池ケースに溶接するとともに正極リードを封口板に溶接して、電極群を電池ケース内に収納した。その後、減圧方式により電池ケース内に非水電解液を注入して、ガスケットを介して封口板を電池ケースの開口部にかしめた。これにより、実施例1の電池を作製した。   Next, an upper insulating plate was disposed on the upper surface of the electrode group, and a lower insulating plate was disposed under the electrode group. Thereafter, the negative electrode lead was welded to the battery case and the positive electrode lead was welded to the sealing plate, and the electrode group was housed in the battery case. Thereafter, a non-aqueous electrolyte was injected into the battery case by a decompression method, and the sealing plate was caulked to the opening of the battery case via a gasket. Thereby, the battery of Example 1 was produced.

(比較例1)
正極の終端にポリイミドテープを貼り付けていないこと以外は、実施例1と同様にして比較例1に電池を作製した。
(Comparative Example 1)
A battery was produced in Comparative Example 1 in the same manner as in Example 1 except that no polyimide tape was attached to the end of the positive electrode.

(燃焼試験)
以上のようにして得られた実施例1、比較例1の非水電解液電池をそれぞれ10個数用意し、電池をそれぞれ充電した。具体的には、電圧が4.20Vに至るまで1.45Aの電流を流して定電流で充電を行い、4.25Vに達した後に定電圧で電流が50mAになるまで充電を行った。
(Combustion test)
Ten nonaqueous electrolyte batteries of Example 1 and Comparative Example 1 obtained as described above were prepared, and the batteries were charged. Specifically, charging was performed at a constant current by passing a current of 1.45 A until the voltage reached 4.20 V, and charging was performed at a constant voltage until the current reached 50 mA after reaching 4.25 V.

次いで前述の充電を行った電池をプロパンガスバーナーを用いて燃焼試験を行った。表に試験後電池外装ケースに破損が確認された電池の数を示す。   Subsequently, the battery which carried out the above-mentioned charge was subjected to a combustion test using a propane gas burner. The number of batteries in which damage was confirmed in the battery outer case after the test is shown in the table.

表1から明らかなように、正極終端部に耐熱絶縁テープを設置した実施例1の電池ではケースの破損は見られなかった。一方、正極巻き終わり終端に耐熱絶縁テープを設置しなかった比較例1の非水電解液電池ついては、ケースに破損が見られた。   As is clear from Table 1, the case was not damaged in the battery of Example 1 in which the heat-resistant insulating tape was installed at the positive electrode terminal portion. On the other hand, for the nonaqueous electrolyte battery of Comparative Example 1 in which no heat-resistant insulating tape was installed at the end of the positive electrode winding, the case was damaged.

この結果から、正極終端での短絡抑制によって外装ケースの破損が抑制されることが明確になった。   From this result, it was clarified that damage to the exterior case is suppressed by suppressing the short circuit at the positive terminal.

本発明の非水電解質二次電池は、安全性に優れるためパーソナルコンピューターなどの携帯電子機器の電源として有用である。   Since the nonaqueous electrolyte secondary battery of the present invention is excellent in safety, it is useful as a power source for portable electronic devices such as personal computers.

10 正極
11 正極集電体
12 正極合剤層
15 耐熱絶縁層
20 負極
21 負極集電体
22 負極合剤層
30 電極群
40 電池ケース
41 正極リード
42 封口板
43 ガスケット
44、45 絶縁板
46 負極リード
50 耐熱絶縁テープ
100 非水電解質二次電池
DESCRIPTION OF SYMBOLS 10 Positive electrode 11 Positive electrode collector 12 Positive electrode mixture layer 15 Heat-resistant insulating layer 20 Negative electrode 21 Negative electrode collector 22 Negative electrode mixture layer 30 Electrode group 40 Battery case 41 Positive electrode lead 42 Sealing plate 43 Gasket 44, 45 Insulating plate 46 Negative electrode lead 50 heat resistant insulating tape 100 non-aqueous electrolyte secondary battery

Claims (2)

帯状の正極集電体の両面の一部に正極活物質層が形成されてなる正極と、帯状の負極集電体の両面の一部に負極活物質層が形成されてなる負極とが、セパレーターを介して巻回されてなる電極群を有し、前記電極群の最外周は、前記負極活物質層が形成されていない負極集電体露出部となるよう構成され、前記帯状の正極は、長手方向の巻き終わり端部は、集電体の両面とも活物質層が形成されており、さらに前記巻き終わり端部表面は、荷重たわみ温度が200℃以上の樹脂からなる耐熱絶縁層で被覆されていることを特徴とする非水電解質二次電池。 A positive electrode in which a positive electrode active material layer is formed on a part of both surfaces of a strip-shaped positive electrode current collector and a negative electrode in which a negative electrode active material layer is formed on a part of both surfaces of a strip-shaped negative electrode current collector are separators. The outermost periphery of the electrode group is configured to be a negative electrode current collector exposed portion in which the negative electrode active material layer is not formed, and the belt-like positive electrode is An active material layer is formed on both sides of the current collector at the winding end in the longitudinal direction, and the surface of the winding end is covered with a heat-resistant insulating layer made of a resin having a load deflection temperature of 200 ° C. or higher. A non-aqueous electrolyte secondary battery characterized by comprising: 前記耐熱絶縁層は、ポリイミド、ポリアミドイミド、アラミド、ポリエーテルサルホン、ポリエーテルイミドからなる群から選ばれる少なくとも一つであることを特徴とする請求項1記載の非水電解質二次電池。 2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the heat-resistant insulating layer is at least one selected from the group consisting of polyimide, polyamideimide, aramid, polyethersulfone, and polyetherimide.
JP2011212102A 2011-09-28 2011-09-28 Nonaqueous electrolyte secondary battery Withdrawn JP2013073794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011212102A JP2013073794A (en) 2011-09-28 2011-09-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011212102A JP2013073794A (en) 2011-09-28 2011-09-28 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2013073794A true JP2013073794A (en) 2013-04-22

Family

ID=48478140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011212102A Withdrawn JP2013073794A (en) 2011-09-28 2011-09-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2013073794A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001719A1 (en) * 2013-07-01 2015-01-08 三洋電機株式会社 Non-aqueous electrolyte secondary battery
WO2015001716A1 (en) * 2013-07-01 2015-01-08 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2015534239A (en) * 2012-12-07 2015-11-26 エルジー・ケム・リミテッド Taped electrode assembly and electrochemical device including the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534239A (en) * 2012-12-07 2015-11-26 エルジー・ケム・リミテッド Taped electrode assembly and electrochemical device including the same
WO2015001719A1 (en) * 2013-07-01 2015-01-08 三洋電機株式会社 Non-aqueous electrolyte secondary battery
WO2015001716A1 (en) * 2013-07-01 2015-01-08 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN105324882A (en) * 2013-07-01 2016-02-10 三洋电机株式会社 Non-aqueous electrolyte secondary cell
JPWO2015001716A1 (en) * 2013-07-01 2017-02-23 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JPWO2015001719A1 (en) * 2013-07-01 2017-02-23 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2017208365A (en) * 2013-07-01 2017-11-24 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2018022693A (en) * 2013-07-01 2018-02-08 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US10079386B2 (en) 2013-07-01 2018-09-18 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US10256508B2 (en) 2013-07-01 2019-04-09 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
US10431827B2 (en) 2013-07-01 2019-10-01 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US7060388B2 (en) Nonaqueous electrolyte secondary battery
US11069916B2 (en) Cylindrical battery
WO2015146077A1 (en) Cylindrical hermetically sealed battery
US10535851B2 (en) Cylindrical lithium-ion cell
US20100233524A1 (en) Cylindrical non-aqueous electrolyte secondary battery
US9048490B2 (en) Lithium ion secondary battery
WO2010125755A1 (en) Assembled sealing body and battery using same
JP4382557B2 (en) Non-aqueous secondary battery
JP5571318B2 (en) Cylindrical battery
JP4281329B2 (en) Non-aqueous electrolyte battery
US8999556B2 (en) Rechargeable battery
JP2008159385A (en) Lithium secondary battery
JP2013073794A (en) Nonaqueous electrolyte secondary battery
JP2007123009A (en) Wound type battery
JP2011100690A (en) Method of manufacturing battery
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JP4439870B2 (en) Nonaqueous electrolyte secondary battery
JP3794283B2 (en) Non-aqueous electrolyte battery
JP2006040772A (en) Lithium ion battery
US8389161B2 (en) Nonaqueous electrolyte secondary battery and method for fabricating the same
JP2008077996A (en) Wound battery
JP2012204226A (en) Nonaqueous electrolyte secondary battery
JP2015084279A (en) Secondary battery
JP4334388B2 (en) Non-aqueous electrolyte battery
EP4318744A1 (en) Cylindrical non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202