JP2003303581A - Battery pack - Google Patents

Battery pack

Info

Publication number
JP2003303581A
JP2003303581A JP2002106812A JP2002106812A JP2003303581A JP 2003303581 A JP2003303581 A JP 2003303581A JP 2002106812 A JP2002106812 A JP 2002106812A JP 2002106812 A JP2002106812 A JP 2002106812A JP 2003303581 A JP2003303581 A JP 2003303581A
Authority
JP
Japan
Prior art keywords
battery
battery pack
safety
batteries
assembled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002106812A
Other languages
Japanese (ja)
Inventor
Takahiro Shizuki
隆弘 志築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002106812A priority Critical patent/JP2003303581A/en
Publication of JP2003303581A publication Critical patent/JP2003303581A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery pack with improved safety in abnormality such as overcharging. <P>SOLUTION: In this battery pack formed by connecting two or more electric cells having safety valves 10, the safety valves 10 of the electric cells adjacent to each other are respectively positioned at sides different from each other. As the safety valves of the adjacent electric cells are not positioned at the same face side, the vaporized electrolytic solution vapor released from the safety valve of the adjacent electric cell is hardly ignited, even when the certain electric cell thermally runs away under a severe condition such as overcharging. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、複数の電池を組み
合わせて構成される組電池に関する。 【0002】 【従来の技術】例えばリチウム二次電池は軽量で高容量
密度の得られる電池であるため、携帯電話、パ−ソナル
コンピュータ等のポータブル機器用電池としてその需要
が増大している。さらに近年、電力貯蔵用あるいは電気
自動車用の電池として、3Ah〜200Ahのような大
容量を有するリチウムイオン電池の開発が盛んに行われ
ている。 【0003】このような大容量型リチウムイオン二次電
池は、携帯機器に使用されているような小容量のリチウ
ムイオン電池に比べて極めて大きなエネルギーを有して
いることから、異常時における電池の安全性を確保する
ことが極めて重要である。そのため大容量型リチウムイ
オン電池には様々な安全対策が施されている。その一つ
として安全弁を挙げることができる。安全弁の機能は、
電池が異常発熱を起こして電池内圧が上昇した際に、電
池の破裂を防止することである。具体的には、電池内の
圧力が、ある規定のレベルまで上昇すると開放し、電池
内部のガスを速やかに放出する。 【0004】 【発明が解決しようとする課題】高出力の電力に対応し
ようとすると、例えば大容量型のリチウムイオン電池
は、単電池で使用されることは稀であり、複数の電池を
例えば直列接続した組電池とした形態で使用されること
が多い。このような形態で使用される場合、通常同じ形
状の電池を組み合わせるということもあり、隣接する電
池の安全弁は同じ側、すなわち組電池の上面など同一面
側に並んでいる。 【0005】このような組電池が例えば過充電された場
合、電池の内圧が上昇して全ての電池の安全弁が開放す
ると、電池の温度上昇によって電解液が気化し、組電池
のある一平面側における電解液蒸気濃度が非常に高くな
る。このような環境で、組電池中のある電池が熱暴走を
起こすと、電解液蒸気に着火する恐れがあり、安全上好
ましくない。 【0006】そこで、本発明の課題は、過充電など異常
時における安全性を高めた組電池を提供することにあ
る。 【0007】 【課題を解決するための手段】前記課題を解決する、本
発明の組電池は、安全弁を備えた単電池が2つ以上接続
されてなる組電池において、隣接する前記単電池の安全
弁が互いに異なる側にあることを特徴とする。これによ
り、組電池の一方の面側のみに電解液蒸気が溜まること
がなく、電池が熱暴走を起こしたとしても、電解液蒸気
への着火を抑制できる。 【0008】 【発明の実施の形態】以下、本発明の実施の形態を具体
例に基づき図面を参照して説明する。 <組電池1>図1は本発明に係る角型の非水電解質二次
電池の構成を示す図である。正極活物質としてLiMn
1.95Al0.05(MnをAlで一部置換する
場合、5%〜7%の置換が好ましい。)を91重量%
と、導電剤としてアセチレンブラックを3重量%と、結
着剤としてポリフッ化ビニリデン(PVDF)6重量%
を混合し正極合剤とした。この正極合剤にNメチル2ピ
ロリドンを溶剤として添加し、混合分散してスラリー状
にした。電極の基体に帯状アルミニウム箔を用い、この
基体に正極合剤スラリ−を均一に塗布した。正極を乾燥
させた後、ロ−ルプレス機を用いて厚さを調整して帯状
の正極(2)を作製した。また、正極末端部には、合剤
未塗布部を設け、アルミリ−ドを超音波溶着し、集電を
行うための正極リ−ド(3)とした。 【0009】負極には、リチウムのド−プ・脱ド−プが
可能なグラファイト粉末を用いた。グラファイト粉末を
90重量%、結着剤としてのPVDF10重量%を混合
して負極合剤とした。この負極合剤にNメチル2ピロリ
ドンを溶剤として添加し、混練してスラリー状にした。
電極の基体に帯状銅箔を用い、この基体に負極合剤スラ
リ−を、均一に塗布した。負極を乾燥させた後に上記ロ
−ルプレス機を用いて厚さを調整して帯状の負極(4)
を作製した。また、正極と同様、負極末端部には、合剤
未塗布部を設け、銅リ−ドを超音波溶着し、集電を行う
ための負極リ−ド(5)とした。 【0010】このようにして作製した正極と負極をポリ
エチレン製の微多孔膜よりなるセパレ−タ−(6)を介
しポリイミド製の扁平形の巻き芯を中心として渦巻き状
に巻回して電極群を得た。 【0011】次に、正極端子(7)、負極端子(8)が
取り付けられた電池蓋(9)に、電極群の正極リ−ド、
負極リ−ドを接続して、幅10cm、奥行き5cm、高
さ20cmの立方体の電池外挿缶(1)に挿入した後、
電池蓋と電池外挿缶を溶接した。このとき、安全弁(1
0)は正極端子と負極端子が取り付けられた電池蓋の中
央に設けた。この電池に、エチレンカ−ボネ−トおよび
ジメチルカ−ボネ−トの1:1(体積比)の混合溶液に
1mol/lの六フッ化燐酸リチウムを溶解した電解液
を減圧注入した。この電池の容量は35Ahであった。 【0012】さらに、これらの電池3つを、図2に示す
ように10cmの幅の側面部が、隙間3mmを開けて隣
接するように配置し、銅製の接続バ−(11)を使って
直列に接続し、組電池1を得た。 【0013】<組電池2>組電池1において、図3に示
すように安全弁を電池外挿缶の底面に設けた以外は組電
池1と同様にして組電池2を得た。 【0014】<組電池3>組電池1において、図4に示
すように安全弁を電池外挿缶の側面部に設け、組電池と
した際に安全弁が互いに反対側となるように組み合わせ
た以外は組電池1と同様にして組電池3を得た。 【0015】<組電池4>組電池1において、図5に示
すように正極端子を電池蓋に、負極端子を電池外挿缶の
底面に設け、さらに安全弁を、電池蓋の中央部に設け、
組電池とした際に安全弁が互いに反対側となるように組
み合わせた以外は組電池1と同様にして組電池4を得
た。 【0016】[実験1]以上のようにして作製された組
電池の安全性を比較するために、25℃にて定電流定電
圧充電で35Aの電流で12.3Vまで3時間充電し、
10分間の休止を置いた後、さらに35Aの電流で60
Vまで過充電を行うという非常に過酷な条件下におい
た。表1は、このときの組電池中央部の電池の最高到達
温度と破裂、発火の有無を示す。 【0017】 【表1】 【0018】表1から判るように、組電池内の隣接した
電池の安全弁が同一面上に並んだ組電池1と2は、過充
電時に発火が見られ、組電池の最高到達温度も500℃
以上に達した。一方、隣接した電池の安全弁が、組電池
の同一面上に並んでいない組電池3と4は、電池が熱暴
走して白煙を噴出したものの、発火することはなく、最
高到達温度も300℃程度であり、組電池1および2に
比べて極めて安全であった。 【0019】この結果の違いとしては、組電池1と2で
は、隣接した電池の安全弁が組電池の同一面側に並んで
いることから、一つの電池が熱暴走した際に、隣接した
電池の安全弁から放出された可燃性の気化した電解液蒸
気に着火しやすい状況にあったことが考えられる。一
方、組電池3と4では、隣接した電池の安全弁が同一面
側にないため、ある電池が熱暴走にいたっても、隣接し
た電池の安全弁から放出された気化した電解液蒸気に着
火しにくい状況にあったため、組電池の発火にまで至ら
なかったと考えられる。 【0020】なお、上記組電池3の組電池のように、電
池間の隙間や、組電池と該組電池が搭載された搭載部周
囲との隙間を非常に小さくすることができる角型の単電
池、さらには端子を有する端子面と異なる面に安全弁を
有する単電池で構成された組電池の場合には、安全性向
上はより顕著なものとなる。 【0021】 【発明の効果】本発明は、以上説明したような形態で実
施され、安全弁を備えた単電池が2つ以上接続されてな
る組電池において、隣接する前記単電池の安全弁が互い
に異なる側となるように配置することにより、安全性に
優れた組電池とすることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an assembled battery formed by combining a plurality of batteries. 2. Description of the Related Art Lithium secondary batteries, for example, are batteries that are lightweight and have a high capacity density, and their demand for portable devices such as mobile phones and personal computers is increasing. In recent years, lithium ion batteries having a large capacity of 3 Ah to 200 Ah have been actively developed as batteries for power storage or electric vehicles. [0003] Such a large-capacity lithium-ion secondary battery has extremely large energy as compared with a small-capacity lithium-ion battery used in portable equipment. It is extremely important to ensure safety. For this reason, various safety measures have been taken for large capacity lithium ion batteries. One of them is a safety valve. The function of the safety valve is
The purpose of the present invention is to prevent the battery from being ruptured when the battery generates abnormal heat and the internal pressure of the battery increases. Specifically, when the pressure in the battery rises to a certain prescribed level, the battery is opened and the gas inside the battery is quickly released. [0004] In order to cope with high-output power, for example, large-capacity lithium-ion batteries are rarely used as single cells, and a plurality of batteries are connected in series, for example. It is often used in the form of a connected battery pack. When used in such a form, batteries of the same shape are usually combined, and the safety valves of adjacent batteries are arranged on the same side, that is, on the same side such as the upper surface of the assembled battery. [0005] When such a battery pack is overcharged, for example, when the internal pressure of the battery rises and the safety valves of all the batteries are opened, the electrolytic solution evaporates due to the temperature rise of the battery, and the one side of the battery where the battery pack is located , The vapor concentration of the electrolyte becomes very high. In such an environment, if one of the batteries in the assembled battery undergoes thermal runaway, the electrolyte vapor may be ignited, which is not preferable for safety. It is an object of the present invention to provide an assembled battery with improved safety in abnormal situations such as overcharging. According to the present invention, there is provided an assembled battery according to the present invention, wherein two or more cells having a safety valve are connected to each other. Are on different sides. Thereby, the electrolyte vapor does not accumulate on only one surface side of the battery pack, and even if the battery undergoes thermal runaway, ignition of the electrolyte vapor can be suppressed. Embodiments of the present invention will be described below with reference to the drawings based on specific examples. <Assembled Battery 1> FIG. 1 is a view showing a configuration of a prismatic nonaqueous electrolyte secondary battery according to the present invention. LiMn as positive electrode active material
1.95 Al 0.05 O 4 (in the case where Mn is partially substituted with Al, substitution of 5% to 7% is preferable) is 91% by weight.
And 3% by weight of acetylene black as a conductive agent and 6% by weight of polyvinylidene fluoride (PVDF) as a binder
Were mixed to form a positive electrode mixture. N-methyl-2-pyrrolidone was added as a solvent to this positive electrode mixture, mixed and dispersed to form a slurry. A strip-shaped aluminum foil was used as a base of the electrode, and a positive electrode mixture slurry was uniformly applied to the base. After drying the positive electrode, the thickness was adjusted using a roll press machine to prepare a belt-shaped positive electrode (2). At the end of the positive electrode, an uncoated portion was provided, and aluminum lead was ultrasonically welded to obtain a positive electrode lead (3) for current collection. For the negative electrode, graphite powder capable of doping and undoping lithium was used. 90% by weight of graphite powder and 10% by weight of PVDF as a binder were mixed to prepare a negative electrode mixture. N-methyl-2-pyrrolidone was added as a solvent to this negative electrode mixture, and kneaded to form a slurry.
A strip-shaped copper foil was used as a base of the electrode, and a negative electrode mixture slurry was uniformly applied to the base. After drying the negative electrode, the thickness is adjusted using the above-mentioned roll press machine to form a strip-shaped negative electrode (4).
Was prepared. Similarly to the positive electrode, an uncoated portion was provided at the terminal of the negative electrode, and a copper lead was ultrasonically welded to obtain a negative electrode lead (5) for current collection. [0010] The positive electrode and the negative electrode thus produced are spirally wound around a polyimide flat core through a separator (6) made of a microporous polyethylene film to form an electrode group. Obtained. Next, a positive electrode lead (7) and a negative electrode terminal (8) are attached to a battery lid (9), and a positive electrode lead of an electrode group
After connecting the negative electrode lead and inserting it into a cubic battery can (1) having a width of 10 cm, a depth of 5 cm and a height of 20 cm,
The battery lid and the battery canister were welded. At this time, the safety valve (1
No. 0) was provided at the center of the battery lid to which the positive electrode terminal and the negative electrode terminal were attached. An electrolytic solution in which 1 mol / l lithium hexafluorophosphate was dissolved in a 1: 1 (volume ratio) mixed solution of ethylene carbonate and dimethyl carbonate was injected into this battery under reduced pressure. The capacity of this battery was 35 Ah. Further, these three batteries are arranged in such a manner that the side portions having a width of 10 cm are adjacent to each other with a gap of 3 mm as shown in FIG. 2, and are connected in series using a copper connection bar (11). To obtain a battery pack 1. <Assembled Battery 2> An assembled battery 2 was obtained in the same manner as the assembled battery 1 except that the safety valve was provided on the bottom surface of the battery outer can as shown in FIG. <Battery pack 3> In the battery pack 1, as shown in FIG. 4, a safety valve is provided on the side surface of the battery outer can and the safety valves are combined so that the safety valves are opposite to each other when the battery pack is assembled. A battery pack 3 was obtained in the same manner as the battery pack 1. <Assembled Battery 4> In assembled battery 1, as shown in FIG. 5, the positive terminal is provided on the battery cover, the negative terminal is provided on the bottom surface of the battery outer can, and a safety valve is provided at the center of the battery cover.
The assembled battery 4 was obtained in the same manner as the assembled battery 1 except that the safety valves were set to be opposite to each other when the assembled battery was formed. [Experiment 1] In order to compare the safety of the assembled battery manufactured as described above, the battery was charged at a constant current and constant voltage at 25 ° C. to a current of 35 A to 12.3 V for 3 hours.
After a 10 minute rest, 60 A at 35 A current
Under very severe conditions of overcharging up to V. Table 1 shows the maximum temperature of the battery at the center of the assembled battery and the presence or absence of rupture or ignition at this time. [Table 1] As can be seen from Table 1, in the assembled batteries 1 and 2 in which the safety valves of the adjacent batteries in the assembled battery are arranged on the same plane, ignition is observed at the time of overcharging, and the maximum temperature of the assembled battery is also 500 ° C.
Reached. On the other hand, in the assembled batteries 3 and 4 in which the safety valves of the adjacent batteries are not arranged on the same surface of the assembled battery, although the batteries ran out of heat due to thermal runaway, they did not ignite and the maximum attained temperature was 300. ° C, which was extremely safe compared to the assembled batteries 1 and 2. The difference between the results is that in the assembled batteries 1 and 2, the safety valves of the adjacent batteries are arranged on the same side of the assembled battery. It is considered that the flammable vaporized electrolyte vapor discharged from the safety valve was easily ignited. On the other hand, in the assembled batteries 3 and 4, since the safety valve of the adjacent battery is not on the same side, even if a certain battery undergoes thermal runaway, it is difficult to ignite the vaporized electrolyte vapor released from the safety valve of the adjacent battery. It is probable that due to the situation, the battery pack did not fire. It is to be noted that, like the battery pack of the battery pack 3, a gap between the batteries and a gap between the battery pack and the periphery of the mounting portion on which the battery pack is mounted can be made very small. In the case of an assembled battery including a battery and a unit cell having a safety valve on a surface different from the terminal surface having terminals, the improvement in safety becomes more remarkable. The present invention is embodied in the above-described embodiment. In an assembled battery in which two or more cells each having a safety valve are connected, the safety valves of adjacent cells are different from each other. By arranging them on the side, a battery pack with excellent safety can be obtained.

【図面の簡単な説明】 【図1】本発明にかかる非水電解質二次電池の構成を示
す分解斜視図。 【図2】従来の組電池の一例を示す斜視図。 【図3】従来の組電池の一例を示す斜視図。 【図4】本発明に係る組電池の一例を示す図。 【図5】本発明に係る組電池の一例を示す図。 【符号の説明】 1 電池外挿缶 2 正極板 3 正極リ−ド 4 負極板 5 負極リ−ド 6 セパレ−タ 7 正極端子 8 負極端子 9 電池蓋 10 安全弁 11 接続バ−
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded perspective view showing a configuration of a non-aqueous electrolyte secondary battery according to the present invention. FIG. 2 is a perspective view showing an example of a conventional assembled battery. FIG. 3 is a perspective view showing an example of a conventional battery pack. FIG. 4 is a diagram showing an example of a battery pack according to the present invention. FIG. 5 is a diagram showing an example of a battery pack according to the present invention. [Description of Signs] 1 Battery canister 2 Positive electrode plate 3 Positive electrode lead 4 Negative electrode plate 5 Negative lead 6 Separator 7 Positive terminal 8 Negative terminal 9 Battery cover 10 Safety valve 11 Connection bar

Claims (1)

【特許請求の範囲】 【請求項1】安全弁を備えた単電池が2つ以上接続され
てなる組電池において、隣接する前記単電池の安全弁が
互いに異なる側にあることを特徴とする組電池。
Claims 1. An assembled battery in which two or more cells each having a safety valve are connected, wherein the safety valves of adjacent cells are on different sides.
JP2002106812A 2002-04-09 2002-04-09 Battery pack Pending JP2003303581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002106812A JP2003303581A (en) 2002-04-09 2002-04-09 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002106812A JP2003303581A (en) 2002-04-09 2002-04-09 Battery pack

Publications (1)

Publication Number Publication Date
JP2003303581A true JP2003303581A (en) 2003-10-24

Family

ID=29391024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002106812A Pending JP2003303581A (en) 2002-04-09 2002-04-09 Battery pack

Country Status (1)

Country Link
JP (1) JP2003303581A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250413A (en) * 2006-03-17 2007-09-27 Gs Yuasa Corporation:Kk Nonaqueous electrolyte solution secondary battery
WO2008018241A1 (en) * 2006-08-10 2008-02-14 Panasonic Corporation Enclosed battery
JP2008192570A (en) * 2007-02-07 2008-08-21 Sanyo Electric Co Ltd Battery pack
JP2009004271A (en) * 2007-06-22 2009-01-08 Kobe Steel Ltd Battery case
JP2013004177A (en) * 2011-06-10 2013-01-07 Gs Yuasa Corp Nonaqueous electrolytic secondary battery
CN108242512A (en) * 2016-12-26 2018-07-03 丰田自动车株式会社 Battery pack
WO2018234207A1 (en) * 2017-06-19 2018-12-27 Lithium Energy and Power GmbH & Co. KG Energy storage device and energy storage module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250413A (en) * 2006-03-17 2007-09-27 Gs Yuasa Corporation:Kk Nonaqueous electrolyte solution secondary battery
WO2008018241A1 (en) * 2006-08-10 2008-02-14 Panasonic Corporation Enclosed battery
JP2008192570A (en) * 2007-02-07 2008-08-21 Sanyo Electric Co Ltd Battery pack
JP2009004271A (en) * 2007-06-22 2009-01-08 Kobe Steel Ltd Battery case
JP2013004177A (en) * 2011-06-10 2013-01-07 Gs Yuasa Corp Nonaqueous electrolytic secondary battery
CN108242512A (en) * 2016-12-26 2018-07-03 丰田自动车株式会社 Battery pack
CN108242512B (en) * 2016-12-26 2021-01-15 丰田自动车株式会社 Battery pack
WO2018234207A1 (en) * 2017-06-19 2018-12-27 Lithium Energy and Power GmbH & Co. KG Energy storage device and energy storage module
US11387482B2 (en) 2017-06-19 2022-07-12 Gs Yuasa International Ltd. Energy storage device and energy storage module

Similar Documents

Publication Publication Date Title
JP5010250B2 (en) Battery stack and battery pack
EP3142173B1 (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2005123185A (en) Lithium-ion secondary battery having ptc powder, and manufacturing method of the same
WO2005093891A1 (en) Lithium ion secondary cell
JP2007200795A (en) Lithium ion secondary battery
US20160372798A1 (en) Non-aqueous electrolyte secondary battery
WO2013032005A1 (en) Nonaqueous electrolyte secondary cell
JP2013016265A (en) Nonaqueous secondary battery
US20080199764A1 (en) Safer high energy battery
JP4218792B2 (en) Non-aqueous secondary battery
JP5462304B2 (en) Battery pack using lithium-ion battery
JP2011076785A (en) Rectangular lithium secondary battery
JP2005302382A (en) Nonaqueous electrolyte secondary battery pack
JP4824450B2 (en) Nonaqueous electrolyte secondary battery
JP2003303581A (en) Battery pack
JP2001307774A (en) Nonaqueous electrolyte secondary battery
US20060040184A1 (en) Non-aqueous electrolyte battery
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JPH08148184A (en) Nonaqueous electrolyte secondary battery
JP2004152579A (en) Lithium ion battery and lithium ion battery pack
KR20140072794A (en) Non-aqueous electrolyte rechargeable battery pack
JP2006040772A (en) Lithium ion battery
JP2003282143A (en) Nonaqueous electrolyte secondary battery
JP2002198101A (en) Nonaqueous electrolytic solution secondary battery
JP2000149979A (en) Sealed battery