JP4218792B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery Download PDF

Info

Publication number
JP4218792B2
JP4218792B2 JP2002271233A JP2002271233A JP4218792B2 JP 4218792 B2 JP4218792 B2 JP 4218792B2 JP 2002271233 A JP2002271233 A JP 2002271233A JP 2002271233 A JP2002271233 A JP 2002271233A JP 4218792 B2 JP4218792 B2 JP 4218792B2
Authority
JP
Japan
Prior art keywords
negative electrode
separator
positive electrode
secondary battery
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002271233A
Other languages
Japanese (ja)
Other versions
JP2004111186A (en
JP2004111186A5 (en
Inventor
裕司 山道
仁 森井泉
敏晴 高畠
Original Assignee
マクセル北陸精器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル北陸精器株式会社 filed Critical マクセル北陸精器株式会社
Priority to JP2002271233A priority Critical patent/JP4218792B2/en
Publication of JP2004111186A publication Critical patent/JP2004111186A/en
Publication of JP2004111186A5 publication Critical patent/JP2004111186A5/ja
Application granted granted Critical
Publication of JP4218792B2 publication Critical patent/JP4218792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水二次電池に係り、特に、5AH以上の高放電容量を有する非水二次電池において、過充電時のデントライト等による内部短絡が生じても安全性を確保できる非水二次電池に関するものである。
【0002】
【従来の技術】
リチウムイオン二次電池で代表される非水二次電池は、電解液の主溶媒として有機溶媒を用いる二次電池であり、容量が大きく、かつ高電圧、高エネルギー密度のため、自動車等の車両用電源として利用され始めている。この電池は、正極活物質として活性なLiCoO2(コバルト酸リチウム)が使用され、引火性の有機溶媒が使用されるため、発火や爆発に対する安全性が要求され、従来からもこの安全性を確保するため、種々の試みが提案されている。
【0003】
この試みの一つとして、外装缶内に収納され、正極と負極との間にセパレータを介して渦巻状に卷回した積層電極体と、前記外装缶内に収納された非水電解液とを備えた非水二次電池において、積層電解体の巻き芯部に温度ヒューズを配置して、過充電や短絡等による温度上昇に伴う発火を防止した非水二次電池が提案されている。(例えば、特許文献1参照)
この提案によれば、過充電や短絡等によって、電池が発熱した際、この発熱による温度上昇を、温度ヒューズが検知して電池外部に取り出す電流を切断して、以後の発熱を防止することが可能であるが、放電容量が5AH以上の車両用動力電源として使用する場合のように、高電流で使用する場合には、温度の上昇が早く、温度ヒューズが所定温度を検知して、使用電流を遮断しても、発熱を抑制することができず、遂には、発火を生じる事態が発生する問題が生じた。
【0004】
【特許文献1】
特開平6−203827号公報
【0005】
【発明が解決しようとする課題】
本発明は、このような問題点を解決しようとするもので、放電容量が、5AH以上の高放電容量を有する非水二次電池においても、過充電時の内部短絡等による発熱を早期検出して十分に発火を抑えることが可能な非水二次池を提供しようとするものである。
【0006】
【課題を解決するための手段】
本発明者らは、上記問題を解決するため、種々検討した結果、放電容量が5AH以上の高放電容量を有する非水二次電池においては、過充電時の内部短絡等による電池の発熱に伴う温度上昇を早期に検出して使用電流を早期に遮断し、さらなる温度上昇を抑制してやればよいことを究明した。
【0007】
この究明に基づき検討の結果、本発明による第1の発明においては、正極集電体の少なくとも一面に正極活物質含有塗膜を形成してなる正極と、負極集電体の少なくとも一面に負極活物質含有塗膜を形成してなる負極とを、セパレータを介して積層した電極体を容器内に収納してなる非水二次電池であって、前記セパレータの一部に、このセパレータよりその開孔率が大きいか又は機械的強度が小さい第2のセパレータを配設し、この第2のセパレータの近傍に、温度ヒューズを配置し、この温度ヒューズを、前記正極集電体と電気的に接続された正極リードまたは、前記負極集電体と電気的に接続された負極リードと、正極または負極リード端子とに電気的に接続したことを特徴とする非水二次電池とすることにより、過充電時の内部短絡が発生しやすい第2のセパレータを部分的に使用し、このセパレータ部分で過充電時に、早期に内部短絡を発生させ、この内部短絡に伴う温度上昇を、温度ヒューズで検出して、早期に温度上昇を検出できるようにして発火を防止したものである。
【0008】
本発明の第2の発明においては、前記非水二次電池は、5AH以上50AH以下の放電容量を有する非水二次電池に、第2のセパレータを使用することによって、車両用電源として好適な非水二次電池において、過充電時の内部短絡に伴う急激な温度上昇による電池の発火を確実に抑制できるようにしたものである。
【0009】
本発明の第3の発明においては、前記非水二次電池は、ポリマー固体電解質リチウムイオン二次電池である非水二次電池とすることにより、上記発火を抑制して、5AH以上の車両用電源として、有効に使用可能な電池としたものである。
【0010】
本発明の第4の発明においては、正極集電体の少なくとも一面に正極活物質含有塗膜を形成してなる正極と、負極集電体の少なくとも一面に負極活物質含有塗膜を形成してなる負極とを、セパレータを介して短冊状に積層した電極体を容器内に収納してなるポリマー固体電解質リチウム二次電池であって、前記電極体の中間部において、前記正極集電体または、負極集電体の一部に、温度ヒューズに近接して当該集電体の発熱温度が前記温度ヒューズによって検出される被検出部を設けたことを特徴とするポリマー固体電解質リチウム二次電池とすることにより、1個ないし2個以上の正極または負極集電体に形成された被検出部で、温度ヒューズによる温度上昇の検出を早期に行えるようにしたものである。
【0011】
本発明者らの検討によれば、車両用電源などの5AH以上の高放電容量を有する非水二次電池において、前述の公知技術のように、積層電極体の巻き芯部に温度ヒューズを配置した構造にしても、2A以上の高電流を流して充電する場合には、部分的に過充電による内部短絡が生じた場合に、その部分で発熱が生じる場合があるがこの発熱に伴い、高電流での使用のため、内部短絡が拡大し、急激な温度上昇を伴い、温度ヒューズで、所定温度を検出して、使用電流を遮断しても温度上昇に伴う化学反応が継続し、発火現象を抑制できないことを究明した。
【0012】
この究明に基づきさらに検討を進めた結果、部分的な内部短絡に伴う温度上昇を早期に検出して、使用電流を遮断すれば、他の部分への温度上昇の拡大を抑制して、発火を防止できることに着目し、意図的に、内部短絡が生じやすい第2のセパレータを、本来の正極活物質含有塗膜と負極活物質塗膜とを分離する第1のセパレータの一部に配置し、小面積の第2セパレータの部分で、最初に、意図的に、内部短絡を生じさせ、この部分を温度ヒューズで早期に検出できるようにしたものである。
【0013】
この第2セパレータは、前述のように、意図的に第1のセパレータより早期に内部短絡が起き易いように設定する必要があり、そのためには、第1のセパレータよりも開孔率を大きくするか、機械的強度を弱くして内部短絡が生じ易いようにすればよい。通常、第1セパレータとしては、厚さが10〜50μmで、開孔率が30〜50%のポリプロピレン製、ポリエチレン製またはエチレンとプロピレンのコポリマー製の微孔性フィルムや不織布等が使用されるが、第2セパレータは、前記のような第1セパレータの開孔率より大きい開孔率のものを使用すれば、第2セパレータ部分での過充電時の内部短絡が生じやすくなり、早期に検知可能となる。この場合、第2セパレータの開孔率は、55%以上あれば十分で、この開孔率が大きくなるにつれ早期検知が容易となるが、余り開孔率が大きすぎると逆にこの部分で簡単に内部短絡を生じ、電池性能を低下させるので、80%以下とするのが望ましい。
【0014】
また、第2セパレータの内部短絡が生じやすくするには、第1セパレータより機械的強度を低下したものを使用することによっても発揮されるが、この機械的強度は、セパレータの厚みや材質等を適宜選定することによって容易に得ることができる。例えば、厚みについていえば、第2セパレータと第1セパレータの材質が同じであっても、第2セパレータの厚みを第1セパレータの厚みより薄くすると、過充電によって発生し易いLi化合物のデントライト物がセパレータを容易に突き破ることで、容易に内部短絡が起こりやすくすることができ、所期の目的を達成できる。この場合の第2セパレータの厚みは、第1セパレータの4/5以下の厚みとすれば、十分である。
【0015】
同様に、同じ厚みであっても、第2セパレータの材質を第1セパレータの材質より機械的強度が弱いものを使用することで、前記デントライトによる内部短絡が第1セパレータより先に第2セパレータで起きるようにすることができる。
【0016】
この場合、第2セパレータの使用面積は、この第2セパレータの近傍に配置される温度ヒューズの温度検出部分の大きさであれば十分である。
【0017】
一方、ポリマー固体電解質リチウムイオン電池では、その構造的特長から箔状の正極及び負極集電体を使用し、これらの集電体上に、正極活物質含有塗膜または負極活物質含有塗膜を形成し、セパレータを介して正極活物質塗膜と負極活物質塗膜とが対向するように積層し、正極及び負極集電体の上端に突出させた正極リード及び負極リードをそれぞれ電気的に並列に接続し、これらの正極リード及び負極リードを電池の外部に露出される正極及び負極リード端子に、それぞれ電気的に接続した構造のものが汎用されるが、この場合、正極または負極の集電体の一部を延出させて被検出部を形成し、この被検出部に近接して、温度ヒューズを配置し、熱伝導性のよい集電体からの昇温を容易に検出可能として、内部短絡による昇温を早期に検出することによって、電池の発火を抑制することができる。
【0018】
この場合、前述のように、内部短絡が起き易い第2セパレータを使用し、この第2セパレータに対向する集電体に前記被検出部を設けても良いが、第2セパレータを使用せず、前記被検出部を、蓄熱し易い積層電極体の中間部や発熱集電体が接続される正極リードまたは負極リードに近接する部分に配設すれば、容易に、早期に内部短絡による温度上昇を検知し、電池の発火を抑制することができる。
【0019】
被検出部に配置される温度ヒューズは、被検出部に温度ヒューズの温度検出部分が接触していることが好ましいが、必ずしも接触せず、わずかに離隔していてもよい。
【0020】
本発明で使用される温度ヒューズは、60〜100℃で作動して導通を遮断するものであれば、どのようなものであっても良いが、特に電解質や電解液によって侵されにくいものが好ましく、ポリマー固体電解質リチウムイオン電池においては、富士端子工業株式会社製FTF-S15A等が好適に使用できる。
【0021】
温度ヒューズは、前記正極リードと正極リード端子間、または負極リードと負極リード端子間のいずれか一方又は、両方に、電気的に接続されるが、前述のデントライトの生成は、負極で起こりやすいため、前記被検出部も負極集電体に形成し、この被検出部上に温度ヒューズを配置して負極リードと負極リード端子間に電気的に接続されるのが推奨される。
【0022】
さらに、本発明においては、放電容量が、5AH以上であれば、有効に作用するが余り大きい放電容量の電池では、電極の体積が相当大きくする必要があり、電動車椅子用電源としては、50AH以下の放電容量の電池が実用的である。放電容量は、正極及び負極活物質の使用量に応じて大きくすることができる。
【0023】
本発明で言う放電容量とは、所定電流で充電して満充電させた後、所定電流で放電して終止電圧に達するまでの時間と放電時の所定電流とを乗じた値をいう。
【0024】
また、本発明で言う非水二次電池としては、有機溶媒を使用するものを言うが、特に、正極活物質として、LiCoO2等のリチウムコバルト酸化物、LiMn2O4等のリチウムマンガン酸化物、LiNiO2等のリチウムニッケル酸化物を、また、負極活物質として、リチウムイオンをドープ、脱ドープできる黒鉛、熱分解炭素類、コークス類、ガラス状炭素類を、さらに、電解質として有機溶媒系の液状電解質、ゲル状電解質、固体電解質を使用するものが好ましい。
【0025】
電解質としては、特開2001−176555号に記載されているように、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、エチレンカーボネート等の有機溶媒に、LiClO4、LiPF6、LiBF4、LiAsF6、LiCF3SO3等の溶質を溶解し、エポキシ樹脂とその架橋材、ポリイソシアネート化合物又はウレタンプレポリマーとその架橋材、アクリル系モノマーとラジカル重合開始剤、エポキシ基含有ラジカル共重合ポリマーとカチオン重合開始剤等を混合したものが好適であり、これらを、正極及び負極活物質、セパレータに含浸、固化した固体電解質を使用するポリマー固体電解質リチウムイオン電池とした場合、種々の形状を採用でき、電動車椅子用電源等に好適である。
【0026】
正極集電体としては、アルミニュウム、銅、ニッケル、ステンレス等の電気伝導性及び熱伝導性の良好な材質のものが使用でき、5〜60μm厚のアルミニューム箔が好適で、この集電体の少なくとも片面に、前記正極活物質と鱗状黒鉛やカーボンブラック等の導電助剤とポリフッ化ビニリデンやポリテトラフルオロエチレン等のバインダーを溶剤でペースト状にして塗布、乾燥して30〜300μm厚の正極活物質含有塗膜を形成したものを使用できる。
【0027】
負極集電体としては、アルミニュウム、銅、ニッケル、ステンレス等の電気伝導性及び熱伝導性の良好な材質のものが使用でき、5〜60μm厚の銅箔が好適で、この集電体の少なくとも片面に、前記負極活物質とポリフッ化ビニリデンやポリテトラフルオロエチレン等のバインダーを溶剤でペースト状にして塗布、乾燥して30〜300μm厚の負極活物質含有塗膜を形成したものを使用できる。
【0028】
本発明では、正極集電体上に正極活物質含有塗膜を有する正極と負極集電体上に負極活物質含有塗膜を有する負極とを、第1のセパレータを介して積層した構造とする必要があるが、この積層構造は、シート状の正極とセパレータと負極を短冊状に積層する構造に限らず、渦巻状に巻回した構造であっても良い。
【0029】
また、本発明においては、釘を刺して意図的に内部短絡を生じさせても電池の発火を抑制できる構造とすることもできる。この構造としては、正極集電体の表面に、正極活物質含有塗膜を形成した正極と負極集電体の表面に、負極活物資含有塗膜を形成した負極を積層した積層電極体の最外層に、前記正極集電体と電気的に接続され、少なくとも最外層の正極活物質含有塗膜を被覆し得る正極電極と、前記負極集電体と電気的に接続され、少なくとも最外層の負極活物質含有塗膜を被覆し得る負極電極とを開孔率が小さく絶縁性のよい第3セパレータを介して積層してなり、前記正極電極と負極電極のそれぞれの体積を、放電容量1A当たり150〜2500mm3とする構造を採用することができる。
【0030】
前記積層電極体、正極電極、負極電極、第3セパレータ等からなる電池ユニットを収納する容器は、ステンレス、ニッケル、アルミニューム等からなる缶を使用できるが、アルミニューム箔の両面をプラスチック絶縁シートでラミネートした袋状物を使用した場合には、軽量化が可能となり、好ましい。
【0031】
【発明の実施の形態】
以下本発明の非水二次電池の1種であるポリマー固体電解質リチウムイオン二次電池について、図面を参照しながら説明する。
【0032】
(実施例1)
図1、図2、は、本発明の一実施例であるポリマー固体電解質リチウムイオン二次電池の表面の外装部分を取り除いて切り欠いた平面図及び図1の上方から見た斜視図を示し、このポリマー固体電解質リチウムイオン二次電池は、アルミニューム箔の両面をプラスチックフィルムでラミネートされた幅15cm、長さ25cm、厚み0.44cmの長方形袋状の可撓性の収納容器1に、後述する電池ユニットが収納され、上部に正極リード端子2と負極リード端子3が露出された状態で密封されている。
【0033】
このポリマー固体電解質リチウムイオン二次電池は、表面外装部分の断面を示す図3から明らかなように、40μm厚のアルミニューム箔4を25μm厚のナイロン樹脂シートからなる外装絶縁シート5と30μm厚のポリエチレンからなる内装絶縁シート6とでラミネートされた可撓性の収納容器1内に、0.3mm厚、電極体積が7134mm3の銅板からなる負極電極7と同一厚み及び電極体積を有するアルミニュウム板からなる正極電極8を、後述する第1セパレータ9を介して8層積層された積層電極体10と共にその最外周上に、25μm厚みの開孔のほとんどないポリエチレンテレフタレートフイルムからなる第3セパレータ11を介して積層して固体電解質(図示せず)と共に密封された構造となっている。
【0034】
後述する積層電極体10の各正極12の正極集電体13と正極電極8とは、図1及び図2上の上端で正極集電体13から延設された15μm厚みのアルミニューム箔及び正極電極8から延設された0.3mm厚みのアルミニューム板からなる正極リード14によって並列に電気的に接続されて0.1mm厚のアルミニューム板からなる正極リード端子2上で溶着して電気的に接続され、この溶着部分を、負極との短絡を防止するため、ポリイミドからなる絶縁テープ(図示せず)で巻回されて保護されている。また、0.1mm厚のニッケル板からなる負極リード端子3は、積層電極体10の各負極15の10μm厚みの銅箔からなる負極集電体16と負極電極7とが、図1及び図2上の上端で、負極集電体16から延設された銅箔及び負極電極7から延設された0.3mm厚みの銅板からなる負極リード17が負極リード支持部19上で電気的に並列に接続されており、負極リード支持部19と負極リード端子3とに、定格電流15A、動作温度が82℃の富士端子工業社製S082J温度ヒューズ21のリード線20がそれぞれスポット溶接されて直列に接続されている。この温度ヒューズ21は、その温度検出部18が、積層電極体10の中間部の負極集電体16の上端から負極活物質塗膜が存在しない状態で、温度ヒューズ21の温度検出部18の幅で延出された被検出部22上に接触して設置されている。
【0035】
正極12は、図4に分解斜視図で示すように、15μm厚み、縦長さ、202mm、横幅、113mmのアルミニューム箔からなる正極集電体13の両面全面に、下記組成の正極活物質含有塗膜23が約74μm厚みで形成され、負極15は、10μm厚、縦長さ、205mm、横幅、116mmの銅箔からなる負極集電体16の両面全面に、下記組成の負極活物質含有塗膜24が約69μm厚みで形成され、これらの正極12と負極15が、25μm厚、縦長さ、210mm、横幅、121mmのポリプロピレン−ポリエチレン−ポリプロピレンの3層構造(開孔率41%)の第1セパレータ9を介して積層され、これら正極活物質含有塗膜23、負極活物質含有塗膜24及び第1セパレータ9に下記組成の固体電解質が含浸、固化されて1対の電極体が構成されている。これらの電極体の8対が積層されて積層電極体10が構成されている。
【0036】
また、積層電極体10のほぼ中間層の負極集電体16の上端に配設された被検出部22に近接する第1セパレータ9の上端部に、25μm厚、縦長さ、17mm、横幅、121mmの開孔率62%のポリブチレンテレフタレートフィルムからなる第2セパレータが配設されている。そのため、この第2セパレート部分で過充電時に内部短絡が起こり易く、発熱しやすい構造となっており、この内部短絡に伴う発熱によってこれに隣接する負極集電体16が昇温し、これを被検出部22に配置された温度ヒューズ21が検出し、この負極集電体16の温度が82℃を超えると負極リード支持部19と負極リード端子3間の電気的接続が遮断され、通電しなくなる。その結果、過充電時の内部短絡による発熱が抑制され、電池の発火を防止することができる。
【0037】
[正極活物質含有塗膜組成]
正極活物質としてのコバルト酸リチウム(LiCoO2)に導電助剤として鱗状黒鉛を重量比92:4.5の割合で加えて混合し、この混合物とポリフッ化ビニリデンをN-メチルピロリドンに溶解させた溶液を混合してペーストを形成し、これを正極集電体13に塗布、乾燥する。
【0038】
[負極活物質含有塗膜組成]
負極活物質としての黒鉛系炭素材料(002面の面間距離=3.37Å、C軸方向の結晶子の大きさLc=950Å、平均粒径10μm、純度99.9%以上の特性を有する炭素材料)を、ポリフッ化ビニリデンをN-メチルピロリドンに溶解させた溶液と混合してペーストを調整し、このペーストを負極集電体16に塗布、乾燥する。
【0039】
[固体電解質組成]
CH2=CHCOO{CH2CH(CH3)O}2CH3177.3重量部、3,4−エポキシシクロヘキシルメチルアクリレート59.1重量部、N,N'−アゾビスイソブチロニトリル3.9重量部、ラウリルメルカプタン0.4重量部を反応させて得られるエポキシ基含有ラジカル共重合ポリマー12重量部とヘキサフルオロリン酸リチウム(LiPF6)を1モル濃度に溶解したエチレンカーボネート/ジエチルカーボネート(1/1、重量比)の混合溶媒溶液88重量部を混合して液状組成物を調整する。このようにして調整した組成物を、第1セパレータ及び第2セパレータを含む前記リチウムイオン二次電池用積層電極体、正極電極、第3セパレータ、負極電極等のユニットを組み込んだ収納容器に、35gを注入し、真空含浸を行った後密封し、70℃で30分間過熱してゲル化を行い、ポリマー固体電解質リチウムイオン二次電池を作製する。
【0040】
なお、上記実施例において、正極12の縦長さと横幅は、202mm及び113mmで、また、負極15、正極電極8及び負極電極7の縦長さと横幅は、それぞれ、205mm及び116mmのものが使用された。この電池の放電容量は、10Aで充電し、4.2Vに達した後は、4.2Vの電圧で、2時間充電を行って満充電とし、その後、2Aで3.0Vに達するまで放電を行った結果、5時間を要したので、10AHであった。
【0041】
このようにして作製した電池20個について、10Aの電流を流し、過充電試験を実施し、発火の有無を調べた結果、温度ヒューズが途中で作動して、通電が遮断され、わずかに温度上昇が認められたものの、発火は、生じなかった。またこの電池について、釘を差込み、意図的に内部短絡を生じさせる釘刺し試験を行ったが、発火は、生じなかった。
【0042】
(実施例2)
上記実施例1中、第2セパレータの使用を止め、第1セパレータのみを使用した以外は、同様にして電池を20個製作し、前述の過充電試験を行った。結果、実施例1の場合に比べ温度上昇が認められ、80℃近傍まで電池の温度上昇が認められたものの発火までは至らなかった。
【0043】
(実施例3)
図5に示すように、ステンレス製の円筒形の外装缶26に、実施例1で使用した材料組成と同一のもので製作された正極12と負極15を、実施例1で使用した第1セパレータと同一材質の第1セパレータ9を介して卷回した積層電極体10と、メチルエチルカーボネートとエチレンカーボネートとを体積比2:1で混合した混合溶媒に、LiPF6を1.2モル/lで溶解した電解液を収納した電池において、その巻き芯部29に、実施例1で使用した温度ヒューズ21を配置し、そのリード線20をそれぞれ正極リード端子2及び正極12の正極集電体13と電気的に接続すると共に、温度ヒューズ21に近接する第1セパレートの最内周の上端部に、温度ヒューズ21の温度検出部18を取り巻くように、実施例1で使用したポリブチレンテレフタレートフィルムからなる第2セパレート25を配設して電池を作製した。この電池の放電容量は、10AHであった。この電池を20個作製し、2Aの充電電流を流して過充電試験を行った。結果、通電が遮断され、わずかに温度上昇が認められたものの、発火するものは皆無であった。
【0044】
なお、図5中、28は、積層電極体10と外装缶26とを電気的に絶縁する絶縁体で、30は、負極集電体13と電気的に接続された外装缶26と正極リード端子2とを電気的に絶縁する絶縁ガスケットである。
【0045】
(比較例)
実施例3の電池において、第2セパレータを使用しなかった以外同様にして電池を作製し、過充電試験を行った。結果、20個の試験電池の内、10個は、発火が生じ、残りの10個についても温度ヒューズが作動して通電が遮断されたものの80℃程度に電池の温度が昇温しており、発火寸前であった。
【0046】
【発明の効果】
本発明の第1の発明である、第1セパレータの一部に、このセパレータよりその開孔率が大きいか又は機械的強度が小さい第2のセパレータを配設し、この第2セパレータの近傍に、温度ヒューズを配置し、この温度ヒューズを、前記正極集電体と電気的に接続された正極リードまたは、前記負極集電体と電気的に接続された負極リードと正極または負極リード端子とに電気的に接続したので、放電容量が5AH以上の高放電容量の電池においても、過充電時の部分的な内部短絡に伴う温度上昇を早期に検出して、使用電流を遮断して他の部分への温度上昇の拡大を抑制し、電池の発火を防止できる。
【図面の簡単な説明】
【図1】本発明によるポリマー固体電解質リチウムイオン二次電池の表面の外装部分上部の一部を取り除いて切り欠いた平面図である。
【図2】図1の上方から見た斜視図である。
【図3】図1で示すポリマー固体電解質リチウムイオン二次電池の表面外装部分の断面図である。
【図4】図2で示すポリマー固体電解質リチウムイオン二次電池の積層電極体の中間層部分の分解斜視図である。
【図5】本発明による実施例3の液体電解質リチウムイオン二次電池の断面図である。
【符号の説明】
1 収納容器
2 正極リード端子
3 負極リード端子
7 負極電極
8 正極電極
9 第1セパレータ
10 積層電極体
11 第3セパレータ
12 正極
13 正極集電体
14 正極リード
15 負極
16 負極集電体
17 負極リード
18 温度検出部
19 負極リード支持部
20 リード線
21 温度ヒューズ
22 被検出部
23 正極活物質含有塗膜
24 負極活物質含有塗膜
25 第2セパレータ
26 外装缶
28 絶縁体
29 巻き芯部
30 絶縁ガスケット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous secondary battery, and in particular, in a non-aqueous secondary battery having a high discharge capacity of 5 AH or more, the non-aqueous secondary battery can ensure safety even if an internal short circuit occurs due to dent light or the like during overcharge. The present invention relates to a secondary battery.
[0002]
[Prior art]
A non-aqueous secondary battery represented by a lithium ion secondary battery is a secondary battery that uses an organic solvent as a main solvent of an electrolytic solution, and has a large capacity, a high voltage, and a high energy density. It has begun to be used as a power source. This battery is a LiCoO active as a positive electrode active material. 2 Since (cobalt oxide) is used and a flammable organic solvent is used, safety against ignition and explosion is required, and various attempts have been proposed in the past to ensure this safety.
[0003]
As one of the attempts, a laminated electrode body housed in an outer can and wound in a spiral shape via a separator between a positive electrode and a negative electrode, and a nonaqueous electrolytic solution housed in the outer can In the provided non-aqueous secondary battery, a non-aqueous secondary battery has been proposed in which a thermal fuse is disposed at the core of the laminated electrolyte to prevent ignition due to temperature rise due to overcharge or short circuit. (For example, see Patent Document 1)
According to this proposal, when the battery generates heat due to overcharge or short circuit, the temperature rise due to the heat generation is detected by the temperature fuse, and the current taken out of the battery is cut off to prevent subsequent heat generation. Although it is possible, when used at a high current, such as when used as a vehicle power supply with a discharge capacity of 5 AH or more, the temperature rises quickly and the temperature fuse detects the specified temperature and the current used Even if shut off, heat generation could not be suppressed, and finally there was a problem of occurrence of fire.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 6-203827
[0005]
[Problems to be solved by the invention]
The present invention is intended to solve such a problem. Even in a non-aqueous secondary battery having a high discharge capacity of 5 AH or more, heat generation due to an internal short circuit at the time of overcharge is detected at an early stage. It aims to provide a non-aqueous secondary pond that can sufficiently suppress ignition.
[0006]
[Means for Solving the Problems]
As a result of various studies to solve the above problems, the present inventors have found that in non-aqueous secondary batteries having a high discharge capacity of 5 AH or more, the battery is heated due to an internal short circuit during overcharge. It has been found that it is only necessary to detect the temperature rise early to cut off the operating current early to suppress further temperature rise.
[0007]
As a result of investigation based on this investigation, in the first invention according to the present invention, a positive electrode in which a positive electrode active material-containing coating film is formed on at least one surface of the positive electrode current collector, and a negative electrode active material on at least one surface of the negative electrode current collector. A non-aqueous secondary battery in which an electrode body obtained by laminating a negative electrode formed with a substance-containing coating film via a separator is housed in a container, and a part of the separator is opened from the separator. A second separator having a high porosity or a low mechanical strength is disposed, a thermal fuse is disposed in the vicinity of the second separator, and the thermal fuse is electrically connected to the positive electrode current collector. A non-aqueous secondary battery characterized in that it is electrically connected to a positive electrode lead, a negative electrode lead electrically connected to the negative electrode current collector, and a positive electrode or negative electrode lead terminal. Internal short circuit during charging The second separator, which is likely to occur, is partially used, and when this separator is overcharged, an internal short circuit is generated at an early stage, and the temperature rise due to this internal short circuit is detected by a thermal fuse, resulting in an early temperature increase. Can be detected to prevent ignition.
[0008]
In the second invention of the present invention, the non-aqueous secondary battery is suitable as a vehicle power source by using a second separator in a non-aqueous secondary battery having a discharge capacity of 5 AH or more and 50 AH or less. In a non-aqueous secondary battery, ignition of the battery due to a rapid temperature rise accompanying an internal short circuit during overcharge can be reliably suppressed.
[0009]
In a third aspect of the present invention, the non-aqueous secondary battery is a non-aqueous secondary battery that is a polymer solid electrolyte lithium ion secondary battery, thereby suppressing the ignition and for vehicles of 5 AH or more. As a power source, the battery can be used effectively.
[0010]
In a fourth aspect of the present invention, a positive electrode formed by forming a positive electrode active material-containing coating film on at least one surface of the positive electrode current collector, and a negative electrode active material-containing coating film formed on at least one surface of the negative electrode current collector A negative electrode through a separator In strips A polymer solid electrolyte lithium secondary battery in which laminated electrode bodies are housed in a container, In the middle part of the electrode body, A polymer solid, characterized in that a part to be detected of the positive electrode current collector or the negative electrode current collector is provided with a portion to be detected in proximity to a thermal fuse, and a heat generation temperature of the current collector is detected by the thermal fuse. By using an electrolyte lithium secondary battery, a temperature rise caused by a thermal fuse can be detected at an early stage in a detected part formed on one or more positive or negative electrode current collectors.
[0011]
According to the study of the present inventors, in a non-aqueous secondary battery having a high discharge capacity of 5 AH or more such as a power source for vehicles, a thermal fuse is arranged at the core part of the laminated electrode body as in the above-mentioned known technique. Even with the above structure, when charging with a high current of 2 A or more, if an internal short circuit occurs due to partial overcharging, heat may be generated in that part. Due to the use of electric current, internal short circuit has expanded, accompanied by a sudden rise in temperature, a temperature fuse detects the specified temperature, and even if the current is cut off, the chemical reaction continues with the rise in temperature, causing an ignition phenomenon Investigate that it is impossible to suppress
[0012]
As a result of further investigation based on this investigation, if the temperature rise due to a partial internal short-circuit is detected early and the operating current is cut off, the expansion of the temperature rise to other parts is suppressed and ignition occurs. Focusing on the fact that it can be prevented, the second separator that is likely to cause an internal short circuit is intentionally placed on a part of the first separator that separates the original positive electrode active material-containing coating film and the negative electrode active material coating film, In the portion of the second separator having a small area, first, an internal short circuit is intentionally generated, and this portion can be detected early with a thermal fuse.
[0013]
As described above, the second separator must be intentionally set so that an internal short circuit is likely to occur earlier than the first separator. For this purpose, the porosity is made larger than that of the first separator. Alternatively, the mechanical strength may be weakened so that an internal short circuit is likely to occur. Usually, the first separator is a microporous film or non-woven fabric made of polypropylene, polyethylene or ethylene / propylene copolymer having a thickness of 10 to 50 μm and an open area ratio of 30 to 50%. If the second separator has an opening ratio larger than that of the first separator as described above, an internal short-circuit at the time of overcharging in the second separator portion is likely to occur and can be detected early. It becomes. In this case, it is sufficient that the second separator has a hole area ratio of 55% or more, and early detection becomes easier as the hole area ratio increases. This causes an internal short circuit and lowers the battery performance.
[0014]
Further, in order to easily cause an internal short circuit of the second separator, it is also demonstrated by using a material whose mechanical strength is lower than that of the first separator. However, this mechanical strength depends on the thickness and material of the separator. It can obtain easily by selecting suitably. For example, regarding the thickness, even if the material of the second separator and the first separator is the same, if the thickness of the second separator is made thinner than the thickness of the first separator, the Li compound dentlite is likely to be generated by overcharging. However, by easily breaking through the separator, an internal short circuit can easily occur, and the intended purpose can be achieved. In this case, it is sufficient that the thickness of the second separator is 4/5 or less that of the first separator.
[0015]
Similarly, even if the thickness of the second separator is the same as that of the first separator, the internal short circuit due to the dent light may occur before the first separator. Second separator You can make it happen.
[0016]
In this case, the use area of the second separator is sufficient if it is the size of the temperature detection part of the thermal fuse arranged in the vicinity of the second separator.
[0017]
On the other hand, a polymer solid electrolyte lithium ion battery uses a foil-like positive electrode and negative electrode current collector because of its structural features, and a positive electrode active material-containing coating film or a negative electrode active material-containing coating film is formed on these current collectors. Formed, laminated so that the positive electrode active material coating film and the negative electrode active material coating film face each other with a separator interposed therebetween, and the positive electrode lead and the negative electrode lead protruded from the upper ends of the positive electrode and the negative electrode current collector are electrically parallel to each other. In general, the positive electrode and the negative electrode lead are connected to the positive electrode and the negative electrode lead terminal exposed to the outside of the battery, respectively. Extending a part of the body to form a detected part, placing a thermal fuse in the vicinity of the detected part, making it possible to easily detect the temperature rise from the current collector with good thermal conductivity, Early detection of temperature rise due to internal short circuit By, it is possible to suppress the ignition of the battery.
[0018]
In this case, as described above, it is possible to use the second separator that is liable to cause an internal short circuit, and to provide the detected portion on the current collector facing the second separator, but without using the second separator, If the detected part is disposed in the middle part of the laminated electrode body that is likely to store heat, or in the part close to the positive electrode lead or the negative electrode lead to which the heat-generating current collector is connected, the temperature rise due to an internal short circuit can be easily achieved at an early stage. It can detect and suppress the ignition of the battery.
[0019]
Although it is preferable that the temperature detection part of the temperature fuse is in contact with the detected part, the temperature fuse arranged in the detected part is not necessarily in contact but may be slightly separated.
[0020]
The thermal fuse used in the present invention may be any one as long as it operates at 60 to 100 ° C. and cuts off the conduction, but is particularly preferably one that is not easily attacked by the electrolyte or the electrolytic solution. In the polymer solid electrolyte lithium ion battery, FTF-S15A manufactured by Fuji Terminal Industry Co., Ltd. can be suitably used.
[0021]
The thermal fuse is electrically connected between the positive electrode lead and the positive electrode lead terminal, or between the negative electrode lead and the negative electrode lead terminal, or both, but the generation of the dent light is likely to occur at the negative electrode. Therefore, it is recommended that the detected portion is also formed on the negative electrode current collector, and a thermal fuse is disposed on the detected portion and electrically connected between the negative electrode lead and the negative electrode lead terminal.
[0022]
Further, in the present invention, if the discharge capacity is 5 AH or more, the battery having an excessively large discharge capacity needs to have a considerably large electrode volume, and the power supply for the electric wheelchair is 50 AH or less. A battery with a discharge capacity of is practical. The discharge capacity can be increased according to the amount of positive electrode and negative electrode active material used.
[0023]
The discharge capacity as used in the present invention refers to a value obtained by multiplying a predetermined current by charging with a predetermined current and then charging the battery with a predetermined current and reaching a final voltage.
[0024]
In addition, the non-aqueous secondary battery in the present invention refers to a battery using an organic solvent, and in particular, as a positive electrode active material, LiCoO 2 Lithium cobalt oxide such as LiMn 2 O Four Lithium manganese oxide such as LiNiO 2 Lithium nickel oxide such as, as a negative electrode active material, graphite capable of doping and dedoping lithium ions, pyrolytic carbons, cokes, glassy carbons, and an organic solvent-based liquid electrolyte as an electrolyte, Those using gel electrolytes or solid electrolytes are preferred.
[0025]
As an electrolyte, as described in JP-A No. 2001-176555, an organic solvent such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, propylene carbonate, ethylene carbonate, or LiClO is used. Four , LiPF 6 , LiBF Four , LiAsF 6 , LiCF Three SO Three Such as epoxy resin and its crosslinker, polyisocyanate compound or urethane prepolymer and its crosslinker, acrylic monomer and radical polymerization initiator, epoxy group-containing radical copolymerization polymer and cationic polymerization initiator, etc. In the case of a polymer solid electrolyte lithium ion battery using a solid electrolyte impregnated and solidified in a positive electrode and a negative electrode active material and a separator, various shapes can be adopted and used as a power source for an electric wheelchair, etc. Is preferred.
[0026]
As the positive electrode current collector, a material having good electrical conductivity and thermal conductivity such as aluminum, copper, nickel, stainless steel can be used, and an aluminum foil having a thickness of 5 to 60 μm is preferable. At least on one side, the positive electrode active material having a thickness of 30 to 300 μm is applied by drying the positive electrode active material, a conductive additive such as scaly graphite or carbon black, and a binder such as polyvinylidene fluoride or polytetrafluoroethylene in a paste form with a solvent. What formed the substance containing coating film can be used.
[0027]
As the negative electrode current collector, a material having good electrical conductivity and thermal conductivity such as aluminum, copper, nickel, stainless steel can be used, and a copper foil having a thickness of 5 to 60 μm is preferable. The negative electrode active material and a binder such as polyvinylidene fluoride or polytetrafluoroethylene may be applied as a paste with a solvent on one side and dried to form a negative electrode active material-containing coating film having a thickness of 30 to 300 μm.
[0028]
In this invention, it is set as the structure which laminated | stacked the positive electrode which has a positive electrode active material containing coating film on the positive electrode collector, and the negative electrode which has a negative electrode active material containing coating film on the negative electrode collector through the 1st separator. Although it is necessary, this laminated structure is not limited to a structure in which a sheet-like positive electrode, a separator, and a negative electrode are laminated in a strip shape, and may be a structure wound in a spiral shape.
[0029]
Moreover, in this invention, it can also be set as the structure which can suppress the ignition of a battery, even if it punctures a nail and produces an internal short circuit intentionally. This structure is the same as that of the laminated electrode body in which the positive electrode on which the positive electrode active material-containing coating film is formed on the surface of the positive electrode current collector and the negative electrode on which the negative electrode active material-containing coating film is formed on the surface of the negative electrode current collector. A positive electrode that is electrically connected to the positive electrode current collector in an outer layer and can cover at least the outermost positive electrode active material-containing coating film; and a negative electrode that is electrically connected to the negative electrode current collector and at least the outermost layer negative electrode A negative electrode capable of coating the active material-containing coating film is laminated via a third separator having a small porosity and good insulation, and the volume of each of the positive electrode and the negative electrode is 150 per 1 A of discharge capacity. ~ 2500mm Three The following structure can be adopted.
[0030]
A container made of stainless steel, nickel, aluminum or the like can be used as a container for storing a battery unit made of the laminated electrode body, positive electrode, negative electrode, third separator, etc., but both sides of the aluminum foil are made of plastic insulating sheets. When a laminated bag is used, the weight can be reduced, which is preferable.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a polymer solid electrolyte lithium ion secondary battery which is one type of the non-aqueous secondary battery of the present invention will be described with reference to the drawings.
[0032]
(Example 1)
1 and 2 show a plan view of the polymer solid electrolyte lithium ion secondary battery according to an embodiment of the present invention, in which the exterior portion of the surface is removed and a perspective view seen from above in FIG. This polymer solid electrolyte lithium ion secondary battery is described later in a flexible container 1 in the form of a rectangular bag having a width of 15 cm, a length of 25 cm, and a thickness of 0.44 cm, in which both surfaces of an aluminum foil are laminated with a plastic film. The battery unit is housed and sealed with the positive electrode lead terminal 2 and the negative electrode lead terminal 3 exposed at the top.
[0033]
As is apparent from FIG. 3 showing a cross-section of the surface exterior portion, this polymer solid electrolyte lithium ion secondary battery has a 40 μm-thick aluminum foil 4 and a 30 μm-thick exterior insulation sheet 5 made of a 25 μm-thick nylon resin sheet. In a flexible storage container 1 laminated with an interior insulating sheet 6 made of polyethylene, the thickness is 0.3 mm and the electrode volume is 7134 mm. Three A positive electrode 8 made of an aluminum plate having the same thickness and electrode volume as the negative electrode 7 made of a copper plate, together with a laminated electrode body 10 laminated with 8 layers through a first separator 9 to be described later, on its outermost periphery, 25 μm It has a structure in which it is laminated via a third separator 11 made of polyethylene terephthalate film having almost no aperture and sealed together with a solid electrolyte (not shown).
[0034]
The positive electrode current collector 13 and the positive electrode 8 of each positive electrode 12 of the laminated electrode body 10 to be described later are a 15 μm thick aluminum foil and a positive electrode extending from the positive electrode current collector 13 at the upper end in FIGS. 1 and 2. Electrically connected in parallel by a positive electrode lead 14 made of an aluminum plate having a thickness of 0.3 mm extending from the electrode 8 and welded on the positive electrode lead terminal 2 made of an aluminum plate having a thickness of 0.1 mm. In order to prevent a short circuit with the negative electrode, this welded part is protected by being wound with an insulating tape (not shown) made of polyimide. Further, the negative electrode lead terminal 3 made of a 0.1 mm thick nickel plate has a negative electrode current collector 16 made of a 10 μm thick copper foil of each negative electrode 15 of the laminated electrode body 10 and a negative electrode 7 as shown in FIGS. At the upper end, a negative electrode lead 17 made of a copper foil extending from the negative electrode current collector 16 and a 0.3 mm thick copper plate extending from the negative electrode 7 is electrically parallel on the negative electrode lead support 19. The lead wire 20 of the S082J thermal fuse 21 manufactured by Fuji Terminal Industry Co., Ltd. having a rated current of 15 A and an operating temperature of 82 ° C. is spot-welded to the negative electrode lead support 19 and the negative electrode lead terminal 3 in series. Has been. This temperature fuse 21 has a width of the temperature detection unit 18 of the temperature fuse 21 in a state where the temperature detection unit 18 does not have a negative electrode active material coating film from the upper end of the negative electrode current collector 16 in the intermediate portion of the laminated electrode body 10. It is installed in contact with the detected part 22 extended by the above.
[0035]
As shown in an exploded perspective view in FIG. 4, the positive electrode 12 is coated on the entire surface of a positive electrode current collector 13 made of aluminum foil having a thickness of 15 μm, a vertical length of 202 mm, a horizontal width of 113 mm, and containing a positive electrode active material having the following composition. The film 23 is formed with a thickness of about 74 μm, and the negative electrode 15 has a negative electrode active material-containing coating film 24 having the following composition on both surfaces of the negative electrode current collector 16 made of a copper foil having a thickness of 10 μm, a length of 205 mm, a width of 116 mm. Is formed with a thickness of about 69 μm, and the positive electrode 12 and the negative electrode 15 are each a first separator 9 having a three-layer structure of polypropylene-polyethylene-polypropylene having a thickness of 25 μm, a length of 210 mm, a width of 121 mm (a porosity of 41%). The positive electrode active material-containing coating film 23, the negative electrode active material-containing coating film 24, and the first separator 9 are impregnated and solidified to form a pair of electrode bodies. Yes. A laminated electrode body 10 is configured by laminating 8 pairs of these electrode bodies.
[0036]
Further, the upper end portion of the first separator 9 adjacent to the detected portion 22 disposed at the upper end of the negative electrode current collector 16 in the substantially intermediate layer of the laminated electrode body 10 has a thickness of 25 μm, a vertical length, 17 mm, a horizontal width, 121 mm. A second separator made of a polybutylene terephthalate film having an aperture ratio of 62% is disposed. For this reason, the second separate portion has a structure in which an internal short circuit easily occurs during overcharge and easily generates heat, and the negative electrode current collector 16 adjacent thereto is heated by the heat generated by the internal short circuit, and this is covered. When the temperature fuse 21 arranged in the detection part 22 detects and the temperature of the negative electrode current collector 16 exceeds 82 ° C., the electrical connection between the negative electrode lead support part 19 and the negative electrode lead terminal 3 is cut off and no current is supplied. . As a result, heat generation due to an internal short circuit during overcharging is suppressed, and battery ignition can be prevented.
[0037]
[Positive electrode active material-containing coating film composition]
Lithium cobaltate (LiCoO) as positive electrode active material 2 ) Was added to and mixed with scaly graphite at a weight ratio of 92: 4.5, and this mixture was mixed with a solution of polyvinylidene fluoride dissolved in N-methylpyrrolidone to form a paste. Is applied to the positive electrode current collector 13 and dried.
[0038]
[Negative electrode active material-containing coating film composition]
Graphite-based carbon material as a negative electrode active material (distance between 002 planes = 3.37 mm, carbon axis size Lc = 950 mm, average particle size 10 μm, purity 99.9% or more. The material is mixed with a solution of polyvinylidene fluoride dissolved in N-methylpyrrolidone to prepare a paste, and this paste is applied to the negative electrode current collector 16 and dried.
[0039]
[Solid electrolyte composition]
CH 2 = CHCOO {CH 2 CH (CH Three ) O} 2 CH Three It is obtained by reacting 177.3 parts by weight, 3,4-epoxycyclohexylmethyl acrylate 59.1 parts by weight, N, N′-azobisisobutyronitrile 3.9 parts by weight, and lauryl mercaptan 0.4 parts by weight. 12 parts by weight of an epoxy group-containing radical copolymer and lithium hexafluorophosphate (LiPF) 6 A liquid composition is prepared by mixing 88 parts by weight of a mixed solvent solution of ethylene carbonate / diethyl carbonate (1/1, weight ratio) dissolved in 1 mol concentration. 35 g of the composition prepared in this manner was placed in a storage container in which units such as the laminated electrode body for a lithium ion secondary battery including the first separator and the second separator, the positive electrode, the third separator, and the negative electrode were incorporated. Is injected and vacuum impregnated, then sealed, and heated at 70 ° C. for 30 minutes for gelation to produce a polymer solid electrolyte lithium ion secondary battery.
[0040]
In the above examples, the vertical length and horizontal width of the positive electrode 12 were 202 mm and 113 mm, and the vertical length and horizontal width of the negative electrode 15, the positive electrode 8 and the negative electrode 7 were 205 mm and 116 mm, respectively. The battery has a discharge capacity of 10A. After reaching 4.2V, the battery is fully charged by charging at 4.2V for 2 hours, and then discharged until reaching 3.0V at 2A. As a result, it took 5 hours, so it was 10 AH.
[0041]
As a result of conducting an overcharge test on 20 batteries manufactured in this manner, conducting an overcharge test, and checking for the presence or absence of ignition, the thermal fuse was activated halfway, the power supply was cut off, and the temperature slightly increased. However, ignition did not occur. Further, this battery was subjected to a nail penetration test in which a nail was inserted to intentionally cause an internal short circuit, but no ignition occurred.
[0042]
(Example 2)
In Example 1, the use of the second separator was stopped and only the first separator was used, and 20 batteries were produced in the same manner, and the above-described overcharge test was performed. As a result, an increase in temperature was observed as compared with Example 1, and although an increase in the temperature of the battery was observed up to about 80 ° C., ignition was not reached.
[0043]
Example 3
As shown in FIG. 5, the positive electrode 12 and the negative electrode 15 manufactured with the same material composition as used in Example 1 are formed on a stainless steel cylindrical outer can 26, and the first separator used in Example 1 is used. The mixed electrode body 10 wound through the first separator 9 made of the same material and a mixed solvent in which methyl ethyl carbonate and ethylene carbonate are mixed at a volume ratio of 2: 1 are mixed with LiPF. 6 In the battery containing the electrolytic solution in which 1.2 mol / l is dissolved, the temperature fuse 21 used in Example 1 is arranged in the winding core 29, and the lead wire 20 is connected to the positive lead terminal 2 and the positive electrode, respectively. In Example 1, the temperature detection unit 18 of the thermal fuse 21 is surrounded by the uppermost end portion of the innermost periphery of the first separate that is electrically connected to the 12 positive electrode current collectors 13 and close to the thermal fuse 21. A second battery 25 made of the polybutylene terephthalate film used was disposed to produce a battery. The discharge capacity of this battery was 10 AH. Twenty of these batteries were produced, and an overcharge test was conducted by supplying a charging current of 2A. As a result, energization was cut off and a slight increase in temperature was observed, but nothing ignited.
[0044]
In FIG. 5, 28 is an insulator that electrically insulates the laminated electrode body 10 and the outer can 26, and 30 is an outer can 26 and a positive electrode lead terminal that are electrically connected to the negative electrode current collector 13. 2 is an insulating gasket for electrically insulating the two.
[0045]
(Comparative example)
A battery was prepared in the same manner as in Example 3 except that the second separator was not used, and an overcharge test was performed. As a result, 10 of the 20 test batteries were ignited, and the remaining 10 batteries were heated and the current was cut off, but the battery temperature was raised to about 80 ° C. It was just before ignition.
[0046]
【The invention's effect】
In the first separator of the present invention, a part of the first separator is provided with a second separator having a larger opening ratio or lower mechanical strength than the separator, and in the vicinity of the second separator. The thermal fuse is arranged, and the thermal fuse is connected to the positive electrode lead electrically connected to the positive electrode current collector or the negative electrode lead and positive electrode or negative electrode lead terminal electrically connected to the negative electrode current collector. Because it is electrically connected, even in a battery with a high discharge capacity of 5 AH or more, the temperature rise due to a partial internal short-circuit during overcharge is detected early, and the current used is cut off to other parts. The expansion of the temperature rise to can be suppressed, and the ignition of the battery can be prevented.
[Brief description of the drawings]
FIG. 1 is a plan view of a polymer solid electrolyte lithium ion secondary battery according to the present invention, in which a portion of an upper portion of an exterior portion is removed and cut away.
FIG. 2 is a perspective view seen from above in FIG.
3 is a cross-sectional view of a surface exterior portion of the polymer solid electrolyte lithium ion secondary battery shown in FIG. 1. FIG.
4 is an exploded perspective view of an intermediate layer portion of the laminated electrode body of the polymer solid electrolyte lithium ion secondary battery shown in FIG. 2. FIG.
5 is a cross-sectional view of a liquid electrolyte lithium ion secondary battery of Example 3 according to the present invention. FIG.
[Explanation of symbols]
1 Storage container
2 Positive lead terminal
3 Negative lead terminal
7 Negative electrode
8 Positive electrode
9 First separator
10 Stacked electrode body
11 Third separator
12 Positive electrode
13 Positive current collector
14 Positive lead
15 Negative electrode
16 Negative electrode current collector
17 Negative lead
18 Temperature detector
19 Negative lead support
20 Lead wire
21 Thermal fuse
22 Detected part
23 Coating film containing positive electrode active material
24 Negative electrode active material-containing coating film
25 Second separator
26 Exterior can
28 Insulator
29 Winding core
30 Insulating gasket

Claims (4)

正極集電体の少なくとも一面に正極活物質含有塗膜を形成してなる正極と、負極集電体の少なくとも一面に負極活物質含有塗膜を形成してなる負極とを、セパレータを介して積層した電極体を容器内に収納してなる非水二次電池であって、前記セパレータの一部に、このセパレータよりその開孔率が大きいか又は機械的強度が小さい第2のセパレータを配設し、この第2のセパレータの近傍に、温度ヒューズを配置し、この温度ヒューズを、前記正極集電体と電気的に接続された正極リードまたは、前記負極集電体と電気的に接続された負極リードと、正極または負極リード端子とに電気的に接続したことを特徴とする非水二次電池。A positive electrode formed by forming a positive electrode active material-containing coating film on at least one surface of a positive electrode current collector and a negative electrode formed by forming a negative electrode active material-containing coating film on at least one surface of the negative electrode current collector are laminated via a separator. A non-aqueous secondary battery in which the electrode body is housed in a container, and a second separator having a higher porosity or a lower mechanical strength than the separator is disposed in a part of the separator. A thermal fuse is arranged in the vicinity of the second separator, and the thermal fuse is electrically connected to the positive electrode lead electrically connected to the positive electrode current collector or the negative electrode current collector. A nonaqueous secondary battery characterized in that it is electrically connected to a negative electrode lead and a positive electrode or a negative electrode lead terminal. 前記非水二次電池は、5AH以上50AH以下の放電容量を有する請求項1記載の非水二次電池。The non-aqueous secondary battery according to claim 1, wherein the non-aqueous secondary battery has a discharge capacity of 5 AH or more and 50 AH or less. 前記非水二次電池は、ポリマー固体電解質リチウムイオン二次電池である請求項1または2記載の非水二次電池。The non-aqueous secondary battery according to claim 1, wherein the non-aqueous secondary battery is a polymer solid electrolyte lithium ion secondary battery. 正極集電体の少なくとも一面に正極活物質含有塗膜を形成してなる正極と、負極集電体の少なくとも一面に負極活物質含有塗膜を形成してなる負極とを、セパレータを介して短冊状に積層した電極体を容器内に収納してなるポリマー固体電解質リチウム二次電池であって、前記電極体の中間部において、前記正極集電体または、負極集電体の一部に、温度ヒューズに近接して当該集電体の発熱温度が前記温度ヒューズによって検出される被検出部を設けたことを特徴とするポリマー固体電解質リチウム二次電池。A positive electrode on at least one surface of the positive electrode current collector obtained by forming a cathode active material-containing coating, a negative electrode obtained by forming a negative electrode active material containing coating on at least one surface of the negative electrode current collector, with a separator strip A polymer solid electrolyte lithium secondary battery in which a laminated electrode body is housed in a container, and at a middle portion of the electrode body, the positive electrode current collector or a part of the negative electrode current collector has a temperature A polymer solid electrolyte lithium secondary battery characterized in that a detected portion is provided in the vicinity of the fuse to detect the heat generation temperature of the current collector by the temperature fuse.
JP2002271233A 2002-09-18 2002-09-18 Non-aqueous secondary battery Expired - Fee Related JP4218792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002271233A JP4218792B2 (en) 2002-09-18 2002-09-18 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002271233A JP4218792B2 (en) 2002-09-18 2002-09-18 Non-aqueous secondary battery

Publications (3)

Publication Number Publication Date
JP2004111186A JP2004111186A (en) 2004-04-08
JP2004111186A5 JP2004111186A5 (en) 2005-08-04
JP4218792B2 true JP4218792B2 (en) 2009-02-04

Family

ID=32268614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002271233A Expired - Fee Related JP4218792B2 (en) 2002-09-18 2002-09-18 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4218792B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618724B2 (en) * 2004-04-13 2009-11-17 Lg Chem, Ltd. Electrochemical device comprising electrode lead having protection device
CN100486034C (en) * 2004-05-19 2009-05-06 株式会社Lg化学 Safety element for battery and battery with the same
KR20080025437A (en) * 2006-09-18 2008-03-21 주식회사 엘지화학 Secondary battery capable of adjusting position of electrode terminal and having improved safety
DE102008020912A1 (en) * 2008-04-17 2009-10-22 Varta Microbattery Gmbh Galvanic cell with irreversible fuse
CN102549809B (en) * 2009-07-24 2015-04-22 黑莓有限公司 Low noise battery
JP5232751B2 (en) * 2009-09-28 2013-07-10 日立ビークルエナジー株式会社 Lithium ion secondary battery
US8802278B2 (en) 2010-07-08 2014-08-12 Samsung Sdi Co., Ltd. Rechargeable battery
KR101711977B1 (en) 2011-10-25 2017-03-06 삼성에스디아이 주식회사 Rechargeable battery
KR101695992B1 (en) * 2011-11-30 2017-01-13 삼성에스디아이 주식회사 Secondary battery
WO2014021094A1 (en) * 2012-08-03 2014-02-06 株式会社豊田自動織機 Electric storage apparatus
KR102105172B1 (en) 2017-01-03 2020-04-27 주식회사 엘지화학 Battery Cell Capable of Measuring Inner Temperature thereof
CN111386625A (en) * 2017-11-21 2020-07-07 理百思特有限公司 Electrode assembly having negative electrode disposed as outermost electrode and lithium ion secondary battery including the same
CN111048789B (en) * 2019-12-26 2023-01-24 珠海冠宇电池股份有限公司 Current collector and preparation method and application thereof
JP7521335B2 (en) 2020-08-31 2024-07-24 株式会社Gsユアサ DETECTION APPARATUS, DETECTION METHOD, AND COMPUTER PROGRAM
CN113300006B (en) * 2021-05-10 2023-01-31 Oppo广东移动通信有限公司 Electrode plate, battery cell, battery and electronic equipment

Also Published As

Publication number Publication date
JP2004111186A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
US8247100B2 (en) Electrochemical device
JP5499758B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5010250B2 (en) Battery stack and battery pack
US20100119940A1 (en) Secondary battery
JP4649502B2 (en) Lithium ion secondary battery
US8343669B2 (en) Electrochemical device
JP2008300692A (en) Power storage device
JP4218792B2 (en) Non-aqueous secondary battery
CN101785137A (en) Cylindrical nonaqueous electrolytic secondary battery
JP2001176497A (en) Nonaqueous electrolyte secondary battery
KR20170013189A (en) Pouch-type secondary battery comprising safety member
KR101841306B1 (en) Electrode assembly comprising dfferent kind of separator comprising taping part for improving safety and lithium secondary batteries comprising the same
US20080199764A1 (en) Safer high energy battery
JP3579227B2 (en) Thin rechargeable battery
US20060040184A1 (en) Non-aqueous electrolyte battery
JP4439870B2 (en) Nonaqueous electrolyte secondary battery
KR20140072794A (en) Non-aqueous electrolyte rechargeable battery pack
JP2014013778A (en) Nonaqueous electrolyte secondary battery
JP7071699B2 (en) Non-aqueous electrolyte secondary battery
JP4594478B2 (en) Non-aqueous secondary battery
JP2004071438A (en) Nonaqueous secondary battery
JP6925187B2 (en) Lithium-ion secondary battery element and lithium-ion secondary battery
JPH11233076A (en) Battery pack
JP3774095B2 (en) Transport method of lithium secondary battery
JP4710276B2 (en) Secondary battery exterior member and secondary battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040428

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees