JP2009004271A - Battery case - Google Patents

Battery case Download PDF

Info

Publication number
JP2009004271A
JP2009004271A JP2007165378A JP2007165378A JP2009004271A JP 2009004271 A JP2009004271 A JP 2009004271A JP 2007165378 A JP2007165378 A JP 2007165378A JP 2007165378 A JP2007165378 A JP 2007165378A JP 2009004271 A JP2009004271 A JP 2009004271A
Authority
JP
Japan
Prior art keywords
battery case
breaking groove
internal pressure
groove
explosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007165378A
Other languages
Japanese (ja)
Other versions
JP5503101B2 (en
Inventor
Haruyuki Konishi
晴之 小西
Naoto Takahashi
直人 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007165378A priority Critical patent/JP5503101B2/en
Publication of JP2009004271A publication Critical patent/JP2009004271A/en
Application granted granted Critical
Publication of JP5503101B2 publication Critical patent/JP5503101B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat rectangular battery case made of an aluminum alloy, and provided with an explosion-proof mechanism allowing accuracy of remaining thickness of a thin part to be easily secured, and cleaving before being ruptured by increase of internal pressure. <P>SOLUTION: This battery case is characterized in that a recessed part 6 of which the outline is a closed curve in a plan view is formed nearly at the center of a side surface 32 being a small-width surface of a battery case body; a groove part 5 generally-analogous to the recessed part 6 is formed along the recessed part 6; and buckling distortion is generated in the recessed part 6 when the internal pressure is increased to exceed a predetermined value, and thereby the groove part 5 is ruptured. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、所定の内部圧力がかかると、その内部圧力を開放する防爆機構を備えた電池ケースに関する。   The present invention relates to a battery case having an explosion-proof mechanism that releases a predetermined internal pressure when the internal pressure is applied.

携帯電話やノート型パーソナルコンピュータ等の電源として、リチウムイオン二次電池が広く使用されている。この二次電池の外装であるケース(以下、電池ケース)は、電池の充放電や使用環境下の温度上昇によって内部圧力が上昇することがあり、この内部圧力で電池ケースが変形したり、さらには破裂する危険性を抱えている。このような電池ケースの破裂を防ぐため、破裂しない程度の内部圧力で電池ケースの一部が開裂して内部圧力を開放するような防爆機構が設けられている。   Lithium ion secondary batteries are widely used as power sources for mobile phones, notebook personal computers, and the like. The case that is the exterior of the secondary battery (hereinafter referred to as the battery case) may have an internal pressure that increases due to the charging / discharging of the battery or a temperature increase in the usage environment. Has the risk of bursting. In order to prevent such rupture of the battery case, an explosion-proof mechanism is provided in which a part of the battery case is ruptured to release the internal pressure with an internal pressure that does not rupture.

一般的な防爆機構は、電池ケースを構成する板材の一部を溝状に薄肉加工したもので、この溝を内部圧力の小幅な上昇で選択的に破断、開裂させるものである。また、電池ケースを構成する板材には金属が使用されていることが多く、特許文献1〜3ではSUS等の鉄合金が、特許文献4〜7ではアルミニウム合金が使用された電池ケースが開示されている。   A general explosion-proof mechanism is obtained by thinly processing a part of a plate material constituting a battery case into a groove shape, and selectively breaking and cleaving the groove with a small increase in internal pressure. Further, metal is often used for the plate material constituting the battery case. Patent Documents 1 to 3 disclose a battery case using an iron alloy such as SUS and Patent Documents 4 to 7 using an aluminum alloy. ing.

板材の一部を薄肉加工する方法としては、特許文献1,2には貫通孔を形成した板材と別の板材とを貼り合わせる方法が、特許文献3にはダイとポンチを用いた冷間鍛造による方法が、特許文献4〜7にはプレス加工による方法が、それぞれ開示されている。また、薄肉部の形状としては、平面視で、特許文献2,5は1本の直線、特許文献1,4,6は十字型等の1点以上で交差する複数の直線からなり、特許文献3,7は環状と、様々な形状が開示されている。薄肉部を設ける部位は、特許文献1,2は蓋(封口板)に、特許文献4,5は本体広面、特許文献6は本体広面または本体狭面としている。また、特許文献7は外装ではなく、内部の隔壁として備えられるものとしている。
特開平5−314959号公報(段落0015〜0020、図4) 特開2002−83578号公報(段落0007〜0008、図2) 特開2005−251447号公報(段落0016〜0023、図4) 特開2001−35467号公報(段落0024〜0032、図1) 特開2001−345083号公報(段落0026〜0029、図2) 特開2001−143664号公報(段落0019〜0021、図1、図5) 特開平11−204093号公報(段落0015〜0020、図1)
As a method of thinning a part of the plate material, Patent Documents 1 and 2 describe a method of bonding a plate material having a through hole and another plate material, and Patent Document 3 discloses a cold forging method using a die and a punch. And the methods by press working are disclosed in Patent Documents 4 to 7, respectively. In addition, as the shape of the thin portion, in a plan view, Patent Documents 2 and 5 include a single straight line, and Patent Documents 1, 4 and 6 include a plurality of straight lines that intersect at one or more points such as a cross shape. 3 and 7 are annular and various shapes are disclosed. Patent Documents 1 and 2 are the lid (sealing plate), Patent Documents 4 and 5 are the main body wide surface, and Patent Document 6 is the main body wide surface or the main body narrow surface. Further, Patent Document 7 is assumed to be provided as an internal partition rather than an exterior.
JP-A-5-314959 (paragraphs 0015 to 0020, FIG. 4) JP 2002-83578 A (paragraphs 0007 to 0008, FIG. 2) Japanese Patent Laying-Open No. 2005-251447 (paragraphs 0016 to 0023, FIG. 4) Japanese Patent Laid-Open No. 2001-35467 (paragraphs 0024 to 0032, FIG. 1) JP 2001-345083 A (paragraphs 0026 to 0029, FIG. 2) JP 2001-143664 A (paragraphs 0019 to 0021, FIGS. 1 and 5) JP-A-11-204093 (paragraphs 0015 to 0020, FIG. 1)

電池ケースが破裂する前に確実に開裂させるためには、薄肉部の残厚の精度確保が必須である。上記従来技術において、複数の板材を熱圧着等により貼り合わせる方法や冷間鍛造による方法は、薄肉部の残厚の精度確保が困難である。ここで、電池ケースを構成する板材として、アルミニウム合金は、加工性や軽量化およびコスト面に優れているが、軟質であるので、本体の他の部分を極端に変形させずに薄肉部を破断させるために一層薄くする必要があり、例えば特許文献2,7では30μmと極薄で、その分、元の板厚との差が大きくなって薄肉加工による加工量が大きい。このような薄肉加工は、プレス加工、中でも高精度のコイニング加工であっても、薄肉部の残厚を精度よく加工することは困難である。   In order to surely tear the battery case before it ruptures, it is essential to ensure the accuracy of the remaining thickness of the thin portion. In the above-described prior art, it is difficult to secure the accuracy of the remaining thickness of the thin portion by the method of bonding a plurality of plate materials by thermocompression bonding or the like or the method of cold forging. Here, as a plate material constituting the battery case, the aluminum alloy is excellent in workability, weight reduction and cost, but because it is soft, the thin part is broken without excessively deforming other parts of the main body. For example, in Patent Documents 2 and 7, the thickness is as extremely thin as 30 μm, and accordingly, the difference from the original plate thickness is increased, and the amount of processing by thin wall processing is large. Such thin-wall processing is difficult to accurately process the remaining thickness of the thin-walled portion even if it is press processing, particularly high-precision coining.

また、薄肉部を電池ケース本体広面に設けた場合は、広面はアルミニウム合金の軟質性により内部圧力の上昇に伴い緩やかに変形するため、破断に至るまで相当量の内部圧力の上昇を要する。また、幅狭面である側面に設けた場合も、内部圧力を多く受けるための広域の薄肉部を要し、長辺に沿った長い線状の薄肉部を形成するため、広域の薄肉加工を精度よく行う必要がある。一方、薄肉部を電池ケースの蓋に設けた場合は、蓋に備えられた端子や電解液注入口を避ける必要があるため、薄肉部の位置は電池の仕様により制約される。また、蓋の板厚は本体より厚いため、薄肉加工による加工量を大きくするか、防爆機構を別途作製して嵌め込む工程を要する。   Further, when the thin wall portion is provided on the wide surface of the battery case body, the wide surface is gradually deformed as the internal pressure rises due to the softness of the aluminum alloy, so that a considerable amount of internal pressure needs to be increased until it breaks. In addition, when it is provided on the side surface which is a narrow surface, a wide thin portion for receiving a large amount of internal pressure is required, and a long thin thin portion along the long side is formed. It is necessary to perform with high accuracy. On the other hand, when the thin portion is provided on the lid of the battery case, it is necessary to avoid the terminal and the electrolyte injection port provided on the lid, and therefore the position of the thin portion is restricted by the specifications of the battery. In addition, since the lid plate is thicker than the main body, it is necessary to increase the processing amount by thin-wall processing or to separately manufacture and insert an explosion-proof mechanism.

本発明は、前記問題点に鑑みてなされたものであり、薄肉部の残厚の精度確保が容易で、破裂する前に確実に開裂する防爆機構を備えるアルミニウム合金製の電池ケースを提供することを目的とする。   The present invention has been made in view of the above problems, and provides an aluminum alloy battery case including an explosion-proof mechanism that is easy to ensure the accuracy of the remaining thickness of the thin-walled portion and reliably ruptures before rupture. With the goal.

前記課題を解決するために、本発明者らは、小さな負荷では広面である正背面と比較して変形を生じにくい電池ケース本体の幅狭面である側面に防爆機構を設けることとし、さらに、側面内で変形応力が集中しやすい中央部分に、薄肉加工領域を小さく収められ得る薄肉部形状の防爆機構を設ける思想に至った。   In order to solve the above problems, the present inventors have provided an explosion-proof mechanism on the side surface, which is a narrow surface of the battery case body, which is less likely to be deformed compared to the front and back surfaces that are wide surfaces with a small load. The idea has been to provide a thin-walled explosion-proof mechanism that can accommodate a thin-walled processing region in a central part where deformation stress tends to concentrate on the side surface.

すなわち、請求項1に係る電池ケースは、内部圧力が上昇して所定値を超えたときに一部が開裂する防爆機構を設けた密封構造の電池ケースであって、前記電池ケースは、正面および背面が側面および底面よりも広面である偏平形の直方体であり、上面からなる蓋と、前記上面以外の五面で構成される本体と、からなり、前記本体は、その幅狭面である前記側面または前記底面の略中央に形成した破断用溝部を有し、前記破断用溝部が、曲線または一部に曲線を含む閉曲線、あるいは、前記閉曲線の一部が不連続となる不連続閉曲線に形成されて前記防爆機構としたことを特徴とする。   That is, the battery case according to claim 1 is a sealed battery case provided with an explosion-proof mechanism that partially ruptures when the internal pressure rises and exceeds a predetermined value. It is a flat rectangular parallelepiped whose rear surface is wider than the side surface and the bottom surface, and includes a lid formed from the upper surface and a main body composed of five surfaces other than the upper surface, and the main body is a narrow surface thereof It has a breaking groove formed in the approximate center of a side surface or the bottom surface, and the breaking groove is formed in a closed curve including a curve or a part of a curve, or a discontinuous closed curve in which a part of the closed curve is discontinuous. The explosion-proof mechanism is used.

このように構成された電池ケースは、内部圧力が上昇して対向する広面同士が互いに離間する方向に膨れると、側面は広面との稜線(長辺)に引き寄せられ、側面において変形応力が集中しやすい略中央がそこに形成された破断用溝部も含めて変形し、内部圧力がさらに上昇すると、この変形した破断用溝部が容易に破断して内部圧力を開放する。また、板厚の比較的厚い蓋と異なり、薄肉加工による加工量が小さい。   In the battery case configured as described above, when the internal pressure rises and the wide surfaces facing each other swell in a direction away from each other, the side surface is drawn toward the ridge line (long side) with the wide surface, and deformation stress is concentrated on the side surface. When the easy approximate center is deformed including the breaking groove formed therein and the internal pressure further rises, the deformed breaking groove is easily broken to release the internal pressure. In addition, unlike a cover having a relatively large plate thickness, the amount of processing by thin wall processing is small.

さらに、請求項2に係る電池ケースは、請求項1に記載の電池ケースにおいて、前記破断用溝部を囲む凹部を前記側面または前記底面に形成したことを特徴とする。   Furthermore, the battery case according to claim 2 is the battery case according to claim 1, wherein a recess surrounding the breaking groove is formed on the side surface or the bottom surface.

このように、破断用溝部の周囲近傍に凹部による段差を形成したことにより、内部圧力の上昇により凹部に座屈変形を生じるため、側面がこの部分で折れ曲がりやすくなり、破断用溝部がより確実に破断する。   In this way, by forming a step due to the recess in the vicinity of the periphery of the fracture groove, buckling deformation occurs in the recess due to an increase in internal pressure, so the side surface is easily bent at this portion, and the fracture groove is more reliably secured. Break.

さらに、請求項3に係る電池ケースは、請求項1または請求項2に記載の電池ケースにおいて、前記破断用溝部は、第1破断用溝と、前記第1破断用溝の底部に形成された第2破断用溝からなり、前記第2破断用溝の底部を前記破断用溝部の底部とすることを特徴とする。   Furthermore, the battery case according to claim 3 is the battery case according to claim 1 or 2, wherein the breaking groove is formed at the first breaking groove and at the bottom of the first breaking groove. It consists of a second breaking groove, and the bottom of the second breaking groove is the bottom of the breaking groove.

このように、破断用溝部を第1破断用溝とその底部に形成した第2破断用溝との2段構造にしたことにより、最薄肉部である第2破断用溝の底部の残厚を精度よく加工することが容易となる。   Thus, by making the breaking groove part into a two-stage structure of the first breaking groove and the second breaking groove formed at the bottom thereof, the remaining thickness of the bottom part of the second breaking groove which is the thinnest part is reduced. It becomes easy to process with high accuracy.

さらに、請求項4に係る電池ケースは、請求項1ないし請求項3に記載の電池ケースにおいて、前記不連続閉曲線の破断用溝部は、少なくとも前記閉曲線の半分以上の連続部分を備えることを特徴とする。   Furthermore, the battery case according to claim 4 is the battery case according to any one of claims 1 to 3, wherein the breaking groove portion of the discontinuous closed curve includes a continuous portion at least half of the closed curve. To do.

このような形状の破断用溝部は、少なくとも閉曲線の半分以上の連続した溝部分があることで、電池ケースの変形による破断が容易となる。   Since the breaking groove portion having such a shape has a continuous groove portion that is at least half of the closed curve, it is easy to break due to deformation of the battery case.

また、請求項5に係る電池ケースは、請求項2ないし請求項4に記載の電池ケースにおいて、前記本体は耐力200〜300MPaのアルミニウム合金板からなり、前記破断用溝部の底部である最薄肉部の残厚は40〜70μmであり、前記内部圧力が0.4MPa以下で前記凹部に座屈変形を生じて前記破断用溝部が破断することを特徴とする。   The battery case according to claim 5 is the battery case according to any one of claims 2 to 4, wherein the main body is made of an aluminum alloy plate having a proof stress of 200 to 300 MPa, and is a thinnest portion that is a bottom portion of the breaking groove portion. The remaining thickness is 40 to 70 μm, and when the internal pressure is 0.4 MPa or less, buckling deformation occurs in the concave portion, and the breaking groove portion breaks.

このように、本体を構成する材料の耐力および薄肉部の残厚を制御することにより、所定の内部圧力で確実に開裂する防爆機構とすることができる。   In this manner, by controlling the yield strength of the material constituting the main body and the remaining thickness of the thin portion, an explosion-proof mechanism that can be reliably cleaved at a predetermined internal pressure can be obtained.

また、請求項6に係る電池ケースは、請求項1ないし請求項5に記載の電池ケースにおいて、前記本体が3000系のアルミニウム合金板からなることを特徴とする。
このような材料を適用することにより、加工が容易で耐食性の高い電池ケースとすることができる。
A battery case according to a sixth aspect is the battery case according to the first to fifth aspects, wherein the main body is made of a 3000 series aluminum alloy plate.
By applying such a material, a battery case that can be easily processed and has high corrosion resistance can be obtained.

本発明に係る電池ケースは、以下に示す優れた効果を奏するものである。
電池ケースは、内部圧力が所定値以上になると、防爆機構である破断用溝部が開裂して内部圧力を開放することができる。また、溝部分の形状を閉曲線または不連続閉曲線としたことにより、薄肉加工領域を小さく収めることができる上、角がないので薄肉加工が容易である。
さらに、防爆機構は、破断用溝部の周囲に凹部を形成したことで、内部圧力が所定値以上になるとより確実に開裂させることができる。
また、破断用溝部を2段構造にしたことで、破断用溝部の残厚を容易に精度よく加工することができる。特に、2段構造にした破断用溝部の周囲に凹部があることで、内部圧力が所定値以上になると、凹部に座屈変形を生じ、かつ、確実に破断用溝部がより確実に開裂させることができる。
さらに、破断用溝部を形成する薄肉加工が、軟質性のアルミニウム合金等の材料であっても容易であり、また、凹部の加工も容易である。
The battery case according to the present invention has the following excellent effects.
When the internal pressure of the battery case becomes equal to or higher than a predetermined value, the fracture groove that is an explosion-proof mechanism can be opened to release the internal pressure. In addition, since the shape of the groove portion is a closed curve or a discontinuous closed curve, the thin-walled processing region can be reduced, and the thin-wall processing is easy because there are no corners.
Furthermore, the explosion-proof mechanism can be more reliably cleaved when the internal pressure becomes a predetermined value or more by forming the recess around the breaking groove.
Further, since the breaking groove portion has a two-stage structure, the remaining thickness of the breaking groove portion can be easily processed with high accuracy. In particular, since there is a recess around the breaking groove having a two-stage structure, when the internal pressure exceeds a predetermined value, the recess is buckled and the breaking groove is more reliably opened. Can do.
Furthermore, the thin-wall processing for forming the breaking groove is easy even with a soft aluminum alloy material or the like, and the recess is easy to process.

以下、本発明に係る電池ケースを実現するための最良の形態について図面を参照して説明する。図1は電池ケースの外観斜視図で、(a)は本発明の実施の形態である電池ケースの外観斜視図、(b)は本発明の別の実施の形態の電池ケースの外観斜視図である。   Hereinafter, the best mode for realizing a battery case according to the present invention will be described with reference to the drawings. FIG. 1 is an external perspective view of a battery case, (a) is an external perspective view of a battery case according to an embodiment of the present invention, and (b) is an external perspective view of a battery case according to another embodiment of the present invention. is there.

図1(a)に示すように、電池ケース1は、アルミニウム合金板で形成され、正面および背面が側面および上下面に比べて広面である偏平形の略直方体である。この電池ケース1は、上面が蓋2を構成し、他の五面で本体3を構成している。そして、電池ケース1は、本体3の幅狭面である側面32の略中央に、防爆機構4が形成されている。   As shown in FIG. 1A, the battery case 1 is a flat, substantially rectangular parallelepiped formed of an aluminum alloy plate and having a front surface and a back surface that are wider than the side surface and the top and bottom surfaces. As for this battery case 1, the upper surface comprises the lid | cover 2, and the main body 3 is comprised by the other five surfaces. In the battery case 1, an explosion-proof mechanism 4 is formed in the approximate center of the side surface 32 that is the narrow surface of the main body 3.

電池ケース1の形状は、広面である正面および背面と、幅狭面である側面および上下面から構成される偏平形の略直方体であるが、大きさは二次電池の仕様に従うものとする。   The shape of the battery case 1 is a flat, substantially rectangular parallelepiped composed of a front surface and a rear surface that are wide surfaces, a side surface that is a narrow surface, and upper and lower surfaces, but the size conforms to the specifications of the secondary battery.

電池ケース1の本体3は、上面が開放された箱体であり、その材料としては、例えば、3000(Al−Mn)系のアルミニウム合金が加工性および耐食性の面から好ましい。また、適度な内部圧力で開裂させるため、その材料強度は耐力200〜300MPaが好ましい。また、本体3の板厚(図2(b)のTcに該当)は二次電池の仕様や加工方法等によるものであり、特に限定されないが、好ましくは、底面0.3〜0.7mm、正背面および側面0.15〜0.25mmである。なお、本体3の成形方法としては、板厚0.3〜0.7mmのアルミニウム合金板を、例えば絞り加工等の公知の方法により成形することが挙げられる。   The main body 3 of the battery case 1 is a box having an open upper surface, and as a material thereof, for example, a 3000 (Al—Mn) -based aluminum alloy is preferable in terms of workability and corrosion resistance. Further, the material strength is preferably 200 to 300 MPa in order to be cleaved at an appropriate internal pressure. Further, the plate thickness of the main body 3 (corresponding to Tc in FIG. 2 (b)) depends on the specifications and processing method of the secondary battery, and is not particularly limited. Preferably, the bottom surface is 0.3 to 0.7 mm, The front and back surfaces are 0.15 to 0.25 mm. In addition, as a shaping | molding method of the main body 3, shaping | molding the aluminum alloy board of plate | board thickness of 0.3-0.7 mm by well-known methods, such as a drawing process, is mentioned, for example.

蓋2を形成する材料は特に限定されないが、本体3と同じ材質のアルミニウム合金板が好ましい。また、蓋2の板厚は二次電池の仕様や加工方法等によるものであり、特に限定されないが、好ましくは、0.7〜1.5mmである。なお、蓋2の成形方法としては、例えばプレス加工等の公知の方法が挙げられる。   Although the material which forms the lid | cover 2 is not specifically limited, The aluminum alloy plate of the same material as the main body 3 is preferable. Moreover, the plate | board thickness of the lid | cover 2 is based on the specification, processing method, etc. of a secondary battery, Although it does not specifically limit, Preferably, it is 0.7-1.5 mm. In addition, as a shaping | molding method of the lid | cover 2, well-known methods, such as press work, are mentioned, for example.

図1(b)に、本発明に係る別の実施形態の電池ケースを示す。電池ケース1Aは、電池ケース1(図1(a)参照)と同様に、正面および背面が側面および上下面に比べて広面である偏平形の略直方体で、上面が蓋2Aを構成し、他の五面で本体3Aを構成している。ただし、電池ケース1が正面視で縦長であるのに対して、電池ケース1Aは、図1(b)に示すように、正面視で横長である。したがって、電池ケース1Aは、本体3Aにおいて、側面よりも底面32Aの方が縦横比の大きい幅狭面で、この底面32Aの略中央に防爆機構4が形成されている。その他の構成については、電池ケース1と同様であるので、説明を省略する。なお、後記の防爆機構4の説明においては、幅狭面を側面32とするが、本実施形態の電池ケース1Aでは、底面32Aに置き換えるものとする。   FIG. 1B shows a battery case according to another embodiment of the present invention. The battery case 1A, like the battery case 1 (see FIG. 1 (a)), is a flat, substantially rectangular parallelepiped whose front and back are wider than the side and top and bottom, and the top constitutes a lid 2A. The main body 3A is composed of the five sides. However, while the battery case 1 is vertically long when viewed from the front, the battery case 1A is horizontally long when viewed from the front as shown in FIG. Therefore, in the battery case 1A, in the main body 3A, the bottom surface 32A is narrower than the side surface and has a larger aspect ratio, and the explosion-proof mechanism 4 is formed in the approximate center of the bottom surface 32A. Since other configurations are the same as those of the battery case 1, the description thereof is omitted. In the description of the explosion-proof mechanism 4 described later, the narrow surface is the side surface 32, but in the battery case 1A of the present embodiment, the bottom surface 32A is replaced.

次に、電池ケース1における防爆機構4について説明する。図2は第1の実施形態の防爆機構の模式図で、(a)は平面図(電池ケースの側面視部分拡大図)、(b)は(a)のA−A断面図、(c)は第1の実施形態の変形例の断面図である。   Next, the explosion-proof mechanism 4 in the battery case 1 will be described. 2A and 2B are schematic views of the explosion-proof mechanism according to the first embodiment. FIG. 2A is a plan view (partially enlarged view of a battery case), FIG. 2B is a cross-sectional view taken along line AA in FIG. These are sectional drawings of the modification of 1st Embodiment.

図2(a)に示すように、本実施形態の防爆機構4は、本体3の幅狭面である側面32の略中央に設けられ(図1(a)参照)、長円形状の溝部(破断用溝部)5からなる。この溝部5は、曲線または一部に曲線を含む閉曲線に形成されている。また、溝部5は、図2(b)に示すように、側面32の厚みより薄くなるように形成されている。本実施形態では、溝部5の周囲の部分と溝部5に囲まれる部分とが同一平面になるように形成されている。   As shown in FIG. 2 (a), the explosion-proof mechanism 4 of the present embodiment is provided at the approximate center of the side surface 32, which is the narrow surface of the main body 3 (see FIG. 1 (a)), and an oval groove ( (Breaking groove) 5. This groove part 5 is formed in the closed curve which includes a curve or a curve in part. Moreover, the groove part 5 is formed so that it may become thinner than the thickness of the side surface 32, as shown in FIG.2 (b). In the present embodiment, the portion around the groove portion 5 and the portion surrounded by the groove portion 5 are formed to be on the same plane.

この、溝部5の底部である最薄肉部の残厚Ts(図2(b)参照)は、適度な内部圧力で開裂させるため、好ましくは、20〜110μmであり、さらに好ましくは、40〜70μmである。また、最薄肉部の幅Wsは、特に限定されないが、加工性および強度の点で好ましくは10〜100μmである。また、溝部5の長辺からの距離Lsは、側面32の幅等によるので特に限定されないが、加工性および強度の点で好ましくは200〜700μmである。この溝部5は、コイニング加工等のプレス加工で形成されることが好ましい。   The remaining thickness Ts (see FIG. 2B) of the thinnest portion which is the bottom of the groove portion 5 is preferably 20 to 110 μm, and more preferably 40 to 70 μm in order to cleave with an appropriate internal pressure. It is. The width Ws of the thinnest portion is not particularly limited, but is preferably 10 to 100 μm from the viewpoint of workability and strength. The distance Ls from the long side of the groove 5 is not particularly limited because it depends on the width of the side surface 32 and the like, but is preferably 200 to 700 μm in terms of workability and strength. The groove 5 is preferably formed by press working such as coining.

電池ケース1では、溝部5を含む側面32は、幅狭面であり、対向する2本の長辺が近接しているので、小さな負荷では正面および背面と比較して変形を生じにくい。一方で、本体3の広面である正背面は、内部圧力の上昇に伴い、詳細は図4および図5を参照して後述するが、次第に広面の中央同士が互いに離間する方向に膨らんでいく。それに伴い正背面の各辺の中央が引き寄せられ、その辺を長辺として共有する側面32の中央部が内側に引き寄せられる。そして、内部圧力がさらに上昇すると、側面32が変形応力(座屈、曲げ、圧縮、引張等)の集中しやすい中央部で折れ曲がり、この折れ曲がり部と接する広面の一部も座屈し、角状に盛り上がって変形する。このような不均一な変形の結果、折れ曲がり箇所にある溝部5に形成された薄肉部である溝部5の底部が容易に破断して、内部圧力を開放する。   In the battery case 1, the side surface 32 including the groove portion 5 is a narrow surface and the two long sides facing each other are close to each other, so that deformation is less likely to occur compared to the front and back surfaces with a small load. On the other hand, the front side, which is the wide surface of the main body 3, will be described later in detail with reference to FIGS. 4 and 5 as the internal pressure increases, but the centers of the wide surfaces gradually swell in directions away from each other. Accordingly, the center of each side of the front and back surfaces is drawn, and the central part of the side surface 32 sharing the side as a long side is drawn inward. When the internal pressure further rises, the side surface 32 bends at the central portion where deformation stress (buckling, bending, compression, tension, etc.) tends to concentrate, and a part of the wide surface in contact with the bent portion is also buckled. Raises and deforms. As a result of such non-uniform deformation, the bottom of the groove portion 5 which is a thin wall portion formed in the groove portion 5 at the bent portion is easily broken to release the internal pressure.

次に、本実施形態の防爆機構の変形例の断面図を図2(c)に示す。本変形例の平面視形状は前記第1の実施形態と略一致であるので省略し、同一の要素については同じ符号を付す。   Next, a sectional view of a modification of the explosion-proof mechanism of the present embodiment is shown in FIG. Since the plan view shape of the present modification is substantially the same as that of the first embodiment, it is omitted and the same elements are denoted by the same reference numerals.

本変形例は、溝部5が、第1の実施形態では1回のプレス加工で形成されるのに対して、2段階のプレス加工で形成される。すなわち、最初のプレス加工では所定の最薄肉部の残厚に達するまで薄肉化せずに第1溝部51(第1破断用溝)を形成する。そして次に、第1溝部51の底部をプレス加工して、所定の最薄肉部の残厚に達するように第2溝部52(第2破断用溝)を形成する。したがって、溝部5の断面形状は、図2(c)に示すように段差のある溝となる。そして、このように形成された溝部5は、1回のプレス加工による加工量が小さいため、最薄肉部の残厚Tsを精度よく加工することが容易となる。なお、最薄肉部の残厚Tsおよび幅Ws、ならびに溝部5の長辺からの距離Lsは、第1の実施形態にしたがうものとする。また、第1溝部51の底部の残厚および幅は、プレス加工の工法等に合わせ、特に限定されない。   In the present modification, the groove 5 is formed by a two-step press process, whereas the groove part 5 is formed by a single press process in the first embodiment. That is, in the first press work, the first groove 51 (first breaking groove) is formed without reducing the thickness until the predetermined remaining thickness of the thinnest portion is reached. Next, the bottom portion of the first groove portion 51 is pressed to form the second groove portion 52 (second breaking groove) so as to reach a predetermined remaining thickness of the thinnest portion. Therefore, the cross-sectional shape of the groove 5 is a stepped groove as shown in FIG. And since the groove part 5 formed in this way has the small amount of processing by one press work, it becomes easy to process the remaining thickness Ts of the thinnest part with high precision. Note that the remaining thickness Ts and width Ws of the thinnest portion and the distance Ls from the long side of the groove 5 are in accordance with the first embodiment. Further, the remaining thickness and width of the bottom portion of the first groove portion 51 are not particularly limited in accordance with the pressing method or the like.

次に、図3を参照して、本発明の第2の実施形態の防爆機構について説明する。図3は第2の実施形態の防爆機構の模式図で、(a)は平面図(電池ケースの側面視部分拡大図)、(b)は(a)のB−B断面図である。なお、第1の実施形態(図2参照)と同一の要素については同じ符号を付し、その説明は省略する。   Next, an explosion-proof mechanism according to the second embodiment of the present invention will be described with reference to FIG. FIGS. 3A and 3B are schematic views of the explosion-proof mechanism of the second embodiment, in which FIG. 3A is a plan view (a partially enlarged side view of the battery case), and FIG. 3B is a cross-sectional view taken along line BB in FIG. In addition, the same code | symbol is attached | subjected about the element same as 1st Embodiment (refer FIG. 2), and the description is abbreviate | omitted.

本実施形態の防爆機構41は、第1の実施形態と同様に本体3の幅狭面である側面32の略中央に設けられている(図1(a)参照)。そして、図3(a)、(b)に示すように、平面視長円形状の凹部6と、凹部6の内側に形成された平面視略相似な溝部5とからなる。   The explosion-proof mechanism 41 of this embodiment is provided in the approximate center of the side surface 32 which is a narrow surface of the main body 3 as in the first embodiment (see FIG. 1A). Then, as shown in FIGS. 3A and 3B, it is composed of a recess 6 having an oval shape in plan view and a groove portion 5 formed substantially inside the recess 6 in a plan view.

この、凹部6の平面視形状は、曲線または一部に曲線を含む溝部5と略相似な閉曲線が好ましい。これは、凹部6の立ち下がり部からの溝部5の距離Ls’が極度に離れないようにして、凹部6で側面32が折れ曲がった際、その折れ曲がり線上から溝部5が外れないようにするためである。この、距離Ls’は、特に限定されないが、加工性および強度の点で好ましくは1mm以下である。また、凹部6の立ち下がり部の長辺からの距離Ldは、側面32の幅等によるので特に限定されないが、座屈の生じやすさおよび加工性の点で好ましくは0.4〜1.5mmである。また、凹部6の深さDは、特に限定されないが、座屈の生じやすさおよび加工性の点で好ましくは0.5〜3mmである。凹部6の立ち下がり部(側壁)の角度は、特に限定されないが、座屈の生じやすさおよび加工性の点で好ましくは80〜90°である。この凹部6は、コイニング加工等のプレス加工で形成されることが好ましい。   The planar view shape of the recess 6 is preferably a closed curve that is substantially similar to the groove 5 that includes a curve or a part of the curve. This is because the distance Ls ′ of the groove portion 5 from the falling portion of the concave portion 6 is not extremely separated, and when the side surface 32 is bent at the concave portion 6, the groove portion 5 is not detached from the bent line. is there. The distance Ls ′ is not particularly limited, but is preferably 1 mm or less in terms of workability and strength. Further, the distance Ld from the long side of the falling portion of the recess 6 is not particularly limited because it depends on the width of the side surface 32 and the like, but is preferably 0.4 to 1.5 mm from the viewpoint of ease of buckling and workability. It is. Moreover, the depth D of the recessed part 6 is although it does not specifically limit, Preferably it is 0.5-3 mm from the point of the ease of generating buckling and the workability. The angle of the falling portion (side wall) of the concave portion 6 is not particularly limited, but is preferably 80 to 90 ° from the viewpoint of ease of buckling and workability. The recess 6 is preferably formed by pressing such as coining.

また、溝部5の形状(幅および残厚)については、第1の実施形態にしたがうものとする。また、溝部5を、第1の実施形態の変形例のように2段階のプレス加工で形成してもよい(図2(c)参照)。なお、本実施形態では、溝部5および凹部6の平面視形状を長円としたが、凹部6は楕円、真円、角丸四角形等の他の閉曲線でもよい。   Moreover, about the shape (width | variety and remaining thickness) of the groove part 5, it shall follow the 1st Embodiment. Moreover, you may form the groove part 5 by a two-stage press work like the modification of 1st Embodiment (refer FIG.2 (c)). In the present embodiment, the shape of the groove 5 and the recess 6 in plan view is an ellipse, but the recess 6 may be another closed curve such as an ellipse, a perfect circle, or a rounded square.

溝部5および凹部6を含む側面32は、小さな負荷では変形を生じにくい。そして、内部圧力が上昇すると、第1の実施形態と同様に、側面32の中央部が内側に引き寄せられ、内部圧力がさらに上昇すると、凹部6の肩部(立ち下がり部)が座屈の起点となって側面32が折れ曲がると共に、折れ曲がり部と接する広面の一部が座屈し、角状に盛り上がって変形する。このような不均一な変形の結果、凹部6の内側に形成された薄肉部である溝部5が容易に破断して、内部圧力を開放する。このように、溝部5を内包した凹部6が座屈の起点となるので、確実に溝部5の形成された箇所で側面32が折れ曲がり、破断しやすくなる。   The side surface 32 including the groove portion 5 and the recess portion 6 is unlikely to be deformed with a small load. When the internal pressure increases, the central portion of the side surface 32 is drawn inward, and when the internal pressure further increases, the shoulder portion (falling portion) of the recess 6 is the starting point of buckling, as in the first embodiment. As a result, the side surface 32 bends, and a part of the wide surface in contact with the bent portion buckles, rises into a square shape and deforms. As a result of such non-uniform deformation, the groove 5 that is a thin wall formed inside the recess 6 is easily broken to release the internal pressure. Thus, since the concave portion 6 including the groove portion 5 is a starting point of buckling, the side surface 32 is reliably bent at the position where the groove portion 5 is formed, and is easily broken.

以上のように構成されることで、所定の内部圧力を超えると防爆機構4が開裂する電池ケース1とすることができる。防爆機構4が開裂する内部圧力は、好ましくは、0.25〜0.42MPaである。内部圧力が0.42MPaを超えても開裂しないと、電池ケース1の破裂に至る虞が生じる。また、防爆機構4が開裂する内部圧力の下限値は特に限定されないが、製造過程等における衝撃や、夏季使用時等の一時的かつ小幅な内部圧力の上昇で開裂しないために、0.25MPa以上とすることが好ましい。開裂する内部圧力においてさらに好ましくは、0.35〜0.4MPaである。なお、第1の実施形態では、溝部5の平面視形状を長円としたが、曲線または一部に曲線を含む閉曲線であれば、楕円、真円、角丸四角形等の他の形状でもよいし、これらの閉曲線の一部が不連続となるC字型、U字型等の不連続閉曲線でもよい。これは、長方形等のように角のある形状の溝部の場合、薄肉加工時に破損する虞がある上、角により溝部の剛性が高くなって開裂する内部圧力が高くなるからである。また、第2の実施形態では、溝部5は凹部6と略相似な閉曲線でもよいし、略相似な閉曲線の一部を欠いた不連続閉曲線でもよい。なお、溝部5を不連続閉曲線とする場合、第1、第2の実施形態共、元の閉曲線に対して半分以上の連続した溝を形成することが好ましい。   By being comprised as mentioned above, it can be set as the battery case 1 which the explosion-proof mechanism 4 will tear when a predetermined internal pressure is exceeded. The internal pressure at which the explosion-proof mechanism 4 is cleaved is preferably 0.25 to 0.42 MPa. If the internal pressure exceeds 0.42 MPa, the battery case 1 may be ruptured if it is not cleaved. In addition, the lower limit value of the internal pressure at which the explosion-proof mechanism 4 is cleaved is not particularly limited, but is 0.25 MPa or more in order not to be cleaved by an impact in the manufacturing process or the temporary and small increase in internal pressure during summer use. It is preferable that More preferably, it is 0.35-0.4 MPa in the internal pressure which cleaves. In the first embodiment, the shape of the groove 5 in plan view is an ellipse, but other shapes such as an ellipse, a perfect circle, and a rounded rectangle may be used as long as the curve or a closed curve including a part of the curve is included. However, a discontinuous closed curve such as a C-shape or a U-shape in which a part of these closed curves is discontinuous may be used. This is because in the case of a groove portion having a corner shape such as a rectangle, the groove portion may be damaged at the time of thin-wall processing, and the rigidity of the groove portion is increased by the corner portion, and the internal pressure for cleavage is increased. In the second embodiment, the groove 5 may be a closed curve that is substantially similar to the recess 6 or may be a discontinuous closed curve that lacks a part of the substantially similar closed curve. In addition, when making the groove part 5 into a discontinuous closed curve, it is preferable to form a continuous groove more than half of the original closed curve in both the first and second embodiments.

次に、本発明に係る電池ケースの製造方法について、その一例を説明する。   Next, an example of the battery case manufacturing method according to the present invention will be described.

まず、電池ケース1の蓋2および本体3を構成するアルミニウム合金を公知の方法によりそれぞれ所定厚さにして、アルミニウム合金板を得る。そして、蓋2は、アルミニウム合金板を所定の形状に切断して、端子用の孔や注入口等を形成する。本体3は、アルミニウム合金板を所定の形状に切断して、絞り加工等で上面が開放された箱体に成形する。   First, the aluminum alloy which comprises the cover 2 and the main body 3 of the battery case 1 is each made into predetermined thickness by a well-known method, and an aluminum alloy plate is obtained. And the lid | cover 2 cut | disconnects an aluminum alloy plate in a defined shape, and forms the hole for a terminal, an injection hole, etc. The main body 3 is formed by cutting an aluminum alloy plate into a predetermined shape and drawing it into a box whose upper surface is opened by drawing or the like.

次に、本体3の内外に金型を配してコイニング加工により側面32の略中央部を所定形状に窪ませて凹部6とする。さらに別の金型を配してコイニング加工により凹部6の内側に溝部5を形成する。   Next, a mold is arranged inside and outside the main body 3, and a substantially central portion of the side surface 32 is recessed into a predetermined shape by coining to form a recess 6. Further, another mold is arranged and the groove 5 is formed inside the recess 6 by coining.

この本体3に二次電池材料(正極材料、負極材料、セパレータ等)を格納し、上面に蓋2を接合する。そして電解液を注入して、注入口を封止して二次電池とする。   A secondary battery material (a positive electrode material, a negative electrode material, a separator, or the like) is stored in the main body 3, and the lid 2 is joined to the upper surface. And electrolyte solution is inject | poured and an injection hole is sealed and it is set as a secondary battery.

次に、本発明に係る電池ケースにおける防爆機構が開裂する過程を、図を参照して説明する。図4は本発明の第2の実施形態である電池ケースの、防爆機構が開裂した状態を示す外観斜視図である。図5は、本発明の第2の実施形態である電池ケースの防爆機構が開裂する過程を説明する平面図で、(a)は内部圧力が正常な状態、(b)〜(d)は内部圧力が上昇していく状態、(e)は開裂した状態を示す。なお、図4,5は正面(広面)を上に向けて示す。   Next, the process by which the explosion-proof mechanism in the battery case according to the present invention is cleaved will be described with reference to the drawings. FIG. 4 is an external perspective view showing the battery case according to the second embodiment of the present invention in a state where the explosion-proof mechanism is cleaved. FIG. 5 is a plan view for explaining a process in which the explosion-proof mechanism of the battery case according to the second embodiment of the present invention is cleaved, where (a) shows a normal internal pressure, and (b) to (d) show an internal state. A state in which the pressure increases, (e) shows a state in which the pressure is cleaved. 4 and 5 are shown with the front surface (wide surface) facing upward.

まず、内部圧力が上昇し始めると、図5(a)の正常時から図5(b)に示すように対向する2枚の広面が中央から互いに離間する方向へ膨らむ。このとき、側面32は両広面との稜線(長辺)に引き寄せられて、面中央が内部(図面奥方向)に引き込まれる。なお、このとき、側面32と対向する図示しない側面も同様に内部に引き込まれる。内部圧力がさらに上昇すると、側面32の中央は一層内部に引き込まれ、図5(c)に示すように凹部6の立ち下がり部が座屈の起点となって内部に折れ曲がり始める。また、同時に、この折れ曲がり部と接する広面(正面31)にも座屈が生じ、急峻に折れ曲がって変形し角状部7が生じる。この角状部7およびその付近は、急峻な折れ曲がり線により広面の他の部分よりも剛性が高くなる。この剛性の高い部分には、内部圧力が引き続き作用すると、特に大きな引張応力が作用する。その結果、角状部7付近の側面部32における部分すなわち中央にも大きい引張応力が作用する。   First, when the internal pressure starts to rise, as shown in FIG. 5 (b), the two wide surfaces facing each other swell from the center in a direction away from each other as shown in FIG. 5 (b). At this time, the side surface 32 is drawn to the ridgeline (long side) with both wide surfaces, and the center of the surface is drawn inside (in the drawing back direction). At this time, a side surface (not shown) facing the side surface 32 is also drawn into the inside. When the internal pressure further rises, the center of the side surface 32 is further drawn into the inside, and as shown in FIG. 5C, the falling portion of the concave portion 6 starts to bend into the inside as a buckling start point. At the same time, the wide surface (front surface 31) in contact with the bent portion is also buckled, sharply bent and deformed, and the angular portion 7 is generated. The corner portion 7 and the vicinity thereof are stiffer than the other portions of the wide surface due to steep bent lines. When the internal pressure continues to act on this highly rigid portion, a particularly large tensile stress acts. As a result, a large tensile stress also acts on the portion of the side surface portion 32 near the corner portion 7, that is, the center.

そして、内部圧力がさらに上昇すると、図5(d)に示すように側面32の折れ曲がりが大きくなることと、正面31における角状部7の拡張に伴って側面32の中央に作用する応力が大きくなることにより、折れ曲がり線上にある溝部5が破断する(図5(e))。この応力により、溝部5の残厚を極端に薄肉化しなくても、比較的低い内部圧力で溝部5を破断させることができる。また、溝部5の平面視形状を閉曲線またはその一部が不連続となる不連続閉曲線としたことにより、側面32の折れ曲がり線を横断する溝(薄肉部)が2箇所となり、より確実に破断する。図4の斜視図に示すように、側面32は、凹部6および溝部5が形成された中央部で、二点鎖線で示した正常時よりも電池ケース内部側に折れ曲がり、それに伴い、辺を共有する正面31も側面32寄りで折れを生じて角状部7を形成している。なお、本実施形態では正面31に角状部7が生じているが、背面においても同様の変形が生じることがある。   When the internal pressure further increases, the bending of the side surface 32 increases as shown in FIG. 5D, and the stress acting on the center of the side surface 32 increases with the expansion of the rectangular portion 7 on the front surface 31. As a result, the groove 5 on the bent line is broken (FIG. 5E). Even if the remaining thickness of the groove 5 is not extremely reduced by this stress, the groove 5 can be broken at a relatively low internal pressure. In addition, since the shape of the groove 5 in plan view is a closed curve or a discontinuous closed curve in which a part thereof is discontinuous, there are two grooves (thin wall portions) crossing the bent line of the side surface 32, and the fracture is more reliably performed. . As shown in the perspective view of FIG. 4, the side surface 32 is a central portion where the concave portion 6 and the groove portion 5 are formed, and bends toward the inside of the battery case as compared with the normal state indicated by the two-dot chain line. The front surface 31 is also bent near the side surface 32 to form a horn 7. In addition, in this embodiment, although the square part 7 has arisen in the front surface 31, the same deformation | transformation may arise also in a back surface.

以上のように、側面32は長手方向中央付近で変形しやすく、さらに凹部6を設けることで、確実に溝部5の位置で変形させることができ、また、溝部5を設けていない対向する側面よりも優先的に変形させることができる。   As described above, the side surface 32 is easily deformed in the vicinity of the center in the longitudinal direction. Further, by providing the concave portion 6, the side surface 32 can be reliably deformed at the position of the groove portion 5. Can also be preferentially deformed.

以上、本発明を実施するための最良の形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と比較して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。   Although the best mode for carrying out the present invention has been described above, an example in which the effect of the present invention has been confirmed will be specifically described below in comparison with a comparative example that does not satisfy the requirements of the present invention. . In addition, this invention is not limited to this Example.

(実施例)
まず、表1に示す耐力の3000系アルミニウム合金を、板厚0.5mmのアルミニウム合金板とし、これを絞り加工により、板厚が、底面0.5mm、正面および背面(広面)0.20mm、側面(幅狭面)0.20mmの、上面が開放された箱体に成形した。次に、一方の側面の略中央に、コイニング加工により、幅2.0mmおよび長さ4.0mmの長円形状で、最薄肉部の幅80μmで残厚が表1に示す厚さの溝部を形成して本体とした。この本体に板厚1mmの3000系アルミニウム合金板で作製した蓋を溶接により接合して実施例1とした。また、同様に成形された別の箱体において、一方の側面の略中央に、コイニング加工により、幅3.0mmおよび長さ5.0mmの長円形状で、深さ1mmの凹部を形成した後、この凹部の内側に実施例1と同じ形状の溝部を形成して本体とし、実施例1と同様に蓋を接合して実施例2〜6とした。なお、完成した実施例1〜6の形状は、幅30mm×高さ50mm×奥行(幅狭面の幅)5mmの直方体で、これは、携帯電話に搭載するリチウムイオン二次電池の仕様とほぼ同じものである。
(Example)
First, a 3000 series aluminum alloy having a yield strength shown in Table 1 is made into an aluminum alloy plate having a thickness of 0.5 mm, and this is drawn to a thickness of 0.5 mm on the bottom surface, 0.20 mm on the front and back surfaces (wide surface), It was molded into a box body having a side surface (narrow surface) of 0.20 mm and an open top surface. Next, a groove having an elliptical shape with a width of 2.0 mm and a length of 4.0 mm, a width of 80 μm at the thinnest portion, and a remaining thickness as shown in Table 1 is formed at the approximate center of one side surface by coining. Formed as a main body. A lid made of a 3000 series aluminum alloy plate having a thickness of 1 mm was joined to this main body by welding to obtain Example 1. In another box formed in the same manner, after forming a recess having a depth of 1 mm and a length of 3.0 mm and a length of 5.0 mm by coining at the approximate center of one side surface Then, a groove having the same shape as that of Example 1 was formed inside the concave portion to form a main body, and a lid was joined in the same manner as in Example 1 to obtain Examples 2 to 6. The completed Examples 1 to 6 have a rectangular parallelepiped shape having a width of 30 mm, a height of 50 mm, and a depth (width of a narrow surface) of 5 mm, which is almost the same as the specification of a lithium ion secondary battery mounted on a mobile phone. The same thing.

(比較例)
比較例1〜3は、表1に示す位置に防爆機構を形成し、それ以外は実施例2と同じ仕様で作製した。
(Comparative example)
In Comparative Examples 1 to 3, an explosion-proof mechanism was formed at the position shown in Table 1, and the other specifications were made with the same specifications as in Example 2.

(作動圧力試験)
作動圧力試験は、実施例および比較例の電池ケースに内部圧力をかけて、溝部が破断、開裂した圧力を作動圧力として、測定を行った。作動圧力の合格基準は0.25〜0.42MPaとし、測定結果を表1に示す。
(Working pressure test)
In the operating pressure test, internal pressure was applied to the battery cases of the example and the comparative example, and the measurement was performed using the pressure at which the groove portion was broken and opened as the operating pressure. The acceptance criteria for the working pressure is 0.25 to 0.42 MPa, and the measurement results are shown in Table 1.

Figure 2009004271
Figure 2009004271

実施例1〜6は、防爆機構の形成位置が本発明の範囲内であるので、内部圧力が0.25〜0.42MPaで開裂した。特に、実施例1,2は、本体のアルミニウム合金の耐力および最薄肉部の残厚が好ましい値であるので、内部圧力が0.35〜0.4MPaで開裂した。なお、防爆機構に凹部を形成した実施例2は、凹部のない実施例1と比較して、少し低い内部圧力で開裂した。さらにこれらと比較して、アルミニウム合金の耐力の低い実施例3、および最薄肉部の残厚が薄い実施例5は、低い内部圧力で開裂した。一方、アルミニウム合金の耐力の高い実施例4、および最薄肉部の残厚が厚い実施例6は、高い内部圧力で開裂した。   In Examples 1 to 6, since the formation position of the explosion-proof mechanism is within the range of the present invention, the internal pressure was cleaved at 0.25 to 0.42 MPa. In particular, in Examples 1 and 2, the yield strength of the aluminum alloy of the main body and the remaining thickness of the thinnest portion were preferable values, so that the internal pressure was cleaved at 0.35 to 0.4 MPa. In addition, Example 2 which formed the recessed part in the explosion-proof mechanism was cleaved with the internal pressure a little lower compared with Example 1 without a recessed part. Further, in comparison with these, Example 3 in which the yield strength of the aluminum alloy was low and Example 5 in which the remaining thickness of the thinnest part was thin were cleaved at a low internal pressure. On the other hand, Example 4 in which the yield strength of the aluminum alloy was high and Example 6 in which the remaining thickness of the thinnest portion was thick were cleaved at a high internal pressure.

比較例1は、防爆機構を形成した位置が、本体と比較して板厚が厚くて変形に至る内部圧力が高い蓋である上、その中央から外れていたため、内部圧力が0.42MPaを大きく超えて開裂した。また、比較例2,3の防爆機構は、本体側面ではあるが、それぞれ蓋側寄り、底側寄りに形成されたため、側面変形の影響を受けにくく、いずれも内部圧力が0.42MPaを超えて開裂した。   In Comparative Example 1, the position where the explosion-proof mechanism was formed was a lid having a thick plate thickness and high internal pressure leading to deformation as compared with the main body, and it was out of the center, so the internal pressure increased 0.42 MPa. Cleaved beyond. Moreover, although the explosion-proof mechanisms of Comparative Examples 2 and 3 are on the side of the main body, they are formed on the side of the lid and the side of the bottom, respectively, so that they are not easily affected by the side surface deformation, and both have an internal pressure exceeding 0.42 MPa. Cleaved.

電池ケースの外観斜視図で、(a)は本発明の実施の形態の電池ケースの外観斜視図、(b)は本発明の別の実施の形態の電池ケースの外観斜視図である。It is an external appearance perspective view of a battery case, (a) is an external appearance perspective view of the battery case of embodiment of this invention, (b) is an external appearance perspective view of the battery case of another embodiment of this invention. 本発明の第1の実施形態の防爆機構の模式図で、(a)は平面図(電池ケースの側面視部分拡大図)、(b)は(a)のA−A断面図、(c)は第1の実施形態の変形例の断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the explosion-proof mechanism of the 1st Embodiment of this invention, (a) is a top view (a side view partial enlarged view of a battery case), (b) is AA sectional drawing of (a), (c). These are sectional drawings of the modification of 1st Embodiment. 本発明の第2の実施形態の防爆機構の模式図で、(a)は平面図(電池ケースの側面視部分拡大図)、(b)は(a)のB−B断面図である。It is the schematic diagram of the explosion-proof mechanism of the 2nd Embodiment of this invention, (a) is a top view (side view partial enlarged view of a battery case), (b) is BB sectional drawing of (a). 本発明の実施の形態である電池ケースが開裂した状態を示す外観斜視図である。It is an external appearance perspective view which shows the state which the battery case which is embodiment of this invention opened. 本発明の第2の実施形態である電池ケースの防爆機構が開裂する過程を説明する平面図で、(a)は内部圧力が正常な状態、(b)〜(d)は内部圧力が上昇していく状態、(e)は開裂した状態における図である。FIG. 6 is a plan view for explaining a process in which the explosion-proof mechanism of the battery case according to the second embodiment of the present invention is cleaved, where (a) shows a normal internal pressure, and (b) to (d) show that the internal pressure increases. (E) is a diagram in a cleaved state.

符号の説明Explanation of symbols

1,1A 電池ケース
2,2A 蓋
3,3A 本体
31,31A 本体正面(広面)
32 本体側面(幅狭面)
32A 本体底面(幅狭面)
4,41 防爆機構
5 溝部(破断用溝部)
51 第1溝部(第1破断用溝)
52 第2溝部(第2破断用溝)
6 凹部
1,1A battery case 2,2A lid 3,3A body 31,31A body front (wide surface)
32 Body side (narrow surface)
32A bottom surface (narrow surface)
4, 41 Explosion-proof mechanism 5 Groove (broken groove)
51 1st groove (first breaking groove)
52 Second groove (second breaking groove)
6 recess

Claims (6)

内部圧力が上昇して所定値を超えたときに一部が開裂する防爆機構を設けた密封構造の電池ケースであって、
前記電池ケースは、正面および背面が側面および底面よりも広面である偏平形の直方体であり、上面からなる蓋と、前記上面以外の五面で構成される本体と、からなり、
前記本体は、その幅狭面である前記側面または前記底面の略中央に形成した破断用溝部を有し、
前記破断用溝部が、曲線または一部に曲線を含む閉曲線、あるいは、前記閉曲線の一部が不連続となる不連続閉曲線に形成されて前記防爆機構としたことを特徴とする電池ケース。
A battery case with a sealed structure provided with an explosion-proof mechanism that partially cleaves when the internal pressure rises and exceeds a predetermined value,
The battery case is a flat rectangular parallelepiped whose front and back are wider than the side and bottom, and is composed of a lid formed from the upper surface and a body composed of five surfaces other than the upper surface.
The main body has a rupture groove formed at a substantially center of the side surface or the bottom surface, which is a narrow surface,
The battery case, wherein the breaking groove portion is formed into a closed curve including a curve or a part of a curve, or a discontinuous closed curve in which a part of the closed curve is discontinuous, thereby forming the explosion-proof mechanism.
前記破断用溝部を囲む凹部を前記側面または前記底面に形成したことを特徴とする請求項1に記載の電池ケース。   The battery case according to claim 1, wherein a concave portion surrounding the breaking groove is formed on the side surface or the bottom surface. 前記破断用溝部は、第1破断用溝と、前記第1破断用溝の底部に形成された第2破断用溝からなり、
前記第2破断用溝の底部を前記破断用溝部の底部とすることを特徴とする請求項1または請求項2に記載の電池ケース。
The breaking groove portion includes a first breaking groove and a second breaking groove formed at the bottom of the first breaking groove,
3. The battery case according to claim 1, wherein a bottom portion of the second breaking groove is a bottom portion of the breaking groove portion.
前記不連続閉曲線の破断用溝部は、少なくとも前記閉曲線の半分以上の連続部分を備えることを特徴とする請求項1ないし請求項3に記載の電池ケース。   4. The battery case according to claim 1, wherein the breaking groove portion of the discontinuous closed curve includes a continuous portion at least half of the closed curve. 前記本体は、耐力200〜300MPaのアルミニウム合金板からなり、
前記破断用溝部の底部である最薄肉部の残厚は40〜70μmであり、
前記内部圧力が0.4MPa以下で前記凹部に座屈変形を生じて前記破断用溝部が破断することを特徴とする請求項2ないし請求項4に記載の電池ケース。
The main body is made of an aluminum alloy plate having a yield strength of 200 to 300 MPa,
The remaining thickness of the thinnest wall portion which is the bottom of the breaking groove portion is 40 to 70 μm,
5. The battery case according to claim 2, wherein when the internal pressure is 0.4 MPa or less, buckling deformation occurs in the concave portion and the breaking groove portion is broken.
前記本体が3000系のアルミニウム合金板からなる請求項1ないし請求項5に記載の電池ケース。   6. The battery case according to claim 1, wherein the main body is made of a 3000 series aluminum alloy plate.
JP2007165378A 2007-06-22 2007-06-22 Battery case Expired - Fee Related JP5503101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007165378A JP5503101B2 (en) 2007-06-22 2007-06-22 Battery case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007165378A JP5503101B2 (en) 2007-06-22 2007-06-22 Battery case

Publications (2)

Publication Number Publication Date
JP2009004271A true JP2009004271A (en) 2009-01-08
JP5503101B2 JP5503101B2 (en) 2014-05-28

Family

ID=40320420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007165378A Expired - Fee Related JP5503101B2 (en) 2007-06-22 2007-06-22 Battery case

Country Status (1)

Country Link
JP (1) JP5503101B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605823B1 (en) * 2010-03-29 2011-01-05 章 池田 Sealed battery safety valve and sealed battery using the same
JP2011014536A (en) * 2009-07-06 2011-01-20 Sb Limotive Co Ltd Lithium ion battery
CN102447087A (en) * 2011-11-29 2012-05-09 浙江海锂子新能源有限公司 Early-warning type explosion-proof plug for lithium battery
JP2013243075A (en) * 2012-05-22 2013-12-05 Kobe Steel Ltd Battery case lid and method for forming explosion-proof valve of battery case lid
WO2014091773A1 (en) * 2012-12-11 2014-06-19 日新製鋼株式会社 Battery case lid
KR20150004747A (en) 2013-07-03 2015-01-13 가부시키가이샤 고베 세이코쇼 Battery case and method for forming a safety valve of the battery case
KR20150143446A (en) 2013-04-16 2015-12-23 가부시키가이샤 소오데 나가노 Cell case
CN111883702A (en) * 2019-05-03 2020-11-03 孚能科技(赣州)股份有限公司 Battery, battery box and vehicle
CN114628846A (en) * 2022-05-12 2022-06-14 比亚迪股份有限公司 Battery, battery module, battery pack and vehicle
CN115312961A (en) * 2022-08-22 2022-11-08 苏州湖林电子部件有限公司 Explosion-proof battery shell and processing method thereof
WO2023137976A1 (en) * 2022-01-24 2023-07-27 宁德时代新能源科技股份有限公司 Battery cell, battery and electric device
WO2023173429A1 (en) * 2022-03-18 2023-09-21 宁德时代新能源科技股份有限公司 Battery cell, manufacturing method and manufacturing device therefor, battery, and electrical device
WO2023173428A1 (en) * 2022-03-18 2023-09-21 宁德时代新能源科技股份有限公司 Battery cell and manufacturing method and manufacturing apparatus therefor, battery, and power consuming apparatus
WO2023240782A1 (en) * 2022-06-15 2023-12-21 宁德时代新能源科技股份有限公司 Pressure relief structure, battery cell, battery and electric device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285892A (en) * 1999-03-31 2000-10-13 Toshiba Electronic Engineering Corp Nonaqueous electrolyte secondary battery
JP2001023596A (en) * 1999-07-09 2001-01-26 Serumu:Kk Explosion-proof construction of secondary battery
JP2003303581A (en) * 2002-04-09 2003-10-24 Japan Storage Battery Co Ltd Battery pack
JP2006236949A (en) * 2005-02-28 2006-09-07 Kaga Inc Safety valve plate of sealed battery case, its molding method and its molding device
JP2007141518A (en) * 2005-11-15 2007-06-07 Xerom:Kk Explosion-proof structure of secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285892A (en) * 1999-03-31 2000-10-13 Toshiba Electronic Engineering Corp Nonaqueous electrolyte secondary battery
JP2001023596A (en) * 1999-07-09 2001-01-26 Serumu:Kk Explosion-proof construction of secondary battery
JP2003303581A (en) * 2002-04-09 2003-10-24 Japan Storage Battery Co Ltd Battery pack
JP2006236949A (en) * 2005-02-28 2006-09-07 Kaga Inc Safety valve plate of sealed battery case, its molding method and its molding device
JP2007141518A (en) * 2005-11-15 2007-06-07 Xerom:Kk Explosion-proof structure of secondary battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8828593B2 (en) 2009-07-06 2014-09-09 Samsung Sdi Co., Ltd. Lithium ion battery having emergency rupture member
JP2011014536A (en) * 2009-07-06 2011-01-20 Sb Limotive Co Ltd Lithium ion battery
JP2011210485A (en) * 2010-03-29 2011-10-20 Akira Ikeda Safety valve for sealed battery, and the sealed battery using the same
KR101275593B1 (en) * 2010-03-29 2013-06-14 선전 케다리 산업 주식회사 Safe plate for sealed battery and the sealed battery using thereof
US8522808B2 (en) 2010-03-29 2013-09-03 Shenzhen Kedali Industry Co. Ltd. Safety valve for gastight battery and gastight battery using safety valve
CN102208582A (en) * 2010-03-29 2011-10-05 深圳市科达利实业股份有限公司 Safety valve for gastight battery and gastight battery using safety valve
JP4605823B1 (en) * 2010-03-29 2011-01-05 章 池田 Sealed battery safety valve and sealed battery using the same
CN102447087A (en) * 2011-11-29 2012-05-09 浙江海锂子新能源有限公司 Early-warning type explosion-proof plug for lithium battery
JP2013243075A (en) * 2012-05-22 2013-12-05 Kobe Steel Ltd Battery case lid and method for forming explosion-proof valve of battery case lid
US10008703B2 (en) 2012-12-11 2018-06-26 Nisshin Steel Co., Ltd. Lid for battery case with a safety valve
WO2014091773A1 (en) * 2012-12-11 2014-06-19 日新製鋼株式会社 Battery case lid
KR20150143446A (en) 2013-04-16 2015-12-23 가부시키가이샤 소오데 나가노 Cell case
US9716260B2 (en) 2013-04-16 2017-07-25 Soode Nagano Co., Ltd. Battery case
KR20150004747A (en) 2013-07-03 2015-01-13 가부시키가이샤 고베 세이코쇼 Battery case and method for forming a safety valve of the battery case
CN111883702A (en) * 2019-05-03 2020-11-03 孚能科技(赣州)股份有限公司 Battery, battery box and vehicle
WO2023137976A1 (en) * 2022-01-24 2023-07-27 宁德时代新能源科技股份有限公司 Battery cell, battery and electric device
WO2023173429A1 (en) * 2022-03-18 2023-09-21 宁德时代新能源科技股份有限公司 Battery cell, manufacturing method and manufacturing device therefor, battery, and electrical device
WO2023173428A1 (en) * 2022-03-18 2023-09-21 宁德时代新能源科技股份有限公司 Battery cell and manufacturing method and manufacturing apparatus therefor, battery, and power consuming apparatus
CN114628846A (en) * 2022-05-12 2022-06-14 比亚迪股份有限公司 Battery, battery module, battery pack and vehicle
WO2023240782A1 (en) * 2022-06-15 2023-12-21 宁德时代新能源科技股份有限公司 Pressure relief structure, battery cell, battery and electric device
CN115312961A (en) * 2022-08-22 2022-11-08 苏州湖林电子部件有限公司 Explosion-proof battery shell and processing method thereof

Also Published As

Publication number Publication date
JP5503101B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5503101B2 (en) Battery case
KR101490592B1 (en) Battery case cover and method for forming an explosion-proof valve of a battery case cover
JP7025861B2 (en) Seal plate
KR101643091B1 (en) Method of forming a prismatic battery case
JP5294248B2 (en) Flat battery
WO2010100731A1 (en) Sealed battery and method of producing sealed battery
JP5250138B2 (en) Battery case lid
KR101616621B1 (en) Battery case and method for forming a safety valve of the battery case
JP5204973B2 (en) Safety valve structure for secondary battery and manufacturing method thereof
WO2000069004A1 (en) Square cell container and method of manufacturing the cell container
EP2988346A1 (en) Cell case
JP2013154389A (en) Die for drawing
JP5542192B2 (en) Battery case lid
JP5237341B2 (en) Battery safety valve
CN108637082B (en) Forming process of side welding connecting sheet
KR20080041996A (en) Safety valve for sealed cells
JP3597150B2 (en) Organic electrolyte secondary battery and method for producing negative electrode can of organic electrolyte secondary battery
JP2014078316A (en) Squared sealed battery
JP2002331309A (en) Method for bending and forming thin plate, manufacturing method for die and sealed secondary battery
JP2023022625A (en) battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130419

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140314

R150 Certificate of patent or registration of utility model

Ref document number: 5503101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees