WO2008018241A1 - Enclosed battery - Google Patents

Enclosed battery Download PDF

Info

Publication number
WO2008018241A1
WO2008018241A1 PCT/JP2007/062406 JP2007062406W WO2008018241A1 WO 2008018241 A1 WO2008018241 A1 WO 2008018241A1 JP 2007062406 W JP2007062406 W JP 2007062406W WO 2008018241 A1 WO2008018241 A1 WO 2008018241A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery case
pressure release
release mechanism
electrode group
Prior art date
Application number
PCT/JP2007/062406
Other languages
French (fr)
Japanese (ja)
Inventor
Hideaki Fujita
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to CN2007800296969A priority Critical patent/CN101501890B/en
Publication of WO2008018241A1 publication Critical patent/WO2008018241A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sealed battery that can ensure high safety even when the internal pressure of the battery increases.
  • Sealed batteries in particular, chargeable / dischargeable sealed secondary batteries, are used in the fields where batteries with high energy density corresponding to downsizing and light weight are required as power sources for devices such as mobile phones and personal computers.
  • the range of fields has expanded to fields where high power batteries are required as power sources for electric tools and hybrid vehicles.
  • the internal resistance of the sealed battery is designed to be as low as possible.
  • the positive and negative electrodes are affected by internal factors such as foreign matter mixed inside the battery and external factors such as external pressure.
  • the electrode terminal is also disposed on the lid of the battery case where the explosion-proof valve is provided, there is a space limitation, and the size of the explosion-proof valve is limited.
  • an explosion-proof valve is formed by making a part of the lid a thin part, it is necessary to make the thin part thin in order to ensure a predetermined operating pressure with a limited size.
  • Patent Document 2 describes a configuration in which an explosion-proof valve is provided in a battery case without being subjected to such restrictions. That is, by providing an explosion-proof valve composed of a groove-like thin part on the surface of the battery can, the force S can be operated at a predetermined operating pressure without being restricted by space.
  • This explosion-proof valve is used to increase the pressure inside the outer can and cause the outer can to deform. Therefore, the thickness of the groove-like thin portion and the length of the groove are defined so that the explosion-proof valve is broken.
  • this explosion-proof valve is formed on a part of the outer can that is not easily subject to drop impact, so it has high drop resistance.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-106524
  • Patent Document 2 Japanese Patent Laid-Open No. 11-185714
  • the explosion-proof valve is activated to release the gas in the battery to the outside, preventing the battery case from being damaged, and impregnating the electrode group. If excessive electrolyte solution that remains is left in the battery case, the temperature inside the battery case is still maintained at a high temperature (the response speed of the temperature drop is higher than the response speed of the gas release). Slowly), the flammable electrolyte is heated and the temperature inside the battery case may increase further.
  • the present invention has been made in view of an energetic problem, and its main purpose is a pressure capable of quickly releasing the gas in the battery to the outside even if the pressure in the battery rises when an abnormality occurs.
  • An object of the present invention is to provide a highly safe sealed battery having an opening mechanism.
  • the gas in the battery is released to the outside, and the highly safe sealed type is equipped with a pressure release mechanism that can quickly discharge the electrolyte remaining in the battery to the outside.
  • a sealed battery according to the present invention inserts a cylindrical electrode group, in which a positive electrode plate and a negative electrode plate are wound via a separator, together with an electrolyte into a rectangular battery case.
  • a sealed battery formed on the side of the battery case parallel to the winding axis of the electrode group.
  • the pressure release mechanism is disposed at a position separated from the projection line when the winding axis of the electrode group is projected at right angles to the side surface of the battery case.
  • the region in the battery case defined by the cylindrical electrode group and the inner wall of the side surface of the battery case parallel to the winding axis of the electrode group is There is enough space to ensure the working pressure. Therefore, when the side surface of the battery case corresponding to the space, that is, the side surface of the battery case parallel to the winding axis of the electrode group, is projected perpendicularly to the side surface of the battery case.
  • the electrode terminals of the positive electrode plate and the negative electrode plate are provided on the first side surface of the side surfaces of the battery case parallel to the winding axis of the electrode group, respectively.
  • the mechanism is provided on the second side surface facing the first side surface.
  • the positive electrode plate and the electrode terminal of the negative electrode plate are provided on the first side surface of the battery case parallel to the winding axis of the electrode group, respectively.
  • the opening mechanism is a third side surface adjacent to the first side surface, and is disposed at a position spaced apart from the projection line on the third side surface on the opposite side to the first side surface.
  • the first side surface of the battery case provided with the electrode terminals is often the upper surface (the surface opposite to the ground surface).
  • the gas in the battery generated in the event of an abnormality can be quickly released to the outside.
  • the electrolyte remaining in the battery can be quickly discharged to the outside.
  • the pressure release mechanism is a third side surface adjacent to the first side surface, and is positioned away from the projection line on the third side surface opposite to the first side surface, that is, on the lower surface side.
  • a highly safe sealed battery equipped with a pressure release mechanism capable of quickly releasing the gas in the battery to the outside even if the pressure in the battery rises when an abnormality occurs.
  • a type battery can be provided.
  • FIG. 1 is a diagram showing a configuration of a sealed battery in an embodiment of the present invention, where (a) is a top view, (b) is a front perspective view, (c) is a side perspective view, and (d) Is a bottom view.
  • FIG. 2] (a) to (c) are views showing the arrangement of the pressure release mechanism in the present invention.
  • FIG. 3 is a diagram showing a configuration of a conventional cylindrical lithium ion secondary battery.
  • FIG. 1 is a diagram schematically showing a configuration of a sealed battery in an embodiment of the present invention, where (a) is a top view, (b) is a front perspective view, (c) is a side perspective view, (D) is a bottom view.
  • a cylindrical electrode group 1 in which a positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween is inserted into a rectangular battery case 8 together with an electrolytic solution.
  • a pressure release mechanism 10 is provided on the lower surface 13 of the battery case 8 parallel to the winding axis AA of the electrode group 1.
  • the pressure release mechanism 10 is located at a position separated from the projection line T-T force when the winding axis A_A of the electrode group 1 is projected onto the lower surface 13 of the battery case 8 at a right angle.
  • the cylindrical electrode group 1 and the inner walls of the side surfaces 12, 13, and 14 of the battery case 8 parallel to the winding axis A—A of the electrode group were partitioned.
  • Area 11 in the battery case is a space.
  • the electrode group 1 is elongated in the direction of the winding axis A—A, so that the area 11 is a space area wide enough to secure the operating pressure of the pressure release mechanism 10 when an abnormality occurs. I am doing.
  • the upper surface (first side surface) 12 of the side surfaces of the battery case 8 parallel to the winding axis A—A of the electrode group 1 is shown in FIG.
  • Electrode terminals 4 and 5 connected to the positive current collector 2 and the negative current collector 3 are respectively provided.
  • the pressure release mechanism 10 is placed on the lower surface (the surface facing the upper surface 12).
  • the pressure release mechanism 10 is not limited to the position shown in FIG. 1 (d), and any number of pressure release mechanisms 10 may be provided at any position as long as the projection line T-T force is also separated. it can.
  • the two pressure release mechanisms 10 may be provided at positions facing the projection line on the lower surface 13.
  • the pressure release mechanism 10 extends in a direction perpendicular to the projection line T-T, intersecting the projection line T-T on the lower surface 13.
  • the pressure release mechanism 10 When the pressure release mechanism 10 is provided on the side surface 14 adjacent to the upper surface 12, as shown in FIG. 2 (c), the pressure release mechanism 10 is connected to the winding axis A-A of the electrode group 1. Is projected onto the side surface 14 of the battery case 8 at a right angle.
  • the cylindrical electrode group 1 in the present invention is not limited to the shape shown in FIG. 1 (b), but also includes a flat cylindrical shape. In this case, the pressure release mechanism 10 is separated from the projection line T-T.
  • the distance is preferably longer than that in the case of the electrode group 1 that is not flattened. In this way, the pressure release mechanism 10 is arranged in the vicinity of the region 11 that forms a wider space, and the gas in the battery generated at the time of abnormality can be quickly released to the outside. .
  • the rectangular battery case 8 in the present invention is not limited to a quadrangle but includes a polygonal one.
  • the pressure release mechanism 10 was generated in the event of an abnormality by arranging the winding axis A—A of the electrode group 1 at a position separated from the projection line when projected perpendicularly to the side surface of the battery case 8. It is possible to release the gas in the battery to the outside reliably and quickly.
  • the electrode group 1 in which the positive electrode plate and the negative electrode plate are wound through a separator is connected to the positive electrode current collector plate 2 on the left side and the negative electrode current collector plate 3 on the right side.
  • the positive electrode current collector plate 2 and the negative electrode current collector plate 3 are insulated by an insulating member 7 so as not to be short-circuited inside the battery case 8 constituted by the cover plate 6 and the casing.
  • a positive electrode terminal 4 is attached to the positive electrode current collector plate 2
  • a negative electrode terminal 5 is attached to the negative electrode current collector plate 3, and these electrode terminals 4 and 5 protrude above the cover plate 6 arranged on the upper surface.
  • the cover plate 6 and the casing are welded. Since the positive electrode terminal 4 and the negative electrode terminal 5 are sealed by the cover plate 6 and the liquid injection hole 9 is closed after the electrolytic solution is injected, the inside of the battery is kept sealed.
  • an explosion-proof valve (pressure release mechanism) 10 that is damaged when the pressure in the battery reaches a predetermined pressure is provided.
  • the explosion-proof valve 10 is provided so that at least a part of the explosion-proof valve 10 is applied to the space 11 defined by the electrode group 1 and the inner wall of the battery case 8.
  • nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries
  • electrolytes having high volatility and flammability such as cyclic carbonates and chain carbonates are used.
  • the pressure inside the battery will increase at an accelerated rate due to the evaporation of the electrolyte due to heat generation, but the explosion-proof valve 10 may be partially applied to the space 11. Therefore, when an abnormality occurs, the gas in the battery can be quickly released to the outside, and the electrolyte remaining in the battery can be efficiently discharged to the outside.
  • the explosion-proof valve 10 is designed to be destroyed when a predetermined pressure is reached, for example, by thin-wall processing or engraving.
  • a pressure adjustment valve or a check valve may be used.
  • the positive electrode plate is composed of a positive electrode mixture containing a positive electrode active material and a positive electrode current collector made of foil.
  • the positive electrode active material examples include lithium cobaltate and modified products thereof (such as those obtained by eutectic aluminum and magnesium), lithium nickelate and modified products thereof (some of which nickel is replaced with cobalt, aluminum, etc.)
  • composite oxides such as lithium manganate and modified products thereof can be used.
  • a conductive agent eg, acetylene black, ketjen black, various dalafites
  • a binder eg, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), etc.
  • a thickener is mixed and kneaded with water or an organic solvent to prepare a positive electrode mixture slurry.
  • a positive electrode mixture slurry is applied and dried on a positive electrode current collector such as an aluminum foil to form a positive electrode mixture layer.
  • a positive electrode current collector such as an aluminum foil
  • the negative electrode plate is composed of a negative electrode mixture containing a negative electrode active material and a negative electrode current collector made of foil.
  • the negative electrode active material for example, various natural graphites, artificial graphite or alloy composition materials can be used.
  • the negative electrode active material is mixed with a binder (for example, styrene butadiene rubber (SBR), PVdF, etc.) and, if necessary, a thickener, kneaded with water or an organic solvent, and the negative electrode mixture slurry is mixed. Make it. Thereafter, a negative electrode mixture slurry is applied and dried on a negative electrode current collector such as a copper foil to form a negative electrode mixture layer.
  • a negative electrode current collector such as a copper foil to form a negative electrode mixture layer.
  • an uncoated portion in which the negative electrode mixture layer is not formed is formed on at least one end portion in the longitudinal direction of the negative electrode plate. Then, if necessary, the thickness of the negative electrode mixture layer is adjusted by a press and slit to a desired dimension to produce a negative electrode plate.
  • the separator is made of a material that is stable at any potential of the positive electrode plate and the negative electrode plate, for example, having high electrolyte holding power (eg, polypropylene, polyethylene, polyimide, polyamide, etc.). Sex film is used.
  • a material that is stable at any potential of the positive electrode plate and the negative electrode plate for example, having high electrolyte holding power (eg, polypropylene, polyethylene, polyimide, polyamide, etc.). Sex film is used.
  • Electrode group 1 is fabricated so that the coated portions are on both end faces. Further, the positive electrode plate and the negative electrode plate are connected to the positive electrode current collector plate 2 and the negative electrode current collector plate 3 by, for example, laser welding or ultrasonic welding.
  • a ternary system represented by Ni Co Al ( ⁇ H) is prepared by adding an acid salt to prepare a saturated aqueous solution and neutralizing the saturated aqueous solution while gradually dropping a sodium hydroxide solution while stirring.
  • the precipitate was produced by the coprecipitation method. This precipitate was filtered, washed with water, and dried at 80 ° C. to obtain a composite hydroxide.
  • the average particle diameter of the obtained composite hydroxide was 10 ⁇ m.
  • This composite hydroxide was heat-treated in the atmosphere at 900 ° C for 10 hours to obtain Ni Co Al ⁇
  • a ternary complex oxide represented by the formula (1) was obtained.
  • the positive electrode plate and the negative electrode plate manufactured as described above were wound into a cylindrical shape with a positive electrode and a negative electrode current collector exposed at both ends via a polyethylene separator, and an electrode group (diameter 30 mm, length 80 mm) ) was produced.
  • a positive electrode current collector plate made of aluminum was laser welded to the end surface on the positive electrode side of this electrode group, and a negative electrode current collector plate made of copper was laser welded to the end surface on the negative electrode side. Further, the positive electrode terminal was welded to the positive electrode current collector plate, the negative electrode current collector plate was welded to the negative electrode terminal, and fixed to the lid plate. After that, both ends of the electrode group are fixed with insulating members, and inserted into an aluminum rectangular housing with an explosion-proof valve with an area of 75 mm 2 (5 X 15 mm) that opens at 10 atm. The lid plate was laser welded to form a battery case (width 35 mm x height 35 mm x length 90 mm). Here, all of the space provided inside the battery case (where the inner wall of the battery case and the electrode group do not contact) An explosion-proof valve was placed so that the explosion-proof valve could be engaged (corresponding to the position shown in Fig. 1 (d)).
  • LiPF lithium hexafluorophosphate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • An electrolyte was prepared by dissolving at a concentration of dm 3 . 30 g of this electrolytic solution was injected into the battery case from the injection hole provided in the lid plate, impregnated in the electrode group, and finally sealed to produce a lithium ion secondary battery with a nominal capacity of 5 Ah. . The amount of excess electrolyte after impregnation with the liquid injection was about 10 g as a result of opening the battery case and removing it to measure the weight. From this, it can be considered that the electrode group in the initial state is impregnated with about 20 g of electrolyte.
  • the lithium ion secondary battery described above was arranged so that the surface of the battery case provided with the explosion-proof valve was the lower surface. This is designated as battery A which is an embodiment of the present invention.
  • battery A a lithium ion secondary battery was fabricated in the same way as battery A, except that the explosion-proof valve was placed so that a part of the explosion-proof valve was opposed to the electrode group (corresponding to the position shown in Fig. 2 (b)). However, the battery case provided with the explosion-proof valve was arranged so that the surface thereof was the lower surface. This is designated as battery B which is an embodiment of the present invention.
  • a lithium ion secondary battery similar to battery A was produced and placed so that the side of the battery case with the explosion-proof valve was the side. This is referred to as a battery C which is an embodiment of the present invention.
  • a conventional cylindrical lithium ion secondary battery (35 mm in diameter and 90 mm in length) shown in Fig. 3 was produced. Specifically, an electrode group consisting of a positive electrode plate 101, a separator 103, and a negative electrode plate 102 similar to battery A (same dimensions as battery A) is inserted into a cylindrical battery case 104 and then the same composition as battery A.
  • a cylindrical lithium-ion battery with a nominal capacity of 5 Ah is sealed by sealing the upper opening of the battery case 104 with a sealing plate 105 having an explosion-proof valve of the same area as the battery A.
  • This lithium ion secondary battery was arranged so that the sealing plate 105 was on the upper surface. This is referred to as Battery D, which is a comparative example.
  • the amount of electrolyte remaining in the battery case was as high as 6g, although the battery case did not swell. This is because the explosion-proof valve was placed on the side of the battery case in spite of the space, so the electrolyte near the bottom of the battery case was completely removed. It is thought that it was not able to be discharged. However, no damage was observed in any of the five batteries C after the test, except for the explosion-proof valve, and the battery case swelled very little, indicating that gas was released quickly.
  • the present invention is useful for lithium ion secondary batteries that require safety at a high level, and can be applied not only to electronic devices but also to driving power sources for electric tools, electric vehicles, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

A tubular electrode group obtained by winding a positive electrode plate and a negative electrode plate through a separator is inserted into a rectangular battery case along with electrolyte. A pressure release mechanism is provided on the lower surface of the battery case which is parallel with the winding axis of the electrode group. The pressure release mechanism is disposed at a position spaced apart from a projection line formed when the winding axis of the electrode group is projected at a right angle to the lower surface of the battery case.

Description

明 細 書  Specification
密閉型電池  Sealed battery
技術分野  Technical field
[0001] 本発明は、電池内圧が上昇しても高い安全性を確保することのできる密閉型電池 に関する。  The present invention relates to a sealed battery that can ensure high safety even when the internal pressure of the battery increases.
背景技術  Background art
[0002] 密閉型電池、とりわけ充放電可能な密閉型二次電池は、携帯電話やパソコン等の 機器の電源として、小型化 ·軽量ィ匕に対応したエネルギー密度の高い電池が求めら れる分野の他、電動工具やハイブリッド自動車等の電源として、高出力の電池が求 められる分野に、その巿場範囲が拡大している。特に、高出力分野においては、密 閉型電池の内部抵抗を極力抑える設計がなされるので、電池内部の混在した異物 などの内部要因や、外部からの圧力などの外部要因により、正極と負極とが短絡した 場合、大電流が短絡部分に集中的に流れ、これによる発熱で電池内の圧力が上昇 し、電池ケース自身や封口板などの接合部分が破損するおそれがある。  [0002] Sealed batteries, in particular, chargeable / dischargeable sealed secondary batteries, are used in the fields where batteries with high energy density corresponding to downsizing and light weight are required as power sources for devices such as mobile phones and personal computers. In addition, the range of fields has expanded to fields where high power batteries are required as power sources for electric tools and hybrid vehicles. In particular, in the high-power field, the internal resistance of the sealed battery is designed to be as low as possible.Therefore, the positive and negative electrodes are affected by internal factors such as foreign matter mixed inside the battery and external factors such as external pressure. When the battery is short-circuited, a large current flows intensively in the short-circuited part, and the heat generated by this increases the pressure in the battery, which may damage the battery case itself or the joint part such as the sealing plate.
[0003] 従来、このような問題に対して、電池ケースの蓋の部分に防爆弁を設けることにより 、電池内の圧力が異常に上昇したとき、この防爆弁を作動させて、電池内のガスを外 部に放出することによって、電池ケース等の破損を未然に防止する対策が取られて いた (例えば、特許文献 1を参照)。  [0003] Conventionally, with respect to such a problem, by providing an explosion-proof valve at the lid of the battery case, when the pressure in the battery rises abnormally, the explosion-proof valve is operated to Measures have been taken to prevent damage to the battery case or the like by discharging the battery pack to the outside (see, for example, Patent Document 1).
[0004] し力 ながら、防爆弁を設ける電池ケースの蓋の部分には、電極端子も配されるた め、スペース上の制約があり、防爆弁の大きさに限界が生じる。例えば、防爆弁を、 蓋の一部を肉薄部にすることによって形成した場合、限られた大きさで所定の作動圧 を確保するために、肉薄部を薄くする必要があるが、落下等の衝撃に対して肉薄部 が破断されない厚さを確保するには限界がある。  [0004] However, since the electrode terminal is also disposed on the lid of the battery case where the explosion-proof valve is provided, there is a space limitation, and the size of the explosion-proof valve is limited. For example, when an explosion-proof valve is formed by making a part of the lid a thin part, it is necessary to make the thin part thin in order to ensure a predetermined operating pressure with a limited size. There is a limit to securing a thickness that does not break the thin part against impact.
[0005] 特許文献 2には、そのような制約を受けずに、電池ケースに防爆弁を設けた構成が 記載されている。すなわち、電池の外装缶の表面に、溝状肉薄部からなる防爆弁を 設けることによって、スペース上の制約を受けずに、所定の作動圧で防爆弁を動作さ せること力 Sできる。この防爆弁は、外装缶内の圧力が上昇して外装缶が変形すること によって、防爆弁が破断するように、溝状薄肉部の厚みや溝の長さが規定されている 。また、この防爆弁は、落下衝撃の受けにくい外装缶の一部に形成されているため、 耐落下性も高い。 [0005] Patent Document 2 describes a configuration in which an explosion-proof valve is provided in a battery case without being subjected to such restrictions. That is, by providing an explosion-proof valve composed of a groove-like thin part on the surface of the battery can, the force S can be operated at a predetermined operating pressure without being restricted by space. This explosion-proof valve is used to increase the pressure inside the outer can and cause the outer can to deform. Therefore, the thickness of the groove-like thin portion and the length of the groove are defined so that the explosion-proof valve is broken. In addition, this explosion-proof valve is formed on a part of the outer can that is not easily subject to drop impact, so it has high drop resistance.
特許文献 1:特開平 10— 106524号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-106524
特許文献 2:特開平 11一 185714号公報  Patent Document 2: Japanese Patent Laid-Open No. 11-185714
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 特許文献 2に記載された防爆弁は、スペース上の制約を受けずに設けることができ るため、設計の自由度が高くなる点で有用であるが、外装缶が変形することによって 、溝状薄肉部が破断する機構になっているため、防爆弁を設ける位置によって、溝 状薄肉部の厚みや溝の長さを変える必要があり、設計が複雑になるという問題がある [0006] Since the explosion-proof valve described in Patent Document 2 can be provided without being restricted in space, it is useful in terms of increasing the degree of freedom in design. Since the groove-like thin part is a mechanism that breaks, it is necessary to change the thickness of the groove-like thin part and the length of the groove depending on the position at which the explosion-proof valve is provided, and there is a problem that the design becomes complicated
[0007] また、電池内の圧力が異常に上昇したとき、防爆弁を作動させて、電池内のガスを 外部に放出して、電池ケースの破損を未然に防止しても、電極群に含浸されていな い余剰な電解液が電池ケース内に残存していると、電池ケース内の温度がなお高温 に維持されてレ、る場合 (温度低下の応答速度は、ガス放出の応答速度よりも極めて 遅い)、可燃性である電解液が加熱され、電池ケース内の温度がさらに上昇するおそ れカ Sある。 [0007] In addition, when the pressure in the battery rises abnormally, the explosion-proof valve is activated to release the gas in the battery to the outside, preventing the battery case from being damaged, and impregnating the electrode group. If excessive electrolyte solution that remains is left in the battery case, the temperature inside the battery case is still maintained at a high temperature (the response speed of the temperature drop is higher than the response speed of the gas release). Slowly), the flammable electrolyte is heated and the temperature inside the battery case may increase further.
[0008] 本発明は力かる課題に鑑みなされたもので、その主な目的は、異常発生時に電池 内の圧力が上昇しても、速やかに電池内のガスを外部に放出することができる圧力 開放機構を備えた安全性の高い密閉型電池を提供することにある。  [0008] The present invention has been made in view of an energetic problem, and its main purpose is a pressure capable of quickly releasing the gas in the battery to the outside even if the pressure in the battery rises when an abnormality occurs. An object of the present invention is to provide a highly safe sealed battery having an opening mechanism.
[0009] また、異常発生時に、電池内のガスを外部に放出するとともに、電池内に残存する 電解液を速やかに外部に排出することができる圧力開放機構を備えた安全性の高 い密閉型電池を提供することにある。  [0009] In addition, when an abnormality occurs, the gas in the battery is released to the outside, and the highly safe sealed type is equipped with a pressure release mechanism that can quickly discharge the electrolyte remaining in the battery to the outside. To provide a battery.
課題を解決するための手段  Means for solving the problem
[0010] 上記課題を解決するために、本発明に係わる密閉型電池は、正極板と負極板とを セパレータを介して捲回した円筒状の電極群を、電解液とともに角形電池ケースに 揷入してなる密閉型電池において、電極群の捲回軸に平行な電池ケースの側面に 圧力開放機構を設けるとともに、当該圧力開放機構を、電極群の捲回軸を電池ケー スの側面に直角に投影したときの投影線から離間した位置に配置した構成を採用す る。 [0010] In order to solve the above problems, a sealed battery according to the present invention inserts a cylindrical electrode group, in which a positive electrode plate and a negative electrode plate are wound via a separator, together with an electrolyte into a rectangular battery case. In the sealed battery formed on the side of the battery case parallel to the winding axis of the electrode group In addition to providing a pressure release mechanism, a configuration is adopted in which the pressure release mechanism is disposed at a position separated from the projection line when the winding axis of the electrode group is projected at right angles to the side surface of the battery case.
[0011] 本発明の密閉型電池において、円筒状の電極群と、該電極群の捲回軸に平行な 電池ケースの側面の内壁とで区画された電池ケース内の領域は、異常発生時の作 動圧を確保するのに十分な空間部をなしている。そのため、該空間部に対応した電 池ケースの側面、すなわち、電極群の捲回軸に平行な電池ケースの側面であって、 電極群の捲回軸を電池ケースの側面に直角に投影したときの投影線から離間した位 置に、圧力開放機構を配置することによって、異常時に発生した電池内のガスを、確 実、かつ速やかに外部に放出させることができる。  [0011] In the sealed battery of the present invention, the region in the battery case defined by the cylindrical electrode group and the inner wall of the side surface of the battery case parallel to the winding axis of the electrode group is There is enough space to ensure the working pressure. Therefore, when the side surface of the battery case corresponding to the space, that is, the side surface of the battery case parallel to the winding axis of the electrode group, is projected perpendicularly to the side surface of the battery case. By disposing the pressure release mechanism at a position away from the projection line, the gas in the battery generated at the time of abnormality can be reliably and promptly released to the outside.
[0012] ある好適な実施形態において、電極群の捲回軸に平行な電池ケースの側面のうち 、第 1の側面に、正極板及び負極板の電極端子がそれぞれ設けられており、圧力開 放機構は、第 1の側面に対向する第 2の側面に設けられている。  In a preferred embodiment, the electrode terminals of the positive electrode plate and the negative electrode plate are provided on the first side surface of the side surfaces of the battery case parallel to the winding axis of the electrode group, respectively. The mechanism is provided on the second side surface facing the first side surface.
[0013] ある好適な実施形態において、電極群の捲回軸に平行な電池ケースの側面のうち 、第 1の側面に、正極板及び前記負極板の電極端子がそれぞれ設けられており、圧 力開放機構は、第 1の側面に隣接する第 3の側面であって、該第 3の側面における 投影線から第 1の側面と反対側に離間した位置に配置されている。  [0013] In a preferred embodiment, the positive electrode plate and the electrode terminal of the negative electrode plate are provided on the first side surface of the battery case parallel to the winding axis of the electrode group, respectively. The opening mechanism is a third side surface adjacent to the first side surface, and is disposed at a position spaced apart from the projection line on the third side surface on the opposite side to the first side surface.
[0014] 機器または電気自動車等に電池を装填した際、電極端子が設けられた電池ケース の第 1の側面が上面(地面に対して反対側の面)になる場合が多い。そのため、第 1 の側面に対向する第 2の側面、すなわち、下面(地面に面した面)に圧力開放機構を 設けることによって、異常時に発生した電池内のガスを速やかに外部に放出させると ともに、電池内に残存する電解液を速やかに外部に排出させることができる。  [0014] When a battery is loaded in a device, an electric vehicle, or the like, the first side surface of the battery case provided with the electrode terminals is often the upper surface (the surface opposite to the ground surface). For this reason, by providing a pressure release mechanism on the second side opposite to the first side, that is, the bottom surface (surface facing the ground), the gas in the battery generated in the event of an abnormality can be quickly released to the outside. The electrolyte remaining in the battery can be quickly discharged to the outside.
[0015] また、圧力開放機構を、第 1の側面に隣接する第 3の側面であって、該第 3の側面 における投影線から第 1の側面と反対側、すなわち、下面側に離間した位置に配置 することによって、異常時に発生した電池内のガスを速やかに外部に放出させるとと もに、電池内の下方近傍に残存する電解液を速やかに外部に排出させることができ る。  [0015] In addition, the pressure release mechanism is a third side surface adjacent to the first side surface, and is positioned away from the projection line on the third side surface opposite to the first side surface, that is, on the lower surface side. By disposing in this manner, the gas in the battery generated at the time of abnormality can be quickly released to the outside, and the electrolyte remaining in the lower vicinity in the battery can be quickly discharged to the outside.
発明の効果 [0016] 本発明によれば、異常発生時に電池内の圧力が上昇しても、速やかに電池内のガ スを外部に放出することができる圧力開放機構を備えた安全性の高い密閉型電池を 提供すること力 Sできる。 The invention's effect [0016] According to the present invention, a highly safe sealed battery equipped with a pressure release mechanism capable of quickly releasing the gas in the battery to the outside even if the pressure in the battery rises when an abnormality occurs. The ability to provide S.
[0017] また、異常発生時に、電池内のガスを外部に放出するとともに、電池内に残存する 電解液を速やかに外部に排出することができる圧力開放機構を備えた安全性の高 レ、密閉型電池を提供することができる。  [0017] When an abnormality occurs, the gas in the battery is released to the outside, and the electrolyte solution remaining in the battery is quickly discharged to the outside. A type battery can be provided.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]本発明の実施形態における密閉型電池の構成を示した図で、 (a)は上面図、 ( b)は前面透視図、(c)は側面透視図、(d)は底面図である。  FIG. 1 is a diagram showing a configuration of a sealed battery in an embodiment of the present invention, where (a) is a top view, (b) is a front perspective view, (c) is a side perspective view, and (d) Is a bottom view.
[図 2] (a)〜(c)は、本発明における圧力開放機構の配置を示した図である。  [FIG. 2] (a) to (c) are views showing the arrangement of the pressure release mechanism in the present invention.
[図 3]従来の円筒型リチウムイオン二次電池の構成を示した図である。  FIG. 3 is a diagram showing a configuration of a conventional cylindrical lithium ion secondary battery.
符号の説明  Explanation of symbols
1 電極  1 electrode
2 正極集電板  2 Positive current collector
3 負極集電板  3 Negative current collector
4 正極端子  4 Positive terminal
5 負極端子  5 Negative terminal
6 蓋板  6 Cover plate
7 絶縁部材  7 Insulating material
8 電池ケース  8 Battery case
9 注液孔  9 Injection hole
10 防爆弁 (圧力開放機構)  10 Explosion-proof valve (pressure release mechanism)
11 空間部  11 Space
12 上面  12 Top view
13 下面  13 Bottom
14 側面  14 side
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施の形態について、図面を参照しながら説明する。以下の図面 においては、説明の簡略化のため、実質的に同一の機能を有する構成要素を同一 の参照符号で示す。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following drawings In FIG. 2, components having substantially the same function are denoted by the same reference numerals for the sake of simplicity. In addition, this invention is not limited to the following embodiment.
[0021] 図 1は、本発明の実施形態における密閉型電池の構成を模式的に示した図で、 (a )は上面図、(b)は前面透視図、 (c)は側面透視図、 (d)は底面図である。  FIG. 1 is a diagram schematically showing a configuration of a sealed battery in an embodiment of the present invention, where (a) is a top view, (b) is a front perspective view, (c) is a side perspective view, (D) is a bottom view.
[0022] 図 1 (b)に示すように、正極板と負極板とをセパレータを介して捲回した円筒状の電 極群 1が、電解液とともに角形電池ケース 8に揷入されている。そして、電極群 1の捲 回軸 A—Aに平行な電池ケース 8の下面 13に圧力開放機構 10が設けられている。こ の圧力開放機構 10は、図 1 (d)に示すように、電極群 1の捲回軸 A_Aを電池ケース 8の下面 13に直角に投影したときの投影線 T -T力 離間した位置に配置されてい  [0022] As shown in Fig. 1 (b), a cylindrical electrode group 1 in which a positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween is inserted into a rectangular battery case 8 together with an electrolytic solution. A pressure release mechanism 10 is provided on the lower surface 13 of the battery case 8 parallel to the winding axis AA of the electrode group 1. As shown in FIG. 1 (d), the pressure release mechanism 10 is located at a position separated from the projection line T-T force when the winding axis A_A of the electrode group 1 is projected onto the lower surface 13 of the battery case 8 at a right angle. Arranged
1 1  1 1
る。  The
[0023] 図 1 (b)に示すように、円筒状の電極群 1と、電極群の捲回軸 A— Aに平行な電池 ケース 8の側面 12、 13、 14の内壁とで区画された電池ケース内の領域 11は空間部 をなしている。通常、電極群 1は、捲回軸 A— Aの方向に長くなつているため、領域 1 1は、異常発生時における圧力開放機構 10の作動圧を確保するのに十分な広さの 空間部をなしている。そのため、領域 11に対応した電池ケース 8の側面、すなわち、 電極群 1の捲回軸 A— Aに平行な電池ケース 8の側面 (本実施形態では、下面 13) であって、電極群 1の捲回軸 A— Aを電池ケース 8の側面に直角に投影したときの投 影線 T— T力 離間した位置に、圧力開放機構 10を配置することによって、異常時 に発生した電池内のガスを、確実、かつ速やかに外部に放出させることができる。  [0023] As shown in FIG. 1 (b), the cylindrical electrode group 1 and the inner walls of the side surfaces 12, 13, and 14 of the battery case 8 parallel to the winding axis A—A of the electrode group were partitioned. Area 11 in the battery case is a space. Normally, the electrode group 1 is elongated in the direction of the winding axis A—A, so that the area 11 is a space area wide enough to secure the operating pressure of the pressure release mechanism 10 when an abnormality occurs. I am doing. Therefore, the side surface of the battery case 8 corresponding to the region 11, that is, the side surface of the battery case 8 parallel to the winding axis AA of the electrode group 1 (the lower surface 13 in the present embodiment) Winding axis A— A projection line when A is projected perpendicularly to the side of the battery case 8 T— T force By disposing the pressure release mechanism 10 at a position apart, the gas in the battery generated in the event of an abnormality Can be reliably and promptly released to the outside.
[0024] 本実施形態において、電極群 1の捲回軸 A— Aに平行な電池ケース 8の側面のうち 、上面(第 1の側面) 12には、図 1 (b)に示すように、正極集電板 2及び負極集電板 3 に接続された電極端子 4、 5がそれぞれ設けられている。通常、機器または電気自動 車等に電池を装填した際、電極端子 4、 5が設けられた電池ケース 8の側面が上面 1 2になるため、圧力開放機構 10を下面(上面 12に対向する面) 13に設けることによつ て、異常時に発生した電池内のガスを速やかに外部に放出させるとともに、電池内に 残存する電解液を速やかに外部に排出させることができる。  In the present embodiment, the upper surface (first side surface) 12 of the side surfaces of the battery case 8 parallel to the winding axis A—A of the electrode group 1 is shown in FIG. Electrode terminals 4 and 5 connected to the positive current collector 2 and the negative current collector 3 are respectively provided. Normally, when a battery is loaded in a device or an electric vehicle, the side surface of the battery case 8 provided with the electrode terminals 4 and 5 becomes the upper surface 12. Therefore, the pressure release mechanism 10 is placed on the lower surface (the surface facing the upper surface 12). ) By providing at 13, the gas in the battery generated at the time of abnormality can be quickly released to the outside, and the electrolyte remaining in the battery can be quickly discharged to the outside.
[0025] なお、圧力開放機構 10は、図 1 (d)に示した位置に限らず、投影線 T -T力も離 間した位置であれば、任意の位置に、任意の数だけ設けることができる。例えば、図 2 (a)に示すように、 2つの圧力開放機構 10を、下面 13における投影線 に対 して対畤する位置に設けてもよい。あるいは、図 2 (b)に示すように、圧力開放機構 1 0を、下面 13における投影線 T— Tと交差して、投影線 T— Tに垂直方向に延在 [0025] Note that the pressure release mechanism 10 is not limited to the position shown in FIG. 1 (d), and any number of pressure release mechanisms 10 may be provided at any position as long as the projection line T-T force is also separated. it can. For example, the figure As shown in 2 (a), the two pressure release mechanisms 10 may be provided at positions facing the projection line on the lower surface 13. Alternatively, as shown in FIG. 2 (b), the pressure release mechanism 10 extends in a direction perpendicular to the projection line T-T, intersecting the projection line T-T on the lower surface 13.
1 1 1 1  1 1 1 1
して設けてもよレ、。  You can set it up.
[0026] また、圧力開放機構 10を、上面 12に隣接する側面 14に設ける場合には、図 2 (c) に示すように、圧力開放機構 10を、電極群 1の捲回軸 A—Aを電池ケース 8の側面 1 4に直角に投影したときの投影線 T -T力も上面 12と反対側(すなわち、下面 13側  [0026] When the pressure release mechanism 10 is provided on the side surface 14 adjacent to the upper surface 12, as shown in FIG. 2 (c), the pressure release mechanism 10 is connected to the winding axis A-A of the electrode group 1. Is projected onto the side surface 14 of the battery case 8 at a right angle.
2 2  twenty two
)に離間した位置に配置することが好ましい。このような位置に配置することによって、 異常時に発生した電池内のガスを外部に放出する際、電池内の下方近傍に残存す る電解液を外部に排出させることができる。  It is preferable to arrange them at positions separated from each other. By disposing at such a position, when the gas in the battery generated at the time of abnormality is discharged to the outside, the electrolyte remaining in the vicinity of the lower part in the battery can be discharged to the outside.
[0027] 本発明における円筒状の電極群 1は、図 1 (b)に示すような形状に限らず、扁平し た円筒状のものも含む。この場合、圧力開放機構 10の投影線 T -Tから離間した The cylindrical electrode group 1 in the present invention is not limited to the shape shown in FIG. 1 (b), but also includes a flat cylindrical shape. In this case, the pressure release mechanism 10 is separated from the projection line T-T.
1 1  1 1
距離は、扁平されていない電極群 1の場合よりも長くすることが好ましい。このようにす れば、より広い空間部をなす領域 11の近傍に、圧力開放機構 10が配されることにな り、異常時に発生した電池内のガスを速やかに外部に放出することができる。  The distance is preferably longer than that in the case of the electrode group 1 that is not flattened. In this way, the pressure release mechanism 10 is arranged in the vicinity of the region 11 that forms a wider space, and the gas in the battery generated at the time of abnormality can be quickly released to the outside. .
[0028] また、本発明における角形電池ケース 8は、図 1 (b)に示すように、四角形に限らず 、多角形のもの含む。この場合にも、圧力開放機構 10を、電極群 1の捲回軸 A— Aを 電池ケース 8の側面に直角に投影したときの投影線から離間した位置に配置すること によって、異常時に発生した電池内のガスを、確実、かつ速やかに外部に放出させ ること力 Sできる。  [0028] Further, as shown in Fig. 1 (b), the rectangular battery case 8 in the present invention is not limited to a quadrangle but includes a polygonal one. Also in this case, the pressure release mechanism 10 was generated in the event of an abnormality by arranging the winding axis A—A of the electrode group 1 at a position separated from the projection line when projected perpendicularly to the side surface of the battery case 8. It is possible to release the gas in the battery to the outside reliably and quickly.
[0029] 本実施形態における密閉型電池の具体的な構成を、図 1 (a)〜(d)を参照しながら 、さらに詳しく説明する。  [0029] A specific configuration of the sealed battery in the present embodiment will be described in more detail with reference to FIGS. 1 (a) to 1 (d).
[0030] 正極板と負極板とをセパレータを介して捲回した電極群 1は、左面側で正極集電板 2と、右面側で負極集電板 3とにそれぞれ接続されている。この正極集電板 2および 負極集電板 3は、蓋板 6と筐体とで構成される電池ケース 8の内部で短絡しないよう、 絶縁部材 7によって絶縁されている。さらに、正極集電板 2には正極端子 4が、負極 集電板 3には負極端子 5が取り付けられており、これら電極端子 4、 5は、上面に配置 された蓋板 6の上部に突き出るように配置されている。ここで、蓋板 6と筐体とは溶接 され、正極端子 4および負極端子 5は蓋板 6にシールされ、注液孔 9は、電解液を注 液後に塞がれるので、電池内部は密閉構造が保たれている。 [0030] The electrode group 1 in which the positive electrode plate and the negative electrode plate are wound through a separator is connected to the positive electrode current collector plate 2 on the left side and the negative electrode current collector plate 3 on the right side. The positive electrode current collector plate 2 and the negative electrode current collector plate 3 are insulated by an insulating member 7 so as not to be short-circuited inside the battery case 8 constituted by the cover plate 6 and the casing. Further, a positive electrode terminal 4 is attached to the positive electrode current collector plate 2, and a negative electrode terminal 5 is attached to the negative electrode current collector plate 3, and these electrode terminals 4 and 5 protrude above the cover plate 6 arranged on the upper surface. Are arranged as follows. Here, the cover plate 6 and the casing are welded. Since the positive electrode terminal 4 and the negative electrode terminal 5 are sealed by the cover plate 6 and the liquid injection hole 9 is closed after the electrolytic solution is injected, the inside of the battery is kept sealed.
[0031] 電池ケース 8の下面には、電池内の圧力が所定圧力に到達したときに破損する防 爆弁 (圧力開放機構) 10が設けられている。この防爆弁 10は、電極群 1と電池ケース 8の内壁とで区画された空間部 11に、少なくともその一部が掛かるように設けられて いる。 [0031] On the lower surface of the battery case 8, an explosion-proof valve (pressure release mechanism) 10 that is damaged when the pressure in the battery reaches a predetermined pressure is provided. The explosion-proof valve 10 is provided so that at least a part of the explosion-proof valve 10 is applied to the space 11 defined by the electrode group 1 and the inner wall of the battery case 8.
[0032] リチウムイオン二次電池などの非水電解質二次電池では、環状カーボネートや鎖 状カーボネート等の揮発性や可燃性が高い電解液が用いられる。また、十分な寿命 特性を得るために、電極群 1が十分に含浸できるよりやや多く電解液を加えることが 多レ、。このような密閉型電池において、内部短絡などの異常が発生した場合、発熱 による電解液の気化によって電池内の圧力が加速的に上昇するが、防爆弁 10が空 間部 11に一部掛かるように設けられているので、異常発生時に、電池内のガスを速 やかに外部に放出するとともに、電池内に残存した電解液を外部に効率的に排出す ること力 Sできる。  [0032] In nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries, electrolytes having high volatility and flammability such as cyclic carbonates and chain carbonates are used. Also, in order to obtain sufficient life characteristics, it is often necessary to add a little more electrolyte than electrode group 1 can sufficiently impregnate. In such a sealed battery, if an abnormality such as an internal short circuit occurs, the pressure inside the battery will increase at an accelerated rate due to the evaporation of the electrolyte due to heat generation, but the explosion-proof valve 10 may be partially applied to the space 11. Therefore, when an abnormality occurs, the gas in the battery can be quickly released to the outside, and the electrolyte remaining in the battery can be efficiently discharged to the outside.
[0033] ここで、防爆弁 10は、例えば、薄肉加工や刻印加工などにより、所定の圧力に達し た際に破壊されるように設計されている。また、防爆弁 10の他に、圧力調整弁や逆 止弁などを用いてもよい。  Here, the explosion-proof valve 10 is designed to be destroyed when a predetermined pressure is reached, for example, by thin-wall processing or engraving. In addition to the explosion-proof valve 10, a pressure adjustment valve or a check valve may be used.
[0034] 正極板は、正極活物質を含む正極合剤と、箔からなる正極集電体とで構成される。  [0034] The positive electrode plate is composed of a positive electrode mixture containing a positive electrode active material and a positive electrode current collector made of foil.
正極活物質としては、例えば、コバルト酸リチウムおよびその変性体(アルミニウムや マグネシウムを共晶させたものなど)、ニッケル酸リチウムおよびその変性体 (一部二 ッケルをコバルトやアルミニウムなどで置換したもの)、マンガン酸リチウムおよびその 変性体などの複合酸化物を用いることができる。  Examples of the positive electrode active material include lithium cobaltate and modified products thereof (such as those obtained by eutectic aluminum and magnesium), lithium nickelate and modified products thereof (some of which nickel is replaced with cobalt, aluminum, etc.) In addition, composite oxides such as lithium manganate and modified products thereof can be used.
[0035] 正極活物質に、導電剤(例えば、アセチレンブラック、ケッチェンブラック、各種ダラ ファイト等)、結着剤(例えば、ポリテトラフルォロエチレン (PTFE)やポリフッ化ビニリ デン (PVdF)等)、必要に応じて増粘剤を混合し、水あるいは有機溶媒とともに混練 して、正極合剤スラリーを作製する。その後、アルミニウム箔などの正極集電体の上 に、正極合剤スラリーを塗布'乾燥させ、正極合剤層を形成する。ここで、正極板の長 手方向の少なくとも一方の端部に、正極合剤層を形成していない未塗工部分を形成 する。その後、必要に応じてプレスにより正極合剤層の厚みを調整し、所望の寸法に スリットして、正極板を作製する。 [0035] As the positive electrode active material, a conductive agent (eg, acetylene black, ketjen black, various dalafites), a binder (eg, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), etc.) ) If necessary, a thickener is mixed and kneaded with water or an organic solvent to prepare a positive electrode mixture slurry. Thereafter, a positive electrode mixture slurry is applied and dried on a positive electrode current collector such as an aluminum foil to form a positive electrode mixture layer. Here, at least one end in the longitudinal direction of the positive electrode plate is formed with an uncoated portion where no positive electrode mixture layer is formed. To do. Then, if necessary, the thickness of the positive electrode mixture layer is adjusted by a press and slit to a desired dimension to produce a positive electrode plate.
[0036] 負極板は、負極活物質を含む負極合剤と、箔からなる負極集電体とで構成される。  The negative electrode plate is composed of a negative electrode mixture containing a negative electrode active material and a negative electrode current collector made of foil.
負極活物質としては、例えば、各種天然黒鉛、人造黒鉛もしくは合金組成材料など を用いることができる。  As the negative electrode active material, for example, various natural graphites, artificial graphite or alloy composition materials can be used.
[0037] 負極活物質に、結着剤(例えば、スチレンブタジエンゴム(SBR)や PVdF等)、必 要に応じて増粘剤を混合し、水あるいは有機溶媒とともに混練し、負極合剤スラリー を作製する。その後、銅箔などの負極集電体上に、負極合剤スラリーを塗布'乾燥さ せ、負極合剤層を形成する。ここで、負極板の長手方向の少なくとも一方の端部に負 極合剤層を形成していない未塗工部分を形成する。その後、必要に応じてプレスに より負極合剤層の厚みを調整し、所望の寸法にスリットして、負極板を作製する。  [0037] The negative electrode active material is mixed with a binder (for example, styrene butadiene rubber (SBR), PVdF, etc.) and, if necessary, a thickener, kneaded with water or an organic solvent, and the negative electrode mixture slurry is mixed. Make it. Thereafter, a negative electrode mixture slurry is applied and dried on a negative electrode current collector such as a copper foil to form a negative electrode mixture layer. Here, an uncoated portion in which the negative electrode mixture layer is not formed is formed on at least one end portion in the longitudinal direction of the negative electrode plate. Then, if necessary, the thickness of the negative electrode mixture layer is adjusted by a press and slit to a desired dimension to produce a negative electrode plate.
[0038] セパレータは、電解液の保持力が高ぐ正極板および負極板のいずれの電位下に おいても安定な材料 (例えば、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド等) を用レ、た微多孔性フィルムが用レ、られる。  [0038] The separator is made of a material that is stable at any potential of the positive electrode plate and the negative electrode plate, for example, having high electrolyte holding power (eg, polypropylene, polyethylene, polyimide, polyamide, etc.). Sex film is used.
[0039] なお、正極板を正極集電板 (例えば、アルミニウム) 2と接続し、負極板を負極集電 板 (例えば、銅またはニッケル) 3と接続するために、正極板および負極板の未塗工 部分がそれぞれ両端面となるよう、電極群 1が作製される。また、正極板及び負極板 は、例えば、レーザ溶接または超音波溶接等で、正極集電板 2及び負極集電板 3に それぞれ接続される。  [0039] In order to connect the positive electrode plate to the positive electrode current collector plate (for example, aluminum) 2 and connect the negative electrode plate to the negative electrode current collector plate (for example, copper or nickel) 3, the positive electrode plate and the negative electrode plate are not connected. Electrode group 1 is fabricated so that the coated portions are on both end faces. Further, the positive electrode plate and the negative electrode plate are connected to the positive electrode current collector plate 2 and the negative electrode current collector plate 3 by, for example, laser welding or ultrasonic welding.
実施例  Example
[0040] 以下、実施例を用いて本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail using examples.
[0041] (電池 A) [0041] (Battery A)
NiSO水溶液に、モル比として Ni : Co :Al = 7 : 2 : lになるように Coおよび A1の硫 In a NiSO aqueous solution, the molar ratio of Ni: Co: Al = 7: 2: l
4 Four
酸塩を加えて飽和水溶液を作製し、この飽和水溶液を撹拌しながら水酸化ナトリウム 溶液を徐々に滴下して中和することにより、 Ni Co Al (〇H)で示される三元系  A ternary system represented by Ni Co Al (〇H) is prepared by adding an acid salt to prepare a saturated aqueous solution and neutralizing the saturated aqueous solution while gradually dropping a sodium hydroxide solution while stirring.
0.7 0.2 0.1 2  0.7 0.2 0.1 2
の沈殿物を共沈法により生成した。この沈殿物をろ過して水洗し、 80°Cで乾燥し、複 合水酸化物を得た。得られた複合水酸化物の平均粒径は 10 β mであった。 The precipitate was produced by the coprecipitation method. This precipitate was filtered, washed with water, and dried at 80 ° C. to obtain a composite hydroxide. The average particle diameter of the obtained composite hydroxide was 10 β m.
[0042] この複合水酸化物を、大気中 900°Cで 10時間の熱処理を行い、 Ni Co Al 〇 で示される三元系の複合酸化物を得た。ここで、 Ni、 Co、 A1の原子数の和と Liの原 子数とが等量になるように水酸化リチウム 1水和物をカ卩え、空気中 800°Cで 10時間の 熱処理を行うことにより、 LiNi Co Al 〇で示されるリチウムニッケル複合酸化物 [0042] This composite hydroxide was heat-treated in the atmosphere at 900 ° C for 10 hours to obtain Ni Co Al ○ A ternary complex oxide represented by the formula (1) was obtained. Here, hold lithium hydroxide monohydrate so that the sum of the number of atoms of Ni, Co, and A1 is equal to the number of atoms of Li, and heat-treat at 800 ° C for 10 hours in air. By performing LiNi Co Al O
0.7 0.2 0.1 2  0.7 0.2 0.1 2
を得た。このリチウムニッケル複合酸化物を粉砕して分級することにより、平均粒径が 9. 5 z m、比表面積が 0. 4m2/gの正極活物質を得た。 Got. By pulverizing and classifying the lithium nickel composite oxide, a positive electrode active material having an average particle size of 9.5 zm and a specific surface area of 0.4 m 2 / g was obtained.
[0043] この正極活物質 3kgと、アセチレンブラック 90gと、 PVdF溶液 lOOOgとを適量の N —メチル一 2 _ピロリドン (NMP)とともに混練して正極スラリーを作製した。この正極 スラリーを、厚み 15 x m、幅 150mmのアルミ箔上に、箔の片側端部長手方向に 10 mmの未塗工部を残すように塗布'乾燥した。これを、総厚が 100 z mとなるようにプ レスした後、未塗工幅 10mm、合剤塗工幅 110mmになるようにスリットし、正極板を 作製した。 [0043] 3 kg of this positive electrode active material, 90 g of acetylene black, and PVdF solution lOOOOg were kneaded together with an appropriate amount of N-methyl-2-pyrrolidone (NMP) to prepare a positive electrode slurry. This positive electrode slurry was applied and dried on an aluminum foil having a thickness of 15 × m and a width of 150 mm so that an uncoated part of 10 mm was left in the longitudinal direction of one end of the foil. This was pressed so that the total thickness was 100 zm, and then slit so that the uncoated width was 10 mm and the mixture coating width was 110 mm, to produce a positive electrode plate.
[0044] 負極活物質である人造黒鉛 3kgと、スチレン—ブタジエン共重合体のゴム粒子であ る結着剤(固形分重量 40重量%) 75gと、増粘剤であるカルボキシメチルセルロース (CMC) 30g、および適量の水とを混練し、負極スラリーを作製した。この負極スラリ 一を、厚み 10 /i m、幅 150mmの銅箔上に、箔の片側端部長手方向に 10mmの未 塗工部を残すように塗布'乾燥した。これを、総厚が 110 / mとなるようにプレスした 後、未塗工幅 10mm、合剤塗布幅 114mmになるようにスリットし、負極板を作製した  [0044] 3 kg of artificial graphite as a negative electrode active material, 75 g of a binder (solid weight 40 wt%) as rubber particles of styrene-butadiene copolymer, and 30 g of carboxymethyl cellulose (CMC) as a thickener And an appropriate amount of water were kneaded to prepare a negative electrode slurry. This negative electrode slurry was applied and dried on a copper foil having a thickness of 10 / im and a width of 150 mm so as to leave a 10 mm uncoated part in the longitudinal direction of one end of the foil. After this was pressed to a total thickness of 110 / m, it was slit so that the uncoated width was 10 mm and the mixture coating width was 114 mm, thereby producing a negative electrode plate.
[0045] 以上のように作製した正極板と負極板とを、ポリエチレンセパレータを介して両端に 正極および負極集電体が露出する形で円筒状に捲回し、電極群(直径 30mm、長さ 80mm)を作製した。 [0045] The positive electrode plate and the negative electrode plate manufactured as described above were wound into a cylindrical shape with a positive electrode and a negative electrode current collector exposed at both ends via a polyethylene separator, and an electrode group (diameter 30 mm, length 80 mm) ) Was produced.
[0046] この電極群の正極側の端面にアルミニウム製の正極集電板をレーザー溶接し、負 極側の端面に銅製の負極集電板をレーザー溶接した。さらに、正極集電板に正極端 子を溶接し、負極集電板に負極端子に溶接して、蓋板と固定した。その後、電極群 の両端を絶縁部材で固定して、 10気圧で開弁する面積 75mm2 (5 X 15mm)の防爆 弁を備えたアルミニウム製の直方状筐体に揷入し、この筐体と蓋板とをレーザー溶接 して電池ケース(幅 35mm X高さ 35mm X長さ 90mm)とした。ここで、電池ケースの 内部に設けられた空間部(電池ケースの内壁と電極群とが接触しない箇所)の全てに 防爆弁が掛カるように防爆弁を配置(図 1 (d)に示した位置に相当)した。 [0046] A positive electrode current collector plate made of aluminum was laser welded to the end surface on the positive electrode side of this electrode group, and a negative electrode current collector plate made of copper was laser welded to the end surface on the negative electrode side. Further, the positive electrode terminal was welded to the positive electrode current collector plate, the negative electrode current collector plate was welded to the negative electrode terminal, and fixed to the lid plate. After that, both ends of the electrode group are fixed with insulating members, and inserted into an aluminum rectangular housing with an explosion-proof valve with an area of 75 mm 2 (5 X 15 mm) that opens at 10 atm. The lid plate was laser welded to form a battery case (width 35 mm x height 35 mm x length 90 mm). Here, all of the space provided inside the battery case (where the inner wall of the battery case and the electrode group do not contact) An explosion-proof valve was placed so that the explosion-proof valve could be engaged (corresponding to the position shown in Fig. 1 (d)).
[0047] 一方、エチレンカーボネイト(EC)とジメチルカーボネイト(DMC)とを体積比 1: 3の 配合比で混合した混合溶媒に、溶質として六フッ化リン酸リチウム (LiPF )を lmol/ [0047] On the other hand, lithium hexafluorophosphate (LiPF) as a solute was added to a mixed solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 3.
6  6
dm3の濃度で溶解し、電解液を作製した。この電解液を、蓋板に設けた注液孔から 電池ケース内に 30g注入し、電極群に含浸させた後で最終的に封止して、公称容量 5Ahのリチウムイオン二次電池を作製した。なお、注液含浸後の余剰電解液量を、 電池ケースを開口し抜き取って重量を測定した結果、約 10gであった。このことから 初期状態の電極群には約 20gの電解液が含浸されていると見なすことができる。 An electrolyte was prepared by dissolving at a concentration of dm 3 . 30 g of this electrolytic solution was injected into the battery case from the injection hole provided in the lid plate, impregnated in the electrode group, and finally sealed to produce a lithium ion secondary battery with a nominal capacity of 5 Ah. . The amount of excess electrolyte after impregnation with the liquid injection was about 10 g as a result of opening the battery case and removing it to measure the weight. From this, it can be considered that the electrode group in the initial state is impregnated with about 20 g of electrolyte.
[0048] 以上のリチウムイオン二次電池を、防爆弁を備えた電池ケースの面が下面となるよ うに配置した。これを本発明の実施例である電池 Aとする。  [0048] The lithium ion secondary battery described above was arranged so that the surface of the battery case provided with the explosion-proof valve was the lower surface. This is designated as battery A which is an embodiment of the present invention.
[0049] (電池  [0049] (Battery
電池 Aにおいて、電極群に防爆弁の一部が対峙するように防爆弁を配置(図 2 (b) に示した位置に相当)した以外は、電池 Aと同様にリチウムイオン二次電池を作製し 、防爆弁を備えた電池ケースの面が下面となるように配置した。これを本発明の実施 例である電池 Bとする。  In battery A, a lithium ion secondary battery was fabricated in the same way as battery A, except that the explosion-proof valve was placed so that a part of the explosion-proof valve was opposed to the electrode group (corresponding to the position shown in Fig. 2 (b)). However, the battery case provided with the explosion-proof valve was arranged so that the surface thereof was the lower surface. This is designated as battery B which is an embodiment of the present invention.
[0050] (電池 C) [0050] (Battery C)
電池 Aと同様のリチウムイオン二次電池を作製し、防爆弁を備えた電池ケースの面 が側面となるように配置した。これを本発明の実施例である電池 Cとする。  A lithium ion secondary battery similar to battery A was produced and placed so that the side of the battery case with the explosion-proof valve was the side. This is referred to as a battery C which is an embodiment of the present invention.
[0051] (電池 D) [0051] (Battery D)
図 3に示す従来の円筒型リチウムイオン二次電池(直径 35mm、長さ 90mm)を作 製した。具体的には、電池 Aと同様の正極板 101、セパレータ 103、負極板 102から なる電極群(電池 Aと同寸法)を円筒型の電池ケース 104に揷入後、電池 Aと同組成 •同量の電解液を注入し、電池 Aと同じ面積の防爆弁を有する封口板 105で、電池 ケース 104の上部開口部を力 めて封口して、公称容量 5Ahの円筒型リチウムィォ ン二次電池を作製した。このリチウムイオン二次電池を、封口板 105が上面となるよう に配置した。これを比較例である電池 Dとする。  A conventional cylindrical lithium ion secondary battery (35 mm in diameter and 90 mm in length) shown in Fig. 3 was produced. Specifically, an electrode group consisting of a positive electrode plate 101, a separator 103, and a negative electrode plate 102 similar to battery A (same dimensions as battery A) is inserted into a cylindrical battery case 104 and then the same composition as battery A. A cylindrical lithium-ion battery with a nominal capacity of 5 Ah is sealed by sealing the upper opening of the battery case 104 with a sealing plate 105 having an explosion-proof valve of the same area as the battery A. Produced. This lithium ion secondary battery was arranged so that the sealing plate 105 was on the upper surface. This is referred to as Battery D, which is a comparative example.
[0052] 以上の各電池をそれぞれ 5個作製し、 25°Cの環境下にて以下の釘刺し試験を行つ た。まず 1. OAの電流値で充電終止電圧 4. 2V、放電終止電圧 3. 0Vの充放電を実 施した。その結果、公称容量(5Ah)に近い放電容量が得られることを確認した。その 後、 1. OAの電流値で充電終止電圧 4. 4Vまで過充電を行い、固定台上に各々の 電池を固定し、電池ケース側面中央部分に半径 1. 5mmの釘を貫通させた。 [0052] Five of each of the batteries described above were produced, and the following nail penetration test was performed in an environment of 25 ° C. First: 1. Charge / discharge with a current value of OA, a charge end voltage of 4.2V and a discharge end voltage of 3.0V. gave. As a result, it was confirmed that a discharge capacity close to the nominal capacity (5 Ah) was obtained. After that, 1. The battery was overcharged with a current value of OA to the end-of-charge voltage of 4.4V, each battery was fixed on the fixed base, and a nail with a radius of 1.5mm was passed through the central part of the battery case side.
[0053] 上述した条件で、釘刺し試験を行い、電池ケース内に残存する電解液量、電池ケ ースの破損の有無、電池ケースの膨れ量、及び電池最高到達温度を評価した。その 結果を、 (表 1)に示す。  [0053] A nail penetration test was performed under the conditions described above, and the amount of electrolyte remaining in the battery case, whether the battery case was damaged, the amount of battery case swelling, and the maximum battery temperature were evaluated. The results are shown in Table 1.
[0054] [表 1]  [0054] [Table 1]
Figure imgf000013_0001
Figure imgf000013_0001
[0055] 電池 Aについては、釘刺し後、数秒して防爆弁が作動して開口し、電池ケース内の 余剰電解液がミストとなって排出されるのが観察された。さらに、試験後の電池 Aは 5 個とも防爆弁以外の箇所の破損は確認されず、電池ケースの膨れも 0. 2mmと極わ ずかで、電池ケース内に電解液も残存しなかった。  [0055] Regarding battery A, it was observed that the explosion-proof valve was activated and opened several seconds after nail penetration, and the excess electrolyte in the battery case was discharged as mist. In addition, no damage was observed in any of the five batteries A after the test except for the explosion-proof valve, the battery case was not swollen as much as 0.2 mm, and no electrolyte remained in the battery case.
[0056] 電池 Bについては、電池 Aと同様、電池ケース内の余剰電解液がミストとなって排 出されるのが観察された。さらに、試験後の電池は 5個とも防爆弁以外の箇所の破損 は確認されず、電池ケース内に電解液も残存しなかった力 電池 Aと比較して電池ケ ースの膨れが 0. 5mmと若干大きかった。これは、防爆弁が電極群と電池ケースとが 接する位置に配置されたため、防爆弁が作動しても、電池 Aと比較してガスの排出が スムーズに行われなかったために、ガスが排出されるまでの間に電池内の圧力上昇 によって、電池ケースの変形に至ったものと推察される。  For battery B, as with battery A, it was observed that excess electrolyte in the battery case was discharged as mist. In addition, no damage to the batteries other than the explosion-proof valve was confirmed in any of the five batteries after the test, and the battery case swelled 0.5 mm compared to the battery A, in which no electrolyte remained in the battery case. And it was a little big. This is because the explosion-proof valve was placed at a position where the electrode group and the battery case were in contact with each other, and even when the explosion-proof valve was activated, the gas was not discharged smoothly compared to battery A. It is surmised that the battery case was deformed due to the increase in the pressure in the battery.
[0057] 電池 Cについては、電池ケースの膨れは少なかったものの、電池ケース内に残存 する電解液量は 6gと多かった。これは、空間部を設けたにもかかわらず、防爆弁が 電池ケースの側面に配されていたため、電池ケースの下方近傍にある電解液を完全 に排出することができなかったためと考えられる。しかし、試験後の電池 Cは 5個とも 防爆弁以外の箇所の破損は確認されず、電池ケースの膨れも極わずかであったこと から、ガスの放出は速やかに行われたものと考えられる。 [0057] With respect to battery C, the amount of electrolyte remaining in the battery case was as high as 6g, although the battery case did not swell. This is because the explosion-proof valve was placed on the side of the battery case in spite of the space, so the electrolyte near the bottom of the battery case was completely removed. It is thought that it was not able to be discharged. However, no damage was observed in any of the five batteries C after the test, except for the explosion-proof valve, and the battery case swelled very little, indicating that gas was released quickly.
[0058] 電池 Dについては、防爆弁が作動したにもかかわらず、 3個の電池ケースにおいて 、その底部の一部が破損する結果となった。これは、電池 A〜Cと異なり、電極群 '電 池ケースがともに円筒型であるため、十分な空間部が設けられない上に、防爆弁が 上部に配置されたため、ガスの放出が速やかに行われず、しかも、残存している電解 液によって、圧力の上昇が加速されたことによって、電池ケースの破損に至ったもの と推測される。 [0058] Regarding battery D, although the explosion-proof valve was activated, a part of the bottom of the three battery cases was damaged. This is different from batteries A to C, because the electrode group 'battery case is both cylindrical, so there is not enough space, and the explosion-proof valve is placed at the top, so gas is released quickly. It is presumed that the battery case was damaged because the increase in pressure was accelerated by the remaining electrolyte.
[0059] 以上の結果から、円筒状の電極群と電池ケースの側面とで区画された電池ケース 内の空間部に対応した電池ケースの側面に防爆弁を設けることによって、異常時に 発生した電池内のガスを、確実、かつ速やかに外部に放出させることができる。また、 防爆弁を電池ケースの下面に設けることによって、異常時に発生した電池内のガスを 速やかに外部に放出させるとともに、電池内に残存する電解液を速やかに外部に排 出させることができる。  [0059] From the above results, by providing an explosion-proof valve on the side surface of the battery case corresponding to the space in the battery case partitioned by the cylindrical electrode group and the side surface of the battery case, This gas can be reliably and promptly released to the outside. Further, by providing an explosion-proof valve on the lower surface of the battery case, the gas in the battery generated in the event of an abnormality can be quickly released to the outside, and the electrolyte remaining in the battery can be quickly discharged to the outside.
[0060] 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項で はなぐ勿論、種々の改変が可能である。  As described above, the present invention has been described with reference to the preferred embodiments. However, the description is not a limitation, and various modifications can be made.
産業上の利用可能性  Industrial applicability
[0061] 本発明は、高いレベルで安全性が要求されるリチウムイオン二次電池に有用で、電 子機器のみならず、電動工具、電気自動車等の駆動電源にも適用できる。 [0061] The present invention is useful for lithium ion secondary batteries that require safety at a high level, and can be applied not only to electronic devices but also to driving power sources for electric tools, electric vehicles, and the like.

Claims

請求の範囲 The scope of the claims
[1] 正極板と負極板とをセパレータを介して捲回した円筒状の電極群を、電解液ととも に角形電池ケースに揷入してなる密閉型電池であって、  [1] A sealed battery in which a cylindrical electrode group in which a positive electrode plate and a negative electrode plate are wound through a separator is inserted into a rectangular battery case together with an electrolyte,
前記電極群の捲回軸に平行な前記電池ケースの側面に圧力開放機構が設けられ ており、  A pressure release mechanism is provided on a side surface of the battery case parallel to the winding axis of the electrode group;
前記圧力開放機構は、前記電極群の捲回軸を前記側面に直角に投影したときの 投影線から離間した位置に配置されている、密閉型電池。  The sealed battery, wherein the pressure release mechanism is disposed at a position separated from a projection line when a winding axis of the electrode group is projected on the side surface at a right angle.
[2] 前記側面のうち、第 1の側面に、前記正極板及び前記負極板の電極端子がそれぞ れ設けられており、  [2] Of the side surfaces, electrode terminals of the positive electrode plate and the negative electrode plate are respectively provided on the first side surface,
前記圧力開放機構は、前記第 1の側面に対向する第 2の側面に設けられている、 請求項 1に記載の密閉型電池。  The sealed battery according to claim 1, wherein the pressure release mechanism is provided on a second side surface facing the first side surface.
[3] 前記圧力開放機構は、前記第 2の側面における前記投影線に対して対畤する位置 に互いに離間して、少なくとも 2つ以上設けられている、請求項 2に記載の密閉型電 池。 [3] The hermetic battery according to claim 2, wherein at least two of the pressure release mechanisms are provided at a position facing each other with respect to the projection line on the second side surface and spaced apart from each other. .
[4] 前記圧力開放機構は、前記第 2の側面における前記投影線と交差して、該投影線 に垂直方向に延在して設けられている、請求項 2に記載の密閉型電池。  4. The sealed battery according to claim 2, wherein the pressure release mechanism is provided so as to intersect the projection line on the second side surface and extend in a direction perpendicular to the projection line.
[5] 前記側面のうち、第 1の側面に、前記正極板及び前記負極板の電極端子がそれぞ れ設けられており、  [5] Of the side surfaces, electrode terminals of the positive electrode plate and the negative electrode plate are respectively provided on the first side surface,
前記圧力開放機構は、前記第 1の側面に隣接する第 3の側面であって、該第 3の 側面における前記投影線から前記第 1の側面と反対側に離間した位置に配置されて いる、請求項 1に記載の密閉型電池。  The pressure release mechanism is a third side surface adjacent to the first side surface, and is disposed at a position spaced apart from the projection line on the third side surface to the side opposite to the first side surface, The sealed battery according to claim 1.
[6] 前記電極群は、扁平した円筒状をなす、請求項 1に記載の密閉型電池。 6. The sealed battery according to claim 1, wherein the electrode group has a flat cylindrical shape.
[7] 前記電極群と前記側面の内壁とで区画された前記電池ケース内の領域は、空間部 をなしている、請求項 1に記載の密閉型電池。 7. The sealed battery according to claim 1, wherein a region in the battery case defined by the electrode group and the inner wall of the side surface forms a space.
[8] 前記圧力開放機構は、防爆弁で構成されている、請求項 1に記載の密閉型電池。 [8] The sealed battery according to [1], wherein the pressure release mechanism includes an explosion-proof valve.
PCT/JP2007/062406 2006-08-10 2007-06-20 Enclosed battery WO2008018241A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007800296969A CN101501890B (en) 2006-08-10 2007-06-20 Enclosed battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006218065 2006-08-10
JP2006-218065 2006-08-10

Publications (1)

Publication Number Publication Date
WO2008018241A1 true WO2008018241A1 (en) 2008-02-14

Family

ID=39032778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062406 WO2008018241A1 (en) 2006-08-10 2007-06-20 Enclosed battery

Country Status (3)

Country Link
KR (1) KR20090031444A (en)
CN (1) CN101501890B (en)
WO (1) WO2008018241A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944632A (en) * 2009-07-06 2011-01-12 Sb锂摩托有限公司 Lithium ion battery
WO2012022453A1 (en) * 2010-08-17 2012-02-23 Li-Tec Battery Gmbh Electrochemical cell having at least one pressure relief apparatus
WO2013168585A1 (en) * 2012-05-09 2013-11-14 三洋電機株式会社 Rectangular cell
WO2018234074A3 (en) * 2017-06-19 2019-03-21 Robert Bosch Gmbh Rechargeable battery pack unit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815437B2 (en) 2009-09-10 2014-08-26 Samsung Sdi Co., Ltd. Rechargeable battery
US8546007B2 (en) 2009-10-29 2013-10-01 Samsung Sdi Co., Ltd. Rechargeable battery
JP6350480B2 (en) * 2015-10-05 2018-07-04 トヨタ自動車株式会社 Sealed battery
KR102606266B1 (en) 2018-07-31 2023-11-23 삼성에스디아이 주식회사 Rechargeable Battery Having A Plurality of Safety Vents

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111241A (en) * 1997-10-08 1999-04-23 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001345083A (en) * 2000-05-31 2001-12-14 At Battery:Kk Sealed secondary battery
JP2002008617A (en) * 2000-06-26 2002-01-11 Gs-Melcotec Co Ltd Battery
JP2003297322A (en) * 2002-03-28 2003-10-17 Sanyo Electric Co Ltd Battery
JP2003303581A (en) * 2002-04-09 2003-10-24 Japan Storage Battery Co Ltd Battery pack
JP2005251548A (en) * 2004-03-04 2005-09-15 Matsushita Electric Ind Co Ltd Square shape secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111241A (en) * 1997-10-08 1999-04-23 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001345083A (en) * 2000-05-31 2001-12-14 At Battery:Kk Sealed secondary battery
JP2002008617A (en) * 2000-06-26 2002-01-11 Gs-Melcotec Co Ltd Battery
JP2003297322A (en) * 2002-03-28 2003-10-17 Sanyo Electric Co Ltd Battery
JP2003303581A (en) * 2002-04-09 2003-10-24 Japan Storage Battery Co Ltd Battery pack
JP2005251548A (en) * 2004-03-04 2005-09-15 Matsushita Electric Ind Co Ltd Square shape secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944632A (en) * 2009-07-06 2011-01-12 Sb锂摩托有限公司 Lithium ion battery
EP2273584A1 (en) * 2009-07-06 2011-01-12 SB LiMotive Co., Ltd. Lithium ion battery
JP2011014536A (en) * 2009-07-06 2011-01-20 Sb Limotive Co Ltd Lithium ion battery
US8828593B2 (en) 2009-07-06 2014-09-09 Samsung Sdi Co., Ltd. Lithium ion battery having emergency rupture member
WO2012022453A1 (en) * 2010-08-17 2012-02-23 Li-Tec Battery Gmbh Electrochemical cell having at least one pressure relief apparatus
JP2013534358A (en) * 2010-08-17 2013-09-02 リ−テック・バッテリー・ゲーエムベーハー Electrochemical cell having at least one pressure relief device
WO2013168585A1 (en) * 2012-05-09 2013-11-14 三洋電機株式会社 Rectangular cell
WO2018234074A3 (en) * 2017-06-19 2019-03-21 Robert Bosch Gmbh Rechargeable battery pack unit
CN110770958A (en) * 2017-06-19 2020-02-07 罗伯特·博世有限公司 Battery pack device
US11618100B2 (en) 2017-06-19 2023-04-04 Robert Bosch Gmbh Rechargeable battery pack unit
CN110770958B (en) * 2017-06-19 2023-10-20 罗伯特·博世有限公司 Battery pack device, battery pack of hand-held power tool, and laser welding method

Also Published As

Publication number Publication date
CN101501890A (en) 2009-08-05
CN101501890B (en) 2011-05-04
KR20090031444A (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP5378718B2 (en) Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5303857B2 (en) Nonaqueous electrolyte battery and battery system
US7378185B2 (en) Prismatic lithium secondary battery having a porous heat resistant layer
JP4563264B2 (en) Lithium secondary battery
JP5737481B2 (en) Sealed non-aqueous electrolyte secondary battery
WO2008018241A1 (en) Enclosed battery
WO2008035499A1 (en) Method of producing electrode for secondary battery, and secondary battery
KR101049331B1 (en) Lithium secondary battery
US20110020674A1 (en) Enclosed battery
WO2008050604A1 (en) Sealed secondary battery
KR101671106B1 (en) Non aqueous electrolyte secondary battery
CN111640980A (en) Nonaqueous electrolyte secondary battery
JP2002313415A (en) Non-aqueous electrolyte secondary battery
WO2021023138A1 (en) Positive electrode plate, and lithium ion battery and device associated therewith
JP2016091870A (en) Nonaqueous electrolyte secondary battery
JP2002042867A (en) Lithium ion secondary battery
JP2003142078A (en) Nonaqueous electrolyte secondary battery
JP3583592B2 (en) Thin rechargeable battery
JP2011103181A (en) Lithium secondary battery
WO2007114245A1 (en) Electrochemical element
JP3579227B2 (en) Thin rechargeable battery
JP2008243659A (en) Nonaqueous electrolyte battery
CN107871837B (en) Secondary battery
WO2013168585A1 (en) Rectangular cell
JP2008066284A (en) Enclosed battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780029696.9

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767244

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097002418

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767244

Country of ref document: EP

Kind code of ref document: A1