JP2001052736A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2001052736A
JP2001052736A JP11220964A JP22096499A JP2001052736A JP 2001052736 A JP2001052736 A JP 2001052736A JP 11220964 A JP11220964 A JP 11220964A JP 22096499 A JP22096499 A JP 22096499A JP 2001052736 A JP2001052736 A JP 2001052736A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
lithium
organic
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11220964A
Other languages
Japanese (ja)
Other versions
JP4314503B2 (en
Inventor
Toru Shiga
亨 志賀
Akihiko Koiwai
明彦 小岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP22096499A priority Critical patent/JP4314503B2/en
Publication of JP2001052736A publication Critical patent/JP2001052736A/en
Application granted granted Critical
Publication of JP4314503B2 publication Critical patent/JP4314503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery excellent in flame retardancy and discharge characteristics by using an organic electrolyte for which a kind of organic phosphazene compound mixed as an organic solvent is specified, a kind of other organic solvent mixed and their mixing ratio are also specified. SOLUTION: In this lithium secondary battery equipped with a positive electrode having a lithium transition metal compound oxide as a positive electrode active material, a negative electrode having a carbon material which a lithium ion can be inserted in and separated from as a negative electrode active material, and an organic electrolyte formed by dissolving lithium salt in an organic solvent, the organic solvent is formed so as to have 15-40 volume % of a dimethyl-carbonate, 25-40 volume % of alkoxycyclophosphazene and a cyclic carbonate for the remaining part, if its total is set for 100 volume %.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオンの
挿入・離脱現象を利用したリチウム二次電池に関し、詳
しくはその構成要素である有機電解液の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery utilizing the phenomenon of insertion and extraction of lithium ions, and more particularly, to an improvement in an organic electrolyte as a component thereof.

【0002】[0002]

【従来の技術】近年、大気汚染等の環境問題から電気自
動車やハイブリッド自動車が普及され始めるなか、その
電源となる電池の高性能化が求められている。リチウム
遷移金属複合酸化物正極と炭素材料負極と有機電解液を
含んで構成される4V級リチウム二次電池は、エネルギ
ー密度が高いという特徴から、期待の大きい高性能電池
である。
2. Description of the Related Art In recent years, as electric vehicles and hybrid vehicles have begun to spread due to environmental problems such as air pollution, there has been a demand for higher performance of batteries as power sources thereof. A 4V-class lithium secondary battery including a lithium transition metal composite oxide positive electrode, a carbon material negative electrode, and an organic electrolyte is a promising high-performance battery due to its high energy density.

【0003】このリチウム二次電池は既に携帯用電子機
器等に既に実用化されているが、市販されているリチウ
ム二次電池では、正極活物質は層状岩塩構造を有するリ
チウムコバルト複合酸化物であり、コストが高くまたコ
バルト資源が少ないという問題を抱えている。一方、自
動車への搭載を考えると安価で資源の豊富な物質である
ことが重要な要件となることから、上記リチウムコバル
ト複合酸化物に代わって、層状岩塩構造のリチウムニッ
ケル複合酸化物、スピネル構造のリチウムマンガン複合
酸化物が注目されている。
Although this lithium secondary battery has already been put to practical use in portable electronic devices and the like, in a commercially available lithium secondary battery, the positive electrode active material is a lithium cobalt composite oxide having a layered rock salt structure. However, there is a problem that the cost is high and the cobalt resources are small. On the other hand, considering that it is an inexpensive and resource-rich material is an important requirement when it is considered to be mounted on automobiles, a lithium nickel composite oxide with a layered rock salt structure, a spinel structure Is attracting attention.

【0004】しかしながら、これらを正極に用いた4V
級リチウム二次電池では、リチウムコバルト複合酸化物
を用いたリチウム二次電池に比べて、充放電の繰り返し
とともに電池容量が著しく低下することが知られてお
り、その充放電サイクル特性の改良が不可欠となってい
る。
However, when these are used as a positive electrode,
Class lithium secondary batteries are known to have significantly lower battery capacity with repeated charge / discharge cycles than lithium secondary batteries using lithium-cobalt composite oxides. It has become.

【0005】また、リチウム二次電池を自動車に搭載す
るにあたっては、電池の安全性についても重視される。
すなわち、電池が破裂、発火等しないことが求められて
おり、特に有機電解液の難燃化、不燃化が検討されてい
る。
[0005] When a lithium secondary battery is mounted on an automobile, the safety of the battery is also important.
That is, it is required that the battery does not burst, ignite, or the like, and in particular, making the organic electrolyte solution nonflammable and nonflammable is being studied.

【0006】一般に、市販されている4V級リチウム二
次電池の有機電解液溶媒として、エチレンカーボネート
(EC)、プロピレンカーボネート(PC)等の環状カ
ーボネートと、ジエチルカーボネート(DEC)、ジメ
チルカーボネート(DMC)、エチルメチルカーボネー
ト(EMC)等の鎖状カーボネートとからなる混合溶媒
が用いられている。前者は、高誘電率であるため、リチ
ウム塩のイオン解離を促進し、後者は、低粘性であるた
め電解液の粘度を下げることができ、Liイオンの伝導
度の向上およびセパレータへの浸透性の向上を促進させ
る働きを担っている。
In general, as an organic electrolyte solvent for a commercially available 4V-class lithium secondary battery, cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), diethyl carbonate (DEC), and dimethyl carbonate (DMC) are used. And a chain carbonate such as ethyl methyl carbonate (EMC). The former has a high dielectric constant, which promotes ion dissociation of the lithium salt, and the latter, which has a low viscosity, can lower the viscosity of the electrolyte, thereby improving the conductivity of Li ions and improving the permeability of the separator. Is responsible for promoting the improvement of

【0007】しかしながら、従来の電解液の溶媒は、引
火点が室温近傍にある鎖状カーボネートが体積比におい
て50%以上占めることが多いため、非常に燃えやす
く、このままこのような有機溶媒を用いた電解液を含む
リチウム二次電池を自動車に搭載した場合、安全性の上
で疑問が残るものとなっていた。このような状況を鑑
み、引火点の低い鎖状カーボネートの一部を新規な溶媒
におきかえることにより、電解液の難燃化、不燃化が検
討されている。
However, the conventional solvent of the electrolytic solution is very flammable because the chain carbonate whose flash point is near room temperature often occupies 50% or more in volume ratio, and such an organic solvent is used as it is. When a lithium secondary battery containing an electrolytic solution is mounted on an automobile, there has been a question about safety. In view of such a situation, studies have been made to make the electrolyte solution nonflammable and nonflammable by replacing a part of the chain carbonate having a low flash point with a new solvent.

【0008】例えば、特開平8−88023号公報に
は、自己消火性が期待されるリン酸エステルが記載され
ている。電解液の難燃化はリン酸エステルの含有量が多
いほど進むが、リン酸エステルは正極や負極の酸化力あ
るいは還元力が非常に強く電極表面で反応するため、含
有量が15%以上になると充放電特性が急激に悪化する
という欠点をもっている。
For example, JP-A-8-88023 describes a phosphate ester which is expected to have self-extinguishing properties. Although the flame retardation of the electrolytic solution proceeds as the content of the phosphate ester increases, the content of the phosphate ester is increased to 15% or more because the oxidizing power or the reducing power of the positive electrode or the negative electrode reacts very strongly on the electrode surface. This has the disadvantage that the charge / discharge characteristics deteriorate rapidly.

【0009】また、特開平10−55822号公報に
は、不燃性または引火点が100℃以上の有機溶媒を用
いることが提案されている。具体的には、アセチルブチ
ルラクトン、ブロモブチルラクトン、ブタンスルトン、
プロピレンカーボネート等である。これらの有機溶媒も
電解液中の含有量が多ければ難燃性は向上するものの、
Liイオンを吸蔵した炭素材料負極との反応性が高いた
め、充放電効率が低下したり、あるいは初回充放電時の
不可逆容量(初回充放電時の充電容量と放電容量との容
量差)が極めて大きくなってしまうという欠点を有して
いた。
Japanese Patent Application Laid-Open No. 10-55822 proposes to use an organic solvent having a nonflammability or a flash point of 100 ° C. or higher. Specifically, acetylbutyl lactone, bromobutyl lactone, butane sultone,
Propylene carbonate and the like. Although the flame retardancy is improved if the content of these organic solvents in the electrolytic solution is large,
Due to high reactivity with the carbon material negative electrode that occludes Li ions, the charge / discharge efficiency is reduced, or the irreversible capacity at the first charge / discharge (the capacity difference between the charge capacity and the discharge capacity at the first charge / discharge) is extremely high. It had the disadvantage of becoming large.

【0010】さらに、特開平6−13108号公報に
は、−P=N−結合を分子骨格内にもつ難燃性、不燃性
の無機溶媒であるホスファゼン化合物の内、粘度が30
0cp以下の環状または鎖状のホスファゼン化合物を5
0〜90%含む既存有機溶媒との混合系が提案されてい
る。この公報記載の実施例には、電池電圧2〜3Vで充
放電する電池が記載されているだけであり、リチウム遷
移金属複合酸化物と炭素材料を組み合わせた4V級の電
池についての記載はない。また、本発明者が検討したと
ころ、充電時に負極表面で反応し、初回充放電時におけ
る不可逆容量が極めて大きく、ホスファゼン化合物の混
合比を大きくすることにより、その不可逆容量も大きく
なることが確認できた。
Further, Japanese Patent Application Laid-Open No. Hei 6-13108 discloses that a phosphazene compound which is a flame-retardant and non-flammable inorganic solvent having a -P = N- bond in the molecular skeleton has a viscosity of 30.
0 or less cyclic or chain phosphazene compound
A mixed system with an existing organic solvent containing 0 to 90% has been proposed. The embodiment described in this publication only describes a battery that can be charged and discharged at a battery voltage of 2 to 3 V, but does not describe a 4 V class battery in which a lithium transition metal composite oxide and a carbon material are combined. Further, when the present inventors examined, it was confirmed that the reaction on the negative electrode surface during charging, the irreversible capacity during the initial charge and discharge was extremely large, and that the irreversible capacity was also increased by increasing the mixing ratio of the phosphazene compound. Was.

【0011】[0011]

【発明が解決しようとする課題】本発明者は、鋭意実験
を重ねることで、ホスファゼン化合物のなかから特定の
ものが難燃性に優れるとの知見を得、さらに、混合する
他の有機溶媒の種類を特定し、かつ、混合比を特定する
ことにより、リチウム二次電池の電解液としての機能を
担保しつつ、良好な難燃性を示す混合溶媒となるとの知
見を得た。
SUMMARY OF THE INVENTION The present inventor has found, through intensive experiments, that certain phosphazene compounds are excellent in flame retardancy, It has been found that, by specifying the type and the mixing ratio, a mixed solvent exhibiting good flame retardancy while securing the function as an electrolyte of a lithium secondary battery is obtained.

【0012】また、本発明者は、ホスファゼン化合物を
用いた場合に不可逆容量が大きくなることについて検討
し、その結果、従来の合成法によるホスファゼン化合物
中には、Liイオンを吸蔵した炭素材料との反応性の高
い副生成物が含まれ、この副生成物に起因して不可逆容
量が大きくなるとの知見を得た。
Further, the present inventors have studied that the irreversible capacity becomes large when a phosphazene compound is used. As a result, the phosphazene compound obtained by the conventional synthesis method contains a carbon material having occluded Li ions. It has been found that a highly reactive by-product is contained and that the irreversible capacity increases due to this by-product.

【0013】本発明は、これらの知見に基づくものであ
り、有機溶媒として混合するホスファゼン化合物の種類
を特定し、かつ混合する他の有機溶媒の種類およびそれ
らの混合比をも特定した有機電解液を用いることによ
り、難燃性および充放電特性に優れたリチウム二次電池
を提供することを課題としている。さらに、混合する上
記ホスファゼン化合物に含まれる反応性の高い副生成物
を除去した有機電解液を用いることにより、より不可逆
容量が小さく、より充放電特性に優れたリチウム二次電
池を提供することを課題としている。
The present invention is based on these findings, and specifies the type of phosphazene compound to be mixed as the organic solvent, and also specifies the type of other organic solvent to be mixed and the mixing ratio thereof. It is an object of the present invention to provide a lithium secondary battery having excellent flame retardancy and charge / discharge characteristics by using a lithium secondary battery. Further, by using an organic electrolyte solution from which highly reactive by-products contained in the phosphazene compound to be mixed are removed, it is possible to provide a lithium secondary battery having a smaller irreversible capacity and more excellent charge / discharge characteristics. It is an issue.

【0014】[0014]

【課題を解決するための手段】本発明のリチウム二次電
池は、リチウム遷移金属複合酸化物を正極活物質とした
正極と、リチウムイオンを挿入・離脱可能な炭素材料を
負極活物質とした負極と、リチウム塩を有機溶媒に溶解
させた有機電解液とを備えてなるリチウム二次電池であ
って、前記有機溶媒は、全体を100体積%とした場合
において、25〜40体積%のジメチルカーボネート
と、15〜40体積%のアルコキシシクロホスファゼン
と、残部としての環状カーボネートとからなることを特
徴とする。
The lithium secondary battery of the present invention comprises a positive electrode using a lithium transition metal composite oxide as a positive electrode active material and a negative electrode using a carbon material capable of inserting and removing lithium ions as a negative electrode active material. And an organic electrolyte obtained by dissolving a lithium salt in an organic solvent, wherein the organic solvent is 25 to 40% by volume of dimethyl carbonate when the whole is 100% by volume. And 15 to 40% by volume of alkoxycyclophosphazene, and the balance is cyclic carbonate.

【0015】特徴部となる混合有機溶媒を構成するそれ
ぞれの有機溶媒の機能、作用については、後に掲げるも
のとしてここでの記載については省略するが、本発明の
リチウム二次電池は、上記構成の混合有機溶媒を用いた
電解液を有することで、不可逆容量が小さく、サイクル
特性が良好な、つまり充放電特性に優れ、かつ、難燃性
に優れたリチウム二次電池となる。
The function and action of each of the organic solvents constituting the mixed organic solvent as a characteristic portion will not be described here as being listed later, but the lithium secondary battery of the present invention has the above-described structure. By having the electrolytic solution using the mixed organic solvent, a lithium secondary battery having a small irreversible capacity and good cycle characteristics, that is, excellent charge-discharge characteristics and excellent flame retardancy can be obtained.

【0016】また、本発明のリチウム二次電池では、前
記アルコキシシクロホスファゼンを、クロロシクロホス
ファゼンとナトリウムアルコキシドとを反応させ、次い
で金属リチウムを反応させて副生成物を除去することに
より生成されたものであり、かつ、赤外吸収スペクトル
において、750cm-1付近に現れるピークの光吸収率
に対する595cm-1付近に現れるピークの光吸収率の
比が0.3以下のものとすることもできる。
Further, in the lithium secondary battery of the present invention, the above-mentioned alkoxycyclophosphazene is formed by reacting chlorocyclophosphazene with sodium alkoxide and then reacting with lithium metal to remove by-products. , and the and the infrared absorption spectrum, the ratio of the optical absorptance of the peak appearing in the vicinity of 595 cm -1 with respect to light absorption peak appearing near 750 cm -1 can also be of 0.3 or less.

【0017】この態様のアルコキシシクロホスファゼン
の特徴等についても後に詳しく説明するが、このアルコ
キシシクロホスファゼンは、上記製造方法に従うことで
反応性の強い副生成物を除去されたものである。したが
って、上記有機溶媒をこの態様のアルコキシシクロホス
ファゼンで構成することにより、そのリチウム二次電池
は、不可逆容量がより小さくまたサイクル特性がより良
好となり、充放電特性についてもさらに優れたリチウム
二次電池となる。
The characteristics and the like of the alkoxycyclophosphazene of this embodiment will be described later in detail. The alkoxycyclophosphazene is obtained by removing a highly reactive by-product by following the above-mentioned production method. Therefore, by constituting the organic solvent with the alkoxycyclophosphazene of this embodiment, the lithium secondary battery has a smaller irreversible capacity and a better cycle characteristic, and further has excellent charge / discharge characteristics. Becomes

【0018】[0018]

【発明の実施の形態】以下に、本発明のリチウム二次電
池の実施形態について、特徴部である有機電解液を構成
する有機溶媒、その他の構成要素に分けて説明する。ま
た、有機電解液の説明において、その機能および作用に
ついても詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of a lithium secondary battery of the present invention will be described with respect to an organic solvent constituting an organic electrolytic solution, which is a characteristic part, and other components. In the description of the organic electrolytic solution, its function and function will also be described in detail.

【0019】〈有機溶媒〉本発明のリチウム二次電池を
構成する有機電解液は、支持塩としてのリチウム塩を有
機溶媒に溶解させたものであり、この有機溶媒が本リチ
ウム二次電池の特徴部となる。その有機溶媒は、混合溶
媒であり、全体を100体積%とした場合において、1
5〜40体積%のジメチルカーボネートと、25〜40
体積%のアルコキシシクロホスファゼンと、残部として
の環状カーボネートとからなる。以下に、混合溶媒を構
成するそれぞれの有機溶媒ごとに説明する。
<Organic Solvent> The organic electrolyte constituting the lithium secondary battery of the present invention is obtained by dissolving a lithium salt as a supporting salt in an organic solvent, and the organic solvent is a feature of the lithium secondary battery. Department. The organic solvent is a mixed solvent.
5-40% by volume of dimethyl carbonate, 25-40
It consists of volume% alkoxycyclophosphazene and the balance cyclic carbonate. Hereinafter, each organic solvent constituting the mixed solvent will be described.

【0020】1)ジメチルカーボネート ジメチルカーボネート(以下、「DMC」と略す)は、
鎖状カーボネートの1種で、低粘性溶媒として、電解液
のリチウムイオン伝導性を良好にする等の機能を果たす
溶媒である。
1) Dimethyl carbonate Dimethyl carbonate (hereinafter abbreviated as "DMC") is
A type of chain carbonate, which is a low-viscosity solvent and has a function of improving the lithium ion conductivity of the electrolytic solution.

【0021】低粘性溶媒として、従来から、ジエチルカ
ーボネート(DEC)、エチルメチルカーボネート(E
MC)、ジプロピルカーボネート等の鎖状カーボネート
や、ジメトキシエタン、テトラヒドロフラン、メチルヒ
ドロフラン等のエーテル化合物等が用いられていたが、
本発明者が行った難燃性試験(その方法は後の実施例に
記載)において着火し、難燃性が良好な電解液を構成で
きないものとなった。
As the low-viscosity solvent, diethyl carbonate (DEC) and ethyl methyl carbonate (E
MC), chain carbonates such as dipropyl carbonate, and ether compounds such as dimethoxyethane, tetrahydrofuran, and methylhydrofuran.
In the flame retardancy test performed by the present inventors (the method is described in Examples below), ignition occurred, and an electrolyte having good flame retardancy could not be formed.

【0022】鎖状カーボネートの中からDMCに限定す
る理由については、現在のところ定かではないが、1つ
の理由として、DMCは、DECやEMC等に比べて分
子が小さいため支持塩に配位しやすく、結果としてDM
Cが溶媒の形で存在しないのではないかと考えられる。
また、DMCを用いる場合は、充放電特性についても良
好となる。この理由についても明らかにはできないが、
DMCとアルコキシシクロホスファゼンとが互いに配位
することにより、溶媒と負極との反応によるLiの失活
を低減しているのではないかと推察される。
The reason for limiting the chain carbonate to DMC among the chain carbonates is not clear at present, but one reason is that DMC has a smaller molecule than DEC, EMC, etc., so that it can be coordinated with a supporting salt. Easy and as a result DM
It is thought that C may not be present in the form of a solvent.
When DMC is used, the charge and discharge characteristics are also good. I can't clarify why,
It is presumed that the coordination of DMC and alkoxycyclophosphazene reduces Li deactivation due to the reaction between the solvent and the negative electrode.

【0023】混合溶媒中のDMCの混合割合は、混合溶
媒の全体を100体積%とした場合の15〜40体積%
とする。これは、DMCが15体積%未満の場合は、電
解液の粘度が高すぎて電池への電解液の注入の際にセパ
レータへ浸透させることに対して時間がかかりすぎる等
の問題があるからであり、また、40体積%を超える場
合は、電解液の難燃性が良好ではなくなるからである。
The mixing ratio of DMC in the mixed solvent is 15 to 40% by volume when the whole mixed solvent is 100% by volume.
And This is because when the DMC is less than 15% by volume, there is a problem that the viscosity of the electrolyte is too high and it takes too much time to infiltrate the separator when the electrolyte is injected into the battery. Yes, and if it exceeds 40% by volume, the flame retardancy of the electrolytic solution is not good.

【0024】2)アルコキシシクロホスファゼン アルコキシシクロホスファゼン(以下「PN」と略す)
は、環状のホスファゼン化合物であり、主に、混合する
ことによりその混合有機溶媒の難燃性を向上させる役割
を果たす。環状ホスファゼン化合物を選択したのは、鎖
状ホスファゼン化合物では分子骨格内にP=O等の結合
を有するため、電気化学的に不安定であるからである。
2) Alkoxycyclophosphazene Alkoxycyclophosphazene (hereinafter abbreviated as "PN")
Is a cyclic phosphazene compound, which mainly plays a role of improving the flame retardancy of the mixed organic solvent by mixing. The reason for selecting the cyclic phosphazene compound is that the chain phosphazene compound is electrochemically unstable because it has a bond such as P = O in the molecular skeleton.

【0025】PNのアルコキシ基は、炭素数が1〜4
の、メチル基、エチル基、プロピル基、ブチル基である
ことが望ましい。これは、炭素数が5以上のアルコキシ
基を有するPNは、合成時の収率が低く、得られたPN
自身の粘度が高いという若干の問題を有するからであ
る。また、PNの環状構造としては、PN結合を3〜4
つ有するものがよく、望ましくは3つが好適である。P
N結合が5つ以上のものは環状構造が若干不安定で、充
放電時に分解しやすくなり、電池の充放電特性が若干悪
くなるからである。
The PN alkoxy group has 1 to 4 carbon atoms.
And a methyl group, an ethyl group, a propyl group, and a butyl group. This is because PN having an alkoxy group having 5 or more carbon atoms has a low yield at the time of synthesis, and the obtained PN
This is because it has some problems that its own viscosity is high. As the PN ring structure, a PN bond of 3 to 4
One having three is preferable, and three are preferable. P
When the number of N bonds is 5 or more, the cyclic structure is slightly unstable, and the ring structure is easily decomposed during charge and discharge, and the charge and discharge characteristics of the battery are slightly deteriorated.

【0026】混合溶媒中のPNの混合割合は、混合溶媒
の全体を100体積%とした場合の25〜40体積%と
する。これは、PNが25体積%未満の場合は、難燃化
を充分に行えないからであり、また、40体積%を超え
る場合は、不可逆容量が大きなものとなってしまうから
である。
The mixing ratio of PN in the mixed solvent is 25 to 40% by volume when the whole mixed solvent is 100% by volume. This is because if PN is less than 25% by volume, it is not possible to achieve sufficient flame retardancy, and if it exceeds 40% by volume, the irreversible capacity becomes large.

【0027】PNの合成は、その方法を特に限定するも
のではなく、通常行われているように、クロロシクロホ
スファゼンとナトリウムアルコキシドとを反応させるこ
とによって合成すればよい。ただし、この方法によれ
ば、Liイオンを吸蔵した炭素材料との反応性の高い微
量の副生成物を含んだPNが生成される。このことは、
本発明者が実験により明らかとしたものであるが、その
副生成物の存在によって、得られたPNを混合した有機
溶媒を用いたリチウム二次電池では、充放電特性が低下
するという問題を抱える。
The method of synthesizing PN is not particularly limited, and it may be synthesized by reacting chlorocyclophosphazene with sodium alkoxide, as is generally performed. However, according to this method, PN containing a trace amount of by-product highly reactive with the carbon material that has absorbed Li ions is generated. This means
As clarified by the present inventors through experiments, the lithium secondary battery using the organic solvent obtained by mixing the obtained PN has a problem that the charge / discharge characteristics deteriorate due to the presence of the by-product. .

【0028】そこでより充放電特性の良好なリチウム二
次電池とするために、PNの合成は、クロロシクロホス
ファゼンとナトリウムアルコキシドとを反応させ、次い
で金属リチウムを反応させて副生成物を除去することに
より生成することが望ましい。つまり、予め、反応性の
高い副生成物と金属リチウムとを反応させから、その反
応物を分離する方法である。
Therefore, in order to obtain a lithium secondary battery having better charge / discharge characteristics, PN is synthesized by reacting chlorocyclophosphazene with sodium alkoxide and then reacting with lithium metal to remove by-products. It is desirable to generate by. That is, this is a method in which a highly reactive by-product is reacted with lithium metal in advance, and then the reaction product is separated.

【0029】この金属リチウムによる処理は、クロロシ
クロホスファゼンとナトリウムアルコキシドとの反応後
の溶液中に、例えば箔状の金属リチウムを浸漬させる等
の簡便な方法によって行うことができる。そして、金属
リチウムとの反応後、例えばn−ヘキサン等を添加する
ことにより、反応後の副生成物を沈殿させて濾別するこ
とで、PN中の副生成物の含有量を著しく低減させるこ
とができる。その結果、この方法により製造したPNを
含有する混合溶媒を用いたリチウム二次電池は、その充
放電特性がより改善されることになる。
This treatment with metallic lithium can be carried out by a simple method such as immersing metallic lithium in the form of a foil in the solution after the reaction between chlorocyclophosphazene and sodium alkoxide. After the reaction with metallic lithium, by adding, for example, n-hexane or the like, the by-products after the reaction are precipitated and separated by filtration, thereby significantly reducing the content of by-products in PN. Can be. As a result, the lithium secondary battery using the PN-containing mixed solvent produced by this method has more improved charge / discharge characteristics.

【0030】上記副生成物の低減の程度は、赤外吸収ス
ペクトル法によって確認することができる。この方法に
よれば、PN結合に由来する光吸収のピークが750c
-1付近に現れ、また、LiO結合に由来する光吸収の
ピークが595cm-1付近に現れる。したがって、これ
らのピークの光吸収率を比較することで、副生成物の存
在程度を確認できる。
The degree of reduction of the by-products can be confirmed by infrared absorption spectroscopy. According to this method, the peak of light absorption derived from the PN bond is 750 c
It appears near m −1 , and a peak of light absorption derived from LiO bond appears near 595 cm −1 . Therefore, by comparing the light absorptances of these peaks, it is possible to confirm the existence degree of the by-product.

【0031】より優秀な充放電特性を有するリチウム二
次電池とするためには、赤外吸収スペクトルにおいて、
750cm-1付近に現れるピークの光吸収率に対する5
95cm-1付近に現れるピークの光吸収率の比が0.3
以下であるPNを用いることが望ましい。この比が0.
3を超えるものは、副生成物が比較的多く存在し、不可
逆容量を小さくする効果が小さいからである。
In order to obtain a lithium secondary battery having more excellent charge / discharge characteristics, an infrared absorption spectrum
5 for the optical absorptance of the peak appearing around 750 cm -1
The ratio of the light absorptivity of the peak appearing around 95 cm -1 is 0.3
It is desirable to use the following PN. This ratio is 0.
If it exceeds 3, the by-products are present in a relatively large amount and the effect of reducing the irreversible capacity is small.

【0032】3)環状カーボネート 環状カーボネートは、本混合溶媒中において、主に、高
誘電率溶媒として機能する。用いることのできる環状カ
ーボネートは特に限定するものではないが、エチレンカ
ーボネート(以下「EC」と略す)を用いることが望ま
しい。これは、黒鉛負極を用いた場合、他の環状カーボ
ネートと比べて負極表面での反応が最も小さいという理
由からである。
3) Cyclic carbonate The cyclic carbonate mainly functions as a high dielectric constant solvent in the present mixed solvent. The cyclic carbonate that can be used is not particularly limited, but it is desirable to use ethylene carbonate (hereinafter abbreviated as “EC”). This is because, when a graphite negative electrode is used, the reaction on the negative electrode surface is the smallest as compared with other cyclic carbonates.

【0033】場合によっては、ECにプロピレンカーボ
ネート(PC)、トリフルオロメチルプロピレンカーボ
ネート等を混合するものであってもよい。ただし、PC
や他の環状カーボネートであるブチレンカーボネート等
を単独で用いる場合は、若干不可逆容量を大きくしてし
まう。
In some cases, EC may be mixed with propylene carbonate (PC), trifluoromethyl propylene carbonate, or the like. However, PC
When butyl carbonate or other cyclic carbonate such as butylene carbonate is used alone, the irreversible capacity is slightly increased.

【0034】なお、混合溶媒中の環状カーボネートの混
合割合は、上記DMCを15〜40体積%とし、上記P
Nを25〜40体積%とし、その残部に相当する割合と
すればよい。
The mixing ratio of the cyclic carbonate in the mixed solvent is such that the DMC is 15 to 40% by volume,
N may be 25 to 40% by volume, and may be a ratio corresponding to the balance.

【0035】〈他の構成要素〉本発明のリチウム二次電
池は、上述した有機電解液の有機溶媒を除く構成要素を
特に限定するものでなく、一般に公知となっている構成
要素を組み合わせて構成すればよい。一般のリチウム二
次電池は、リチウム遷移金属複合酸化物を正極活物質と
した正極と、リチウムイオンを挿入・離脱可能な炭素材
料を負極活物質とした負極と、リチウム塩を有機溶媒に
溶解させた有機電解液とを、主要構成要素として備え、
本発明のリチウム二次電池もそれに従えばよい。以下に
それぞれの構成要素について例示する。
<Other components> The lithium secondary battery of the present invention is not particularly limited to components other than the organic solvent of the above-mentioned organic electrolyte, and is constituted by combining generally known components. do it. A general lithium secondary battery has a positive electrode using a lithium transition metal composite oxide as a positive electrode active material, a negative electrode using a carbon material capable of inserting and removing lithium ions as a negative electrode active material, and a lithium salt dissolved in an organic solvent. Organic electrolyte solution as a main component,
The lithium secondary battery of the present invention may follow this. Hereinafter, each component will be exemplified.

【0036】1)リチウム塩 有機電解液中に溶解しているリチウム塩は、電解質とし
て機能する。用いることのできるリチウム塩は、特に限
定するものではなく、例えば、LiBF4、LiPF6
LiClO4、LiCF3SO3、LiAsF6、LiN
(CF3SO22、LiN(C25SO22等を挙げる
ことができる。これらのリチウム塩は、それぞれ単独で
用いてもよく、また、これらのもののうち2種以上のも
のを複合して用いることもできる。
1) Lithium salt The lithium salt dissolved in the organic electrolyte functions as an electrolyte. The lithium salt that can be used is not particularly limited, and for example, LiBF 4 , LiPF 6 ,
LiClO 4 , LiCF 3 SO 3 , LiAsF 6 , LiN
(CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 . Each of these lithium salts may be used alone, or two or more of these lithium salts may be used in combination.

【0037】2)正極 正極は、リチウム遷移金属複合酸化物からなる正極活物
質に導電材および結着剤を混合し、適当な溶剤を加えて
ペースト状の正極合材としたものを、アルミニウム等の
金属箔製の集電体表面に塗布乾燥し、必要に応じて電極
密度を高めるべく圧縮して形成することができる。
2) Positive electrode The positive electrode is obtained by mixing a conductive material and a binder with a positive electrode active material composed of a lithium transition metal composite oxide, adding an appropriate solvent, and forming a paste-like positive electrode mixture into aluminum or the like. It can be formed by coating and drying on the surface of the current collector made of metal foil, and compressing it as necessary to increase the electrode density.

【0038】正極活物質には、4V級の電池が構成でき
るものとして、層状岩塩構造LiCoO2、層状岩塩構
造LiNiO2、スピネル構造LiMn24等を用いる
ことができる。この中でもスピネル構造LiMn2
4は、原料コストが安く、大量の活物質を使用しなけれ
ばならない電気自動車用電源として用いる二次電池の場
合、有利なものとなる。また、LiMn24は、充放電
に伴うMnの溶出といった現象から、サイクル特性に劣
るものとなるため、上記有機溶媒から構成される有機電
解液を含む本発明のリチウム二次電池では、LiMn2
4を正極活物質としたものの場合に、充放電特性の改
善という効果が大きい。
As the positive electrode active material, a layered rock salt structure LiCoO 2 , a layered rock salt structure LiNiO 2 , a spinel structure LiMn 2 O 4, or the like can be used as a material that can constitute a 4V-class battery. Among them, spinel structure LiMn 2 O
4 is advantageous in the case of a secondary battery used as a power source for an electric vehicle that requires a large amount of active material because of a low raw material cost. Further, LiMn 2 O 4 is inferior in cycle characteristics due to a phenomenon such as elution of Mn due to charge and discharge. Therefore, in the lithium secondary battery of the present invention including the organic electrolyte solution composed of the organic solvent, LiMn 2 O 4 is used. Two
When O 4 is used as the positive electrode active material, the effect of improving the charge / discharge characteristics is great.

【0039】なお、スピネル構造LiMn24を用いる
場合、化学量論的組成のものに限られず、結晶構造を安
定化させるために、Mnサイトの一部をLiで置換させ
たLi1+xMn2-x4、他金属Mで置換させたLiMn
2-xx4、Liおよび他金属Mで置換させたLi1+x
2-x-yy4等の組成のものを用いることもできる。
また、これらのものを混合して用いることもでき、他の
リチウム遷移金属複合酸化物と混合して用いることもで
きる。
When the spinel structure LiMn 2 O 4 is used, the composition is not limited to the stoichiometric composition, and in order to stabilize the crystal structure, Li 1 + x in which a part of the Mn site is replaced with Li. Mn 2-x O 4 , LiMn substituted with another metal M
Li 1 + x M substituted with 2-x M x O 4 , Li and another metal M
n 2-xy M y O 4 composition such as those can also be used.
Further, these can be used as a mixture, or can be used as a mixture with another lithium transition metal composite oxide.

【0040】導電材は、正極の電気伝導性を確保するた
めのものであり、例えば、カーボンブラック、アセチレ
ンブラック、黒鉛等の炭素物質粉状体の1種または2種
以上を混合したものを用いることができる。結着剤は、
活物質粒子を繋ぎ止める役割を果たすもので、例えば、
ポリテトラフルオロエチレン、ポリフッ化ビニリデン、
フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエ
チレン等の熱可塑性樹脂を用いることができる。これら
活物質、導電材、結着剤を分散させる溶剤としては、N
−メチル−2−ピロリドン等の有機溶剤を用いることが
できる。
The conductive material is for ensuring the electrical conductivity of the positive electrode. For example, one or a mixture of two or more kinds of powdered carbon materials such as carbon black, acetylene black and graphite is used. be able to. The binder is
It plays the role of anchoring active material particles, for example,
Polytetrafluoroethylene, polyvinylidene fluoride,
Fluorine-containing resins such as fluorine rubber and thermoplastic resins such as polypropylene and polyethylene can be used. As a solvent for dispersing these active material, conductive material and binder, N
Organic solvents such as -methyl-2-pyrrolidone can be used.

【0041】3)負極 負極は、リチウムイオンを挿入・離脱可能な炭素材料か
らなる負極活物質に結着剤を混合し、適当な溶剤を加え
てペースト状にした負極合材を、銅等の金属箔集電体の
表面に塗布乾燥し、必要に応じて電極密度を高めるべく
圧縮して形成することができる。
3) Negative Electrode The negative electrode is prepared by mixing a binder with a negative electrode active material made of a carbon material into which lithium ions can be inserted and withdrawn and adding an appropriate solvent to form a paste into a paste. It can be formed by coating and drying on the surface of the metal foil current collector and, if necessary, compressing it to increase the electrode density.

【0042】負極活物質としては、例えば、天然黒鉛、
人造黒鉛等の黒鉛質材料、フェノール樹脂等の有機化合
物焼成体、コークス等の易黒鉛化性炭素材料、難黒鉛化
性非晶質炭素材料等の炭素物質の粉状体を用いることが
できる。それぞれの炭素材料にはそれぞれの異なる特性
があり、作製しようとする電池の特性に応じた炭素材料
を選択すればよい。炭素材料は1種のものを単独で用い
ることができ、また、2種以上のものを混合して用いる
いこともできる。
Examples of the negative electrode active material include natural graphite,
Carbonaceous materials such as graphite materials such as artificial graphite, fired organic compounds such as phenolic resin, easily graphitizable carbon materials such as coke, and non-graphitizable amorphous carbon materials can be used. Each carbon material has different characteristics, and the carbon material may be selected according to the characteristics of the battery to be manufactured. One type of carbon material can be used alone, or two or more types can be used in combination.

【0043】負極結着剤としては、正極同様、ポリフッ
化ビニリデン等の含フッ素樹脂等を、これら活物質およ
び結着剤を分散させる溶剤としてはN−メチル−2−ピ
ロリドン等の有機溶剤を用いることができる。
As in the case of the positive electrode, a fluorine-containing resin such as polyvinylidene fluoride is used as a negative electrode binder, and an organic solvent such as N-methyl-2-pyrrolidone is used as a solvent in which these active materials and the binder are dispersed. be able to.

【0044】4)その他 上記の主要構成要素から構成される本発明のリチウム二
次電池であるが、その形状は円筒型、積層型、コイン型
等、種々のものとすることができる。いずれの形状を採
る場合であっても、正極および負極にポリエチレン、ポ
リプロピレン等の薄い微多孔膜のセパレータを挟装させ
電極体とし、正極集電体および負極集電体から外部に通
ずる正極端子および負極端子までの間を集電用リード等
を用いて接続し、この電極体に上記有機電解液を含浸さ
せ、電池ケースに密閉して電池を完成させることができ
る。
4) Others The lithium secondary battery of the present invention composed of the above-mentioned main components can be of various shapes such as a cylindrical type, a laminated type, a coin type and the like. In any case, the positive electrode and the negative electrode are sandwiched between a separator of a thin microporous film such as polyethylene and polypropylene between the positive electrode and the negative electrode to form an electrode body. A connection to the negative electrode terminal is made using a current collecting lead or the like, the electrode body is impregnated with the organic electrolyte, and the battery case is sealed to complete the battery.

【0045】[0045]

【実施例】上記実施形態に基づく有機溶媒とそれを用い
た本発明のリチウム二次電池を作製し、さらにこれと比
較すべく上述した有機溶媒と異なる有機溶媒とそれを用
いた二次電池を作製し、それらに対し難燃性試験および
充放電試験を行い、上記実施形態に基づく有機溶媒とそ
れを用いた本発明の二次電池の優秀性を確認した。以下
に、これらを実施例として掲げる。
EXAMPLE An organic solvent based on the above-described embodiment and a lithium secondary battery of the present invention using the same were prepared, and for comparison with this, an organic solvent different from the above-described organic solvent and a secondary battery using the same were used. They were fabricated and subjected to a flame retardancy test and a charge / discharge test to confirm the superiority of the organic solvent based on the above embodiment and the secondary battery of the present invention using the same. These are described below as examples.

【0046】〈実施例A〉混合比および混合する有機溶
媒の種類を変えた混合溶媒を種々作製し、混合比または
混合する有機溶媒の種類による特性を評価するための試
験である。
<Example A> This is a test for preparing various kinds of mixed solvents having different mixing ratios and kinds of organic solvents to be mixed, and evaluating characteristics depending on the mixing ratio or the kind of organic solvents to be mixed.

【0047】1)調製した混合有機溶媒および有機電解
液 アルコキシシクロホスファゼン(PN)としてヘキサエ
トキシトリシクロホスファゼン(以下「HETCPN」
と略す)を用いるべく、以下の方法にて合成した。ま
ず、ヘキサクロロトリシクルホスファゼン(アルドリッ
チ製)19gを50mlのテトラヒドロフラン(TH
F)(和光純薬製)に溶解させた。この溶液を、ナトリ
ウムエトキシド(和光純薬製)25gをTHF200m
lに懸濁させた懸濁液に、90℃にて、THFを還流さ
せた状態に素早く滴下して反応させた。反応終了後、T
HFを蒸発させ、その後イオン交換蒸留水500mlを
加えた。1日放置後、油層と水層とに分離するので、油
層のみを抽出した。抽出した溶液に金属リチウムを加え
て、溶液中に存在する副生成物と反応させた。なお、金
属リチウムは、反応しなくなるまで加え続けた。その
後、n−ヘキサン(和光純薬製)で洗浄し反応物を取り
除いた。
1) Prepared mixed organic solvent and organic electrolyte Hexaethoxytricyclophosphazene (hereinafter referred to as "HETCPN") as alkoxycyclophosphazene (PN)
(Hereinafter abbreviated as)) was synthesized by the following method. First, 19 g of hexachlorotricicle phosphazene (manufactured by Aldrich) was added to 50 ml of tetrahydrofuran (TH
F) (manufactured by Wako Pure Chemical Industries). This solution was treated with 25 g of sodium ethoxide (manufactured by Wako Pure Chemical Industries) in 200 m of THF.
The mixture was reacted at 90 ° C. by rapidly dropping THF under reflux at 90 ° C. After the reaction, T
The HF was evaporated, after which 500 ml of ion exchange distilled water was added. After one day, the oil layer was separated into an oil layer and an aqueous layer. Therefore, only the oil layer was extracted. Lithium metal was added to the extracted solution to react with by-products present in the solution. The addition of lithium metal was continued until the reaction stopped. Thereafter, the reaction product was removed by washing with n-hexane (manufactured by Wako Pure Chemical Industries, Ltd.).

【0048】このような方法によって合成されたHET
CPNの赤外吸収スペクトルを図1に示す。図に示すよ
うに、PN結合に由来する光吸収のピークが750cm
-1付近に現れ、また、LiO結合に由来する光吸収のピ
ークが595cm-1付近に現れている。本HETCPN
においては、750cm-1付近に現れるピークの光吸収
率に対する595cm-1付近に現れるピークの光吸収率
の比が0.09であり、副生成物が少ないものであるこ
とが確認できた。
HET synthesized by such a method
FIG. 1 shows the infrared absorption spectrum of CPN. As shown in the figure, the peak of light absorption derived from the PN bond is 750 cm.
-1 and a light absorption peak derived from the LiO bond appears near 595 cm -1 . This HETCPN
In is the ratio of light absorption rate is 0.09 of the peak appearing in the vicinity of 595 cm -1 with respect to light absorption peak appearing in the vicinity of 750 cm -1, it is intended by-product is small can be confirmed.

【0049】上記HETCPNと、エチレンカーボネー
ト(EC)(富山薬品工業製)、ジメチルカーボネート
(DMC)(富山薬品工業製)を、種々の混合比で混合
させて混合溶媒を調製した。それぞれの有機溶媒の混合
比(DMC:HETCPN:EC)が、体積比におい
て、34:33:33のものを実施例A1の混合溶媒と
し、27:40:33のものを実施例A2の混合溶媒と
した。
The above HETCPN, ethylene carbonate (EC) (manufactured by Toyama Pharmaceutical Co., Ltd.), and dimethyl carbonate (DMC) (manufactured by Toyama Pharmaceutical Co., Ltd.) were mixed at various mixing ratios to prepare a mixed solvent. The mixing ratio (DMC: HETCPN: EC) of the respective organic solvents is 34:33:33 in the volume ratio as the mixed solvent of Example A1 and 27:40:33 in the volume ratio is the mixed solvent of Example A2. And

【0050】また、混合比が上記実施形態から外れる混
合溶媒をも作製した。混合比が67:0:33のもの
(HETCPNが混合されていないもの)を比較例A1
の混合溶媒と、47:20:33のものを比較例A2の
混合溶媒と、7:60:33のものを比較例A3の混合
溶媒とし、ECが混合されていない75:25:0のも
のおよび50:50:0のものをそれぞれ比較例A4お
よび比較例A5の混合溶媒とした。さらに、鎖状カーボ
ネートとしてDMCの代わりにジエチルカーボネート
(DEC)またはエチルメチルカーボネートを用い、混
合比(DECorEMC:HETCPN:EC)が3
4:33:33のものを調製し、それぞれを比較例A6
および比較例A7の混合溶媒とした。
Further, a mixed solvent having a mixing ratio out of the above embodiment was also prepared. A sample having a mixing ratio of 67: 0: 33 (a sample not mixed with HETCPN) was prepared as Comparative Example A1.
, A mixed solvent of 47:20:33 was used as a mixed solvent of Comparative Example A2, and a mixed solvent of 7:60:33 was used as a mixed solvent of Comparative Example A3, and a mixed solvent of 75: 25: 0 without EC was mixed. And 50: 50: 0 were used as mixed solvents of Comparative Example A4 and Comparative Example A5, respectively. Further, diethyl carbonate (DEC) or ethyl methyl carbonate is used instead of DMC as the chain carbonate, and the mixing ratio (DECorEMC: HETCPN: EC) is 3
4:33:33 were prepared, and each was prepared as Comparative Example A6
And a mixed solvent of Comparative Example A7.

【0051】次いで、それぞれの混合溶媒に、LiPF
6(富山薬品工業製)を濃度1Mで溶解させ、有機電解
液を調製した。実施例A1の混合溶媒を用いた有機電解
液を実施例A1の有機電解液とし、同様に、それぞれ実
施例A2、比較例A1〜A7の有機電解液とした。
Next, LiPF was added to each mixed solvent.
6 (manufactured by Toyama Pharmaceutical Co., Ltd.) was dissolved at a concentration of 1 M to prepare an organic electrolyte solution. The organic electrolyte using the mixed solvent of Example A1 was used as the organic electrolyte of Example A1, and similarly, the organic electrolyte of Example A2 and Comparative Examples A1 to A7, respectively.

【0052】2)難燃性試験 厚さ25μmのポリエチレンセパレータを幅7mm、長
さ120mmの短冊状に裁断し、この裁断したセパレー
タに上記実施例Aおよび比較例Aのそれぞれの有機電解
液を含浸させ、含浸させたものを、その上端をピンセッ
トでつまんで大気中にぶら下げ、下端にマッチの火を近
づけることにより、着火の有無および着火した場合のセ
パレータの燃焼状況を調べた。
2) Flame retardancy test A polyethylene separator having a thickness of 25 μm was cut into strips having a width of 7 mm and a length of 120 mm, and the cut separators were impregnated with the respective organic electrolytes of Example A and Comparative Example A. The impregnated material was pinched with tweezers at the upper end, hung in the atmosphere, and the lower end of the match was brought close to the match to examine the presence / absence of ignition and the combustion state of the separator in the event of ignition.

【0053】判断評価の基準として、着火しなかった場
合を○、着火したがセパレータのほとんど焼け残った場
合を△、着火してセパレータの大半が焼け落ちた場合を
×とした。
As criteria for judgment evaluation, 場合 indicates that no ignition occurred, Δ indicates that ignition occurred but the separator was almost burnt, and X indicates that the ignition caused most of the separator to burn off.

【0054】3)作製したリチウム二次電池 上記それぞれの有機電解液を用いてリチウム二次電池を
作製した。
3) Lithium Secondary Battery Produced A lithium secondary battery was produced using each of the above-mentioned organic electrolytes.

【0055】正極は、Mnサイトの一部をLiで置換し
た組成式Li1.1Mn1.94で表されるスピネル構造の
リチウムマンガン複合酸化物(本荘ケミカル製)を正極
活物質として用いた。このリチウムマンガン複合酸化物
87重量部に、導電材として人造黒鉛(ロンザ製:KS
6)9重量部と結着剤としてポリフッ化ビニリデン(P
VDF)(呉羽化学製)4重量部を混合し、適量のN−
メチル−2−ピロリドン(NMP)を添加してペースト
状の正極合材を調製した。この正極合材を、アルミ箔上
に塗工して加圧し、その後乾燥して、直径15mmφの
円盤状に打ち抜き、正極合材の厚さが53μmの正極を
得た。
As the positive electrode, a lithium manganese composite oxide having a spinel structure (manufactured by Honjo Chemical) represented by a composition formula Li 1.1 Mn 1.9 O 4 in which a part of the Mn site was replaced with Li was used as a positive electrode active material. 87 parts by weight of the lithium manganese composite oxide were mixed with artificial graphite (manufactured by Lonza: KS) as a conductive material.
6) 9 parts by weight of polyvinylidene fluoride (P
VDF) (Kureha Chemical Co., Ltd.), mix 4 parts by weight, and add an appropriate amount of N-
Methyl-2-pyrrolidone (NMP) was added to prepare a paste-like positive electrode mixture. This positive electrode mixture was applied on an aluminum foil, pressed, dried, and then punched into a disk having a diameter of 15 mm to obtain a positive electrode having a thickness of 53 μm.

【0056】負極は、人造黒鉛(大阪ガスケミカル製:
PCG)を負極活物質として用いた。この人造黒鉛95
重量部に、結着剤としてPVDF5重量部を混合し、正
極同様、適量のNMPを添加してペースト状の負極合材
を調製した。この負極合材を、銅箔上に塗工して加圧
し、その後乾燥して、直径17mmφの円盤状に打ち抜
き、負極合材の厚さが40μmの負極を得た。
The negative electrode was made of artificial graphite (manufactured by Osaka Gas Chemical:
PCG) was used as the negative electrode active material. This artificial graphite 95
5 parts by weight of PVDF as a binder were mixed with the parts by weight, and an appropriate amount of NMP was added similarly to the positive electrode to prepare a paste-like negative electrode mixture. This negative electrode mixture was applied onto a copper foil, pressed, and then dried and punched into a disk having a diameter of 17 mm to obtain a negative electrode having a thickness of 40 μm.

【0057】上記正極および負極を、上記難燃性試験で
用いたのと同じポリエチレン製のセパレータを介して対
向させ、上記実施例Aおよび比較例Aのそれぞれの有機
電解液を含浸させ、その後コイン型電池ケースに収納す
ることにより、電池容量約2mAhのコイン型リチウム
二次電池を作製した。実施例A1の有機電解液を用いた
二次電池を実施例A1のリチウム二次電池とし、同様
に、それぞれ実施例A2、比較例A1〜A7のリチウム
二次電池とした。
The positive electrode and the negative electrode were opposed to each other via the same polyethylene separator used in the above-described flame retardancy test, and impregnated with the organic electrolyte of each of Example A and Comparative Example A. A coin-type lithium secondary battery having a battery capacity of about 2 mAh was manufactured by storing the battery in a battery case. The secondary battery using the organic electrolyte of Example A1 was used as the lithium secondary battery of Example A1, and similarly, the secondary batteries of Example A2 and Comparative Examples A1 to A7 were used.

【0058】4)充放電サイクル試験 上記実施例Aおよび比較例Aのそれぞれの二次電池に対
して、充放電サイクル試験を行った。試験の条件は、2
5℃の温度下、電流密度1.0mA/cm2の定電流で
上限電圧4.2Vまで充電し4.2Vに達した後は定電
圧で充電時間の合計が4時間となるような定電流定電圧
充電の後、10分休止させ、次いで電流密度0.5mA
/cm2の定電流で下限電圧3.0Vまで放電させる定
電流放電を行うものを1サイクルとし、このサイクルを
繰り返し行うものとした。
4) Charge / discharge cycle test A charge / discharge cycle test was performed on each of the secondary batteries of Example A and Comparative Example A. The test conditions are 2
At a temperature of 5 ° C., a constant current with a current density of 1.0 mA / cm 2 was charged to an upper limit voltage of 4.2 V, and after reaching 4.2 V, a constant current at a constant voltage of a total charging time of 4 hours. After constant voltage charging, pause for 10 minutes, then current density 0.5 mA
A cycle in which constant current discharge at a constant current of / cm 2 to a lower limit voltage of 3.0 V is defined as one cycle, and this cycle is repeated.

【0059】5)評価 上記難燃性試験および充放電サイクル試験の結果とし
て、実施例Aおよび比較例Aそれぞれの有機電解液の難
燃性評価と、実施例Aおよび比較例Aのそれぞれのリチ
ウム二次電池の正極活物質単位重量当たりの不可逆容量
(1サイクル目の充電容量−1サイクル目の放電容量)
とを、下記表1に示す。
5) Evaluation As a result of the flame retardancy test and the charge / discharge cycle test, the evaluation of the flame retardancy of the organic electrolyte of each of Example A and Comparative Example A and the evaluation of the lithium of each of Example A and Comparative Example A were carried out. Irreversible capacity per unit weight of positive electrode active material of secondary battery (charge capacity at 1st cycle-discharge capacity at 1st cycle)
Are shown in Table 1 below.

【0060】[0060]

【表1】 [Table 1]

【0061】上記表1から明らかなように、鎖状カーボ
ネートにDECあるいはEMCを用いた比較例A6、A
7の有機電解液は、いずれも難燃性に劣り、鎖状カーボ
ネートをDMCとする必要があることが判る。また、鎖
状カーボネートにDMCを用いた場合であっても、その
混合割合が多い比較例A1、A2、A4,A5の有機電
解液はいずれも難燃性に劣る。また、難燃性を改善すべ
く混合させたHETCPNの混合割合が多くなるにつれ
て、リチウム二次電池の不可逆容量は大きくなり充放電
特性に劣ることが判る。これに対して、実施例A1、A
2の電解液は難燃性に優れ、実施例A1、A2のリチウ
ム二次電池は充放電特性に優れることが判る。
As is clear from Table 1, Comparative Examples A6 and A6 using DEC or EMC as the chain carbonate
It can be seen that all of the organic electrolytes of No. 7 are inferior in flame retardancy, and it is necessary to use chain carbonate as DMC. Further, even when DMC is used as the chain carbonate, all of the organic electrolytes of Comparative Examples A1, A2, A4 and A5 having a large mixing ratio are inferior in flame retardancy. Further, it can be seen that as the mixing ratio of HETCPN mixed to improve the flame retardancy increases, the irreversible capacity of the lithium secondary battery increases and the charge / discharge characteristics deteriorate. In contrast, Examples A1 and A
It can be seen that the electrolyte solution No. 2 has excellent flame retardancy, and the lithium secondary batteries of Examples A1 and A2 have excellent charge / discharge characteristics.

【0062】上記結果を総合すれば、15〜40体積%
のDMCと、25〜40体積%のPNと、残部としての
環状カーボネートからなる有機溶媒を用いた本発明のリ
チウム二次電池が、難燃性および充放電特性のいずれに
ついても良好なものであることが確認できる。
When the above results are combined, 15 to 40% by volume
The lithium secondary battery of the present invention using an organic solvent comprising DMC, 25 to 40% by volume of PN, and the balance of cyclic carbonate has good both flame retardancy and charge / discharge characteristics. Can be confirmed.

【0063】〈実施例B〉混合有機溶媒を構成するHE
TCPNに含まれる反応性に富む副生成物の存在量の違
いに対する、リチウム二次電池の不可逆容量の違いを明
らかにするために行った試験である。
Example B HE Constituting Mixed Organic Solvent
This is a test conducted to clarify the difference in the irreversible capacity of the lithium secondary battery with respect to the difference in the amount of reactive by-products contained in TCPN.

【0064】1)調製した有機電解液と作製したリチウ
ム二次電池 上記実施例AのHETCPNの合成において、金属リチ
ウムでの処理程度を変更させて、赤外吸収スペクトルに
おける750cm-1付近に現れるピークの光吸収率に対
する595cm-1付近に現れるピークの光吸収率の比が
0.09〜0.68の範囲にある数種類のHETCPN
合成した。金属リチウムによる処理を途中で停止するこ
とによりその処理程度を変更させるものであり、処理の
時間が短い程、赤外吸収スペクトルにおける上記光吸収
率の比は大きくなる。
1) Preparation of Organic Electrolyte Solution and Lithium Secondary Battery Produced In the synthesis of HETCPN of Example A, the degree of treatment with metallic lithium was changed so that a peak appeared near 750 cm -1 in the infrared absorption spectrum. Several types of HETCPN having a ratio of the light absorption of a peak appearing around 595 cm -1 to the light absorption of
Synthesized. The degree of the treatment is changed by stopping the treatment with metallic lithium on the way. The shorter the treatment time, the greater the ratio of the light absorption ratio in the infrared absorption spectrum.

【0065】それぞれのHETCPNを用い、上記実施
例A1の有機電解液と同様、DMC、HETCPN、E
Cが、体積比において、34:33:33となるように
混合させた混合溶媒にLiPF6を濃度1Mで溶解さ
せ、数種類の有機電解液を調製した。そしてこれらの有
機電解液を用い、実施例Aの場合と同様の構成の数種類
のリチウム二次電池を作製した。
Using each HETCPN, DMC, HETCPN, E were used in the same manner as in the organic electrolyte of Example A1.
LiPF 6 was dissolved at a concentration of 1 M in a mixed solvent in which C was mixed at a volume ratio of 34:33:33 to prepare several types of organic electrolytes. Using these organic electrolytes, several types of lithium secondary batteries having the same configuration as in Example A were produced.

【0066】2)充放電サイクル試験と不可逆容量につ
いての評価 それぞれの上記リチウム二次電池に対して、実施例Aの
場合に行ったのと同条件の充放電サイクル試験を行っ
た。この試験の結果として、上記光吸収率の比と、リチ
ウム二次電池の正極活物質単位重量当たりの不可逆容量
との関係を、図2に示す。
2) Charge / discharge cycle test and evaluation of irreversible capacity Each of the above lithium secondary batteries was subjected to a charge / discharge cycle test under the same conditions as in the case of Example A. As a result of this test, FIG. 2 shows the relationship between the ratio of the light absorptivity and the irreversible capacity per unit weight of the positive electrode active material of the lithium secondary battery.

【0067】図2から明らかなように、光吸収率の比が
大きくなるにつれて、つまり、副生成物の含有量が多く
なるにつれて、不可逆容量も大きくなることが判る。ま
た、光吸収率の比が0.3を超えるあたりから急激に不
可逆容量が大きくなることも判る。この結果から、本発
明のリチウム二次電池では、混合させるPNは、赤外吸
収スペクトルにおいて、750cm-1付近に現れるピー
クの光吸収率に対する595cm-1付近に現れるピーク
の光吸収率の比が0.3以下のものとするのが望ましい
ことが確認できる。
As is apparent from FIG. 2, the irreversible capacity increases as the ratio of light absorptivity increases, that is, as the content of by-products increases. It can also be seen that the irreversible capacity rapidly increases from around the ratio of the light absorptivity of more than 0.3. From these results, in the lithium secondary battery of the present invention, the ratio of the light absorption of the peak appearing at around 595 cm −1 to the light absorption of the peak appearing at around 750 cm −1 in the infrared absorption spectrum was PN. It can be confirmed that it is desirable to set it to 0.3 or less.

【0068】〈実施例C〉難燃性を改善すべく混合させ
る有機溶媒の種類を変更させた種々の有機電解液を調製
し、それぞれの有機電解液の難燃性を調査するととも
に、それぞれの有機電解液を用いて種々の円筒型リチウ
ム二次電池を作製し、それぞれのリチウム二次電池の充
放電特性を調査するために行った試験である。
<Example C> Various organic electrolytes were prepared by changing the type of organic solvent to be mixed to improve the flame retardancy, and the flame retardancy of each organic electrolyte was investigated. This is a test in which various cylindrical lithium secondary batteries were manufactured using an organic electrolyte, and charge / discharge characteristics of each lithium secondary battery were investigated.

【0069】1)調製した有機電解液と作製したリチウ
ム二次電池 難燃性を改善すべく添加する有機溶媒(以下「難燃性溶
媒」と略す)として、実施例Aにおいて調製したHET
CPNと、プロピレンカーボネート(PC)と、リン酸
トリメチル(TMP)と、ブタンスルトン(BuS)
と、ブロモブチロラクトン(BrGBL)とをそれぞれ
用いて混合溶媒を調製した。混合溶媒は、これらそれぞ
れの難燃性溶媒と、ECと、DMCとを、混合比(DM
C:難燃性溶媒:EC)が、体積比において、34:3
3:33となるように調製した。
1) The prepared organic electrolytic solution and the prepared lithium secondary battery As an organic solvent added to improve the flame retardancy (hereinafter abbreviated as “flame retardant solvent”), the HET prepared in Example A was used.
CPN, propylene carbonate (PC), trimethyl phosphate (TMP), and butane sultone (BuS)
And bromobutyrolactone (BrGBL) to prepare mixed solvents. The mixed solvent is a mixture of these respective flame-retardant solvents, EC and DMC in a mixing ratio (DM
C: flame-retardant solvent: EC) is 34: 3 in volume ratio.
It was prepared to be 3:33.

【0070】それぞれの混合溶媒に、LiPF6を濃度
1Mで溶解させ、有機電解液を調製した。難燃性溶媒と
してHETCPNを用いた有機電解液を実施例C1の有
機電解液とし、同様にそれぞれ、PCを用いたものを比
較例C1、TMPを用いたものを比較例C2、BuSを
用いたものを比較例C3、BrGBLを用いたものを比
較例C4の有機電解液とした。そして、これらの有機電
解液を用いたリチウム二次電池は、以下の構成の二次電
池を作製した。
In each of the mixed solvents, LiPF 6 was dissolved at a concentration of 1 M to prepare an organic electrolyte. The organic electrolytic solution using HETCPN as the flame retardant solvent was used as the organic electrolytic solution of Example C1, and similarly, Comparative Example C1 using PC, Comparative Example C2 using TMP, and BuS were used, respectively. The organic electrolyte solution of Comparative Example C3 and the organic electrolyte solution of Comparative Example C4 using BrGBL were used. And the lithium secondary battery using these organic electrolytes produced the secondary battery of the following structures.

【0071】正極は、Mnサイトの一部をLiおよびN
iで置換した組成式Li1.1Ni0.1Mn1.84で表され
るスピネル構造のリチウムマンガン複合酸化物であっ
て、炭酸リチウムと四酸化三マンガンと硝酸ニッケルと
を所定割合で混合し、900℃の温度で焼成することに
よって合成したリチウムマンガン複合酸化物を、正極活
物質として用いた。このリチウムマンガン複合酸化物8
6重量部に、導電材として人造黒鉛10重量部と結着剤
としてPVDF4重量部を混合し、適量のNMPを添加
してペースト状の正極合材を調製した。この正極合材
を、厚さ20μmのアルミ箔上に塗工し、その後プレス
乾燥して、厚さが130μmのシート状の正極を得た。
In the positive electrode, a part of the Mn site is converted to Li and N
a lithium manganese composite oxide having a spinel structure represented by a composition formula Li 1.1 Ni 0.1 Mn 1.8 O 4 substituted with i, wherein lithium carbonate, trimanganese tetroxide, and nickel nitrate are mixed at a predetermined ratio, and 900 ° C. The lithium manganese composite oxide synthesized by firing at a temperature of was used as a positive electrode active material. This lithium manganese composite oxide 8
To 6 parts by weight, 10 parts by weight of artificial graphite as a conductive material and 4 parts by weight of PVDF as a binder were mixed, and an appropriate amount of NMP was added to prepare a paste-like positive electrode mixture. This positive electrode mixture was applied on an aluminum foil having a thickness of 20 μm and then press-dried to obtain a sheet-shaped positive electrode having a thickness of 130 μm.

【0072】負極は、黒鉛化メソフェーズ小球体(MC
MB)(大阪ガスケミカル製:MCMB25−28)を
負極活物質として用いた。このMCMB94重量部に、
結着剤としてPVDF6重量部を混合し、正極同様、適
量のNMPを添加してペースト状の負極合材を調製し
た。この負極合材を、厚さ15μmの銅箔上に塗工し、
その後プレス乾燥して、厚さが82μmのシート状の負
極を得た。
The negative electrode was made of graphitized mesophase microspheres (MC
MB) (manufactured by Osaka Gas Chemicals: MCMB25-28) was used as the negative electrode active material. To 94 parts by weight of MCMB,
6 parts by weight of PVDF was mixed as a binder, and an appropriate amount of NMP was added similarly to the positive electrode to prepare a paste-like negative electrode mixture. This negative electrode mixture is applied on a copper foil having a thickness of 15 μm,
Thereafter, press drying was performed to obtain a sheet-shaped negative electrode having a thickness of 82 μm.

【0073】上記シート状の正極および負極を、実施例
Aの場合の難燃性試験で用いたのと同じポリエチレン製
のセパレータを介して捲回し、円筒形状の電極体を形成
した。この電極体を18650型電池ケースに挿設し、
上記実施例Cのそれぞれの有機電解液を含浸させ、電池
ケースを密封することにより、円筒型のリチウム二次電
池を完成させた。実施例C1の有機電解液を用いた二次
電池を実施例C1のリチウム二次電池とし、同様に、そ
れぞれ比較例C1〜C4のリチウム二次電池とした。
The sheet-like positive electrode and negative electrode were wound around the same polyethylene separator used in the flame retardancy test in Example A to form a cylindrical electrode body. This electrode body is inserted into the 18650 type battery case,
The cylindrical lithium secondary battery was completed by impregnating the respective organic electrolytes of Example C and sealing the battery case. The secondary battery using the organic electrolytic solution of Example C1 was referred to as a lithium secondary battery of Example C1, and similarly, the lithium secondary batteries of Comparative Examples C1 to C4, respectively.

【0074】2)難燃性試験、充放電サイクル試験とそ
の結果の評価 上記実施例Cおよび比較例Cのそれぞれの有機電解液に
対して、実施例Aの場合に行ったのと同様の難燃性試験
を行った。また、上記実施例Cおよび比較例Cのそれぞ
れのリチウム二次電池に対して、コンディショニングを
行った後に充放電サイクル試験を行った。
2) Flame retardancy test, charge / discharge cycle test, and evaluation of the results The same difficulty as that in Example A was applied to each of the organic electrolytes of Example C and Comparative Example C. A flammability test was performed. Further, after performing conditioning on each of the lithium secondary batteries of Example C and Comparative Example C, a charge / discharge cycle test was performed.

【0075】コンディショニングの条件は、25℃の温
度下、電流密度0.5mA/cm2の定電流で上限電圧
4.2Vまで充電し4.2Vに達した後は定電圧で充電
時間の合計が3時間となるような定電流定電圧充電の
後、電流密度0.5mA/cm 2の定電流で下限電圧
3.0Vまで放電させる定電流放電を行うものを1サイ
クルとし、このサイクルを5サイクルまで繰り返し行う
ものとした。充放電サイクル試験の条件は、恒温容器内
において、電池の実使用温度範囲の上限と目される60
℃という高温環境下、電流密度1.0mA/cm2の定
電流で3.0V〜4.1Vの範囲で充放電を繰り返すも
のを1サイクルとし、このサイクルを繰り返し行うもの
とした。
The condition for conditioning is a temperature of 25 ° C.
Degree of current density 0.5mA / cmTwoUpper limit voltage at constant current of
Charge to 4.2V and charge at constant voltage after reaching 4.2V
Constant-current constant-voltage charging so that the total time is 3 hours
After that, the current density is 0.5 mA / cm TwoLower limit voltage at constant current of
One circuit that performs constant current discharge to discharge to 3.0 V
Cycle and repeat this cycle up to 5 cycles
It was taken. The conditions for the charge / discharge cycle test are as follows:
, Which is regarded as the upper limit of the actual operating temperature range of the battery.
Current density 1.0mA / cm under high temperature environmentTwoConstant
The charge and discharge are repeated in the range of 3.0V to 4.1V with current.
Is a cycle, and this cycle is repeated
And

【0076】難燃性試験、コンディショニングおよび充
放電サイクル試験の結果として、実施例Cおよび比較例
Cのそれぞれの有機電解液の難燃性評価と、コンディシ
ョニングにおける実施例Cおよび比較例Cのそれぞれの
リチウム二次電池の正極活物質単位重量当たりの不可逆
容量とを、下記表2に示し、さらに、充放電サイクル試
験の各サイクルにおける実施例Cおよび比較例Cのそれ
ぞれのリチウム二次電池の正極活物質単位重量当たりの
放電容量を、図3に示す。
As a result of the flame retardancy test, the conditioning, and the charge / discharge cycle test, the evaluation of the flame retardancy of each of the organic electrolytes of Example C and Comparative Example C and the evaluation of each of the examples C and C in conditioning were performed. The irreversible capacity per unit weight of the positive electrode active material of the lithium secondary battery is shown in Table 2 below. Further, the positive electrode activity of each of the lithium secondary batteries of Example C and Comparative Example C in each cycle of the charge / discharge cycle test was also shown. FIG. 3 shows the discharge capacity per unit weight of the substance.

【0077】[0077]

【表2】 [Table 2]

【0078】上記表2から明らかなように、難燃性につ
いては、難燃性溶媒としてHETCPNを用いた実施例
C1の有機電解液およびTMPを用いた比較例C2の有
機電解液が優れていることが判る。また、不可逆容量に
ついては、難燃性溶媒としてHETCPNを用いた実施
例C1のリチウム二次電池およびBuSを用いた比較例
C3のリチウム二次電池が小さいことが判る。さらに図
3から明らかなように、サイクル特性についても、不可
逆容量と同様、実施例C1および比較例C3のリチウム
二次電池が優れていることが判る。
As is apparent from Table 2, the organic electrolyte of Example C1 using HETCPN as the flame-retardant solvent and the organic electrolyte of Comparative Example C2 using TMP were excellent in flame retardancy. You can see that. As for the irreversible capacity, it can be seen that the lithium secondary battery of Example C1 using HETCPN as the flame retardant solvent and the lithium secondary battery of Comparative Example C3 using BuS were small. Further, as is apparent from FIG. 3, the lithium secondary batteries of Example C1 and Comparative Example C3 are also excellent in cycle characteristics as in the case of the irreversible capacity.

【0079】なお、難燃性溶媒としてBrGBLを用い
た比較例C4のリチウム二次電池については、充電する
ことができなかった。これは、Br原子と炭素原子の結
合部が電気分解したことが、原因するものと考えられ
る。
The lithium secondary battery of Comparative Example C4 using BrGBL as the flame-retardant solvent could not be charged. This is considered to be due to electrolysis of the bond between the Br atom and the carbon atom.

【0080】以上の結果を総合すれば、難燃性および充
放電特性の両者に優れるリチウム二次電池は、難燃性溶
媒としてPNを混合した本発明のリチウム二次電池であ
ることが確認できる。
From the above results, it can be confirmed that a lithium secondary battery excellent in both flame retardancy and charge / discharge characteristics is a lithium secondary battery of the present invention in which PN is mixed as a flame retardant solvent. .

【0081】〈実施例D〉HETCPNの代わりに、同
じPNに属する2種の他の有機溶媒をそれぞれ混合した
2種の有機電解液を調製し、それぞれの有機電解液の難
燃性を調査するとともに、それぞれの有機電解液を用い
て2種のコイン型リチウム二次電池を作製し、それぞれ
のリチウム二次電池の充放電特性を調査するために行っ
た試験である。
Example D Instead of HETCPN, two kinds of organic electrolytes were prepared by mixing two kinds of other organic solvents belonging to the same PN, and the flame retardancy of each organic electrolyte was investigated. In addition, two types of coin-type lithium secondary batteries were produced using the respective organic electrolytes, and the tests were performed to investigate the charge / discharge characteristics of each lithium secondary battery.

【0082】1)調製した有機電解液と作製したリチウ
ム二次電池 難燃性溶媒として、HETCPNの代わりに、ヘキサト
リフルオロメチルエトキシトリシクロホスファゼン(以
下「TFTCPN」と略す)と、ヘキサプロピルトリシ
クロホスファゼン(以下「HPTCPN」と略す)とを
それぞれ用いて混合溶媒を調製した。混合溶媒は、これ
らそれぞれの難燃性溶媒と、ECと、DMCとを、混合
比(DMC:難燃性溶媒:EC)が、体積比において、
34:33:33となるように調製した。
1) The prepared organic electrolyte solution and the prepared lithium secondary battery As a flame-retardant solvent, hexatrifluoromethylethoxytricyclophosphazene (hereinafter abbreviated as “TFTCPN”) and hexapropyltricyclohexane were used instead of HETCPN. A mixed solvent was prepared using phosphazene (hereinafter abbreviated as “HPTCPN”). The mixed solvent has a mixing ratio (DMC: flame-retardant solvent: EC) of these respective flame-retardant solvents, EC, and DMC,
34:33:33.

【0083】なお、TFTCPNは、実施例Aの場合に
示したHETCPNの合成と同様の方法従い、ヘキサク
ロロトリシクロホスファゼンとナトリウムトリフルオロ
メチルエトキシドとをTHF中で反応させることによっ
て合成した。なお、ナトリウムトリフルオロメチルエト
キシドは、水素化ナトリウムとトリフルオロエタノール
を室温下で反応させることによって得た。また、HPT
CPNは、同様に、ヘキサクロロトリシクロホスファゼ
ンとナトリウムプロポキシドとをTHF中で反応させて
合成した。なお、ナトリウムプロポキシドは、水素化ナ
トリウムとn−プロピルアルコールを室温下で反応させ
ることにより得た。
The TFT CPN was synthesized by reacting hexachlorotricyclophosphazene and sodium trifluoromethyl ethoxide in THF according to the same method as in the synthesis of HETCPN shown in Example A. In addition, sodium trifluoromethyl ethoxide was obtained by reacting sodium hydride and trifluoroethanol at room temperature. Also, HPT
CPN was similarly synthesized by reacting hexachlorotricyclophosphazene with sodium propoxide in THF. In addition, sodium propoxide was obtained by reacting sodium hydride and n-propyl alcohol at room temperature.

【0084】得られたTFTCPNとHPTCPNの、
赤外吸収スペクトルにおける750cm-1付近に現れる
ピークの光吸収率に対する595cm-1付近に現れるピ
ークの光吸収率の比は、それぞれ0.18、0.20で
あり、両者とも副生成物が少ないものであるといえる。
The obtained TFTCPN and HPTCPN are
The ratio of the optical absorptance of the peak appearing in the vicinity of 595 cm -1 with respect to light absorption peak appearing in the vicinity of 750 cm -1 in the infrared absorption spectrum are each 0.18,0.20, less Both by-products It can be said that.

【0085】調製した上記それぞれの混合溶媒に、Li
PF6を濃度1Mで溶解させ、有機電解液を調製した。
難燃性溶媒としてTFTCPNを用いた有機電解液を実
施例D1の有機電解液とし、HPTCPNを用いたもの
を実施例D2の有機電解液とした。
The prepared mixed solvent was mixed with Li
PF 6 was dissolved at a concentration of 1 M to prepare an organic electrolyte.
The organic electrolyte using TFTCPN as the flame retardant solvent was used as the organic electrolyte of Example D1, and the one using HPTCPN was used as the organic electrolyte of Example D2.

【0086】これらの有機電解液を用いて作製したリチ
ウム二次電池は、実施例Aの場合に作製したコイン型リ
チウム二次電池と、正極活物質のみその構成が異なるも
のである。本実施例の場合の正極活物質には、Mnサイ
トの一部をAlで置換した組成式LiAl0.15Mn1.85
4で表されるスピネル構造のリチウムマンガン複合酸
化物(高純度化学製)を用いた。実施例D1の有機電解
液を用いた二次電池を実施例D1のリチウム二次電池と
し、実施例D2の有機電解液を用いた二次電池を実施例
D2のリチウム二次電池とした。
The lithium secondary battery manufactured using these organic electrolytes is different from the coin-type lithium secondary battery manufactured in Example A only in the structure of the positive electrode active material. In the positive electrode active material in the case of this example, the composition formula LiAl 0.15 Mn 1.85 in which a part of the Mn site was replaced with Al.
A lithium manganese composite oxide having a spinel structure represented by O 4 (manufactured by Kojundo Chemical) was used. The secondary battery using the organic electrolyte of Example D1 was used as the lithium secondary battery of Example D1, and the secondary battery using the organic electrolyte of Example D2 was used as the lithium secondary battery of Example D2.

【0087】2)難燃性試験、充放電サイクル試験とそ
の結果の評価 上記実施例Dのそれぞれの有機電解液に対して、実施例
Aの場合に行ったのと同様の難燃性試験を行った。ま
た、上記実施例Dのそれぞれのリチウム二次電池に対し
て、実施例Aの場合にに行ったのと同様の条件の充放電
サイクル試験を行った。難燃性試験および充放電サイク
ル試験の結果として、実施例Dのそれぞれの有機電解液
の難燃性評価と、実施例Dのそれぞれのリチウム二次電
池の正極活物質単位重量当たりの不可逆容量とを、下記
表3に示す。
2) Flame retardancy test, charge / discharge cycle test, and evaluation of the results The same flame retardancy test as that performed in Example A was performed on each of the organic electrolytes of Example D. went. A charge / discharge cycle test was performed on each of the lithium secondary batteries of Example D under the same conditions as in Example A. As a result of the flame retardancy test and the charge / discharge cycle test, the flame retardancy evaluation of each organic electrolyte of Example D, and the irreversible capacity per unit weight of the positive electrode active material of each lithium secondary battery of Example D Is shown in Table 3 below.

【0088】[0088]

【表3】 [Table 3]

【0089】上記表3から明らかなように、難燃性溶媒
としてTFTCPNおよびHPTCPNのいずれを用い
た有機電解液であっても、難燃性に優れていることが判
る。また、いずれのリチウム二次電池も不可逆容量は小
さく、充放電特性に優れるものであることが判る。この
結果から、PNを混合した有機電解液を用いた本発明の
リチウム二次電池は、PNの種類に関らず難燃性に優れ
かつ充放電特性に優れたリチウム二次電池であることが
確認できる。
As is evident from Table 3 above, it is found that the organic electrolyte using either TFTCPN or HPTCPN as the flame-retardant solvent has excellent flame retardancy. Further, it can be seen that all the lithium secondary batteries have a small irreversible capacity and are excellent in charge / discharge characteristics. From these results, it can be seen that the lithium secondary battery of the present invention using the organic electrolyte mixed with PN is a lithium secondary battery having excellent flame retardancy and excellent charge / discharge characteristics regardless of the type of PN. You can check.

【0090】[0090]

【発明の効果】本発明のリチウム二次電池は、ジメチル
カーボネートとアルコキシシクロホスファゼンと環状カ
ーボネートとを、所定範囲の割合で混合させた有機電解
液を有するように構成するものである。このような構成
とすることで、本発明のリチウム二次電池は、不可逆容
量が小さく、サイクル特性が良好な、つまり充放電特性
に優れ、かつ、難燃性に優れたリチウム二次電池とな
る。
The lithium secondary battery of the present invention has an organic electrolyte in which dimethyl carbonate, alkoxycyclophosphazene, and cyclic carbonate are mixed at a predetermined ratio. With such a configuration, the lithium secondary battery of the present invention has a small irreversible capacity, good cycle characteristics, that is, excellent in charge / discharge characteristics, and excellent in flame retardancy. .

【0091】また、本発明のリチウム二次電池では、上
記アルコキシシクロホスファゼンを、それに含まれる反
応性の高い副生成物が少ないものすることで、不可逆容
量がより小さくまたサイクル特性もより良好となり、充
放電特性についてもさらに優れたリチウム二次電池とな
る。
Further, in the lithium secondary battery of the present invention, by using the alkoxycyclophosphazene containing less highly reactive by-products, the irreversible capacity becomes smaller and the cycle characteristics become better. The lithium secondary battery is further excellent in charge and discharge characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例Aの場合において、合成されたHET
CPNの赤外吸収スペクトルを示す。
FIG. 1. In the case of Example A, the synthesized HET
3 shows an infrared absorption spectrum of CPN.

【図2】 実施例Bの場合において、PNの赤外吸収ス
ペクトルにおける750cm-1付近に現れるピークの光
吸収率に対する595cm-1付近に現れるピークの光吸
収率の比と、リチウム二次電池の正極活物質単位重量当
たりの不可逆容量との関係を示す。
FIG. 2 shows the ratio of the light absorption of the peak appearing at around 595 cm −1 to the light absorption of the peak appearing at around 750 cm −1 in the infrared absorption spectrum of PN in the case of Example B; The relationship with the irreversible capacity per unit weight of the positive electrode active material is shown.

【図3】 実施例Cの場合において、充放電サイクル試
験の結果としての、それぞれのリチウム二次電池の各サ
イクルにおける正極活物質単位重量当たりの放電容量
(サイクル特性)を示す。
FIG. 3 shows the discharge capacity (cycle characteristic) per unit weight of the positive electrode active material in each cycle of each lithium secondary battery as a result of a charge / discharge cycle test in Example C.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウム遷移金属複合酸化物を正極活物
質とした正極と、リチウムイオンを挿入・離脱可能な炭
素材料を負極活物質とした負極と、リチウム塩を有機溶
媒に溶解させた有機電解液とを備えてなるリチウム二次
電池であって、 前記有機溶媒は、全体を100体積%とした場合におい
て、15〜40体積%のジメチルカーボネートと、25
〜40体積%のアルコキシシクロホスファゼンと、残部
としての環状カーボネートとからなることを特徴とする
リチウム二次電池。
1. A positive electrode using a lithium transition metal composite oxide as a positive electrode active material, a negative electrode using a carbon material capable of inserting and removing lithium ions as a negative electrode active material, and an organic electrolysis in which a lithium salt is dissolved in an organic solvent. A lithium secondary battery comprising: a liquid, wherein the organic solvent is 15 to 40% by volume of dimethyl carbonate when the whole is 100% by volume;
A lithium secondary battery comprising 4040% by volume of alkoxycyclophosphazene and the balance of cyclic carbonate.
【請求項2】 前記アルコキシシクロホスファゼンは、
クロロシクロホスファゼンとナトリウムアルコキシドと
を反応させ、次いで金属リチウムを反応させて副生成物
を除去することにより生成されたものであり、かつ、赤
外吸収スペクトルにおいて、750cm-1付近に現れる
ピークの光吸収率に対する595cm-1付近に現れるピ
ークの光吸収率の比が0.3以下である請求項1に記載
のリチウム二次電池。
2. The method according to claim 1, wherein the alkoxycyclophosphazene is
Light produced by reacting chlorocyclophosphazene with sodium alkoxide, then reacting with lithium metal to remove by-products, and having a peak light appearing near 750 cm -1 in the infrared absorption spectrum. 2. The lithium secondary battery according to claim 1, wherein a ratio of a light absorption rate of a peak appearing around 595 cm -1 to an absorption rate is 0.3 or less.
JP22096499A 1999-08-04 1999-08-04 Lithium secondary battery Expired - Fee Related JP4314503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22096499A JP4314503B2 (en) 1999-08-04 1999-08-04 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22096499A JP4314503B2 (en) 1999-08-04 1999-08-04 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2001052736A true JP2001052736A (en) 2001-02-23
JP4314503B2 JP4314503B2 (en) 2009-08-19

Family

ID=16759324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22096499A Expired - Fee Related JP4314503B2 (en) 1999-08-04 1999-08-04 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4314503B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021628A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
WO2004001882A1 (en) * 2002-06-19 2003-12-31 Bridgestone Corporation Supporting electrolyte for cell and method for production thereof, and cell
JPWO2003005479A1 (en) * 2001-07-05 2004-10-28 株式会社ブリヂストン Non-aqueous electrolyte battery, electrode stabilizer, phosphazene derivative and method for producing the same
JP2005149750A (en) * 2003-11-11 2005-06-09 Nec Corp Nonaqueous electrolyte secondary battery
US6955867B1 (en) 1999-11-25 2005-10-18 Brigdestone Corporation Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
JP2005310479A (en) * 2004-04-20 2005-11-04 Bridgestone Corp Nonaqueous electrolyte secondary battery
JP2006261093A (en) * 2005-02-10 2006-09-28 Maxell Hokuriku Seiki Kk Non-aqueous secondary battery
JP2007165114A (en) * 2005-12-14 2007-06-28 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
WO2007074609A1 (en) 2005-12-26 2007-07-05 Bridgestone Corporation Nonaqueous electrolyte solution for battery, nonaqueous electrolyte battery comprising same, electrolyte solution for electric double layer capacitor and electric double layer capacitor comprising same
JP2007180016A (en) * 2005-11-29 2007-07-12 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolyte secondary battery using it
EP2230711A1 (en) * 2007-12-13 2010-09-22 Bridgestone Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte secondary power supply comprising the same
JP2011096672A (en) * 2010-12-27 2011-05-12 Nec Corp Nonaqueous electrolyte secondary battery
WO2012120847A1 (en) * 2011-03-04 2012-09-13 株式会社ブリヂストン Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
WO2012120846A1 (en) * 2011-03-04 2012-09-13 株式会社ブリヂストン Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
EP2764003A4 (en) * 2011-10-05 2015-05-13 Battelle Energy Alliance Llc Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids
JP2017021986A (en) * 2015-07-10 2017-01-26 日立マクセル株式会社 Nonaqueous secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130297A (en) * 1989-10-16 1991-06-04 Tokuyama Soda Co Ltd Phosphazene compound and curing composition using same compound
JPH0574467A (en) * 1991-09-12 1993-03-26 Showa Denko Kk Macromolecular solid electrolyte
JPH0613108A (en) * 1992-04-09 1994-01-21 Bridgestone Corp Nonaqueous electrolyte battery
JPH11191430A (en) * 1997-12-26 1999-07-13 Denso Corp Nonaqueous electrolyte secondary battery
JP2001516492A (en) * 1996-05-24 2001-09-25 エス・アール・アイ・インターナシヨナル Non-combustible / self-extinguishing electrolyte for batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130297A (en) * 1989-10-16 1991-06-04 Tokuyama Soda Co Ltd Phosphazene compound and curing composition using same compound
JPH0574467A (en) * 1991-09-12 1993-03-26 Showa Denko Kk Macromolecular solid electrolyte
JPH0613108A (en) * 1992-04-09 1994-01-21 Bridgestone Corp Nonaqueous electrolyte battery
JP2001516492A (en) * 1996-05-24 2001-09-25 エス・アール・アイ・インターナシヨナル Non-combustible / self-extinguishing electrolyte for batteries
JPH11191430A (en) * 1997-12-26 1999-07-13 Denso Corp Nonaqueous electrolyte secondary battery

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6955867B1 (en) 1999-11-25 2005-10-18 Brigdestone Corporation Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
JPWO2002021628A1 (en) * 2000-09-07 2004-02-12 株式会社ブリヂストン Non-aqueous electrolyte additive, non-aqueous electrolyte secondary battery and non-aqueous electrolyte electric double layer capacitor
WO2002021628A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
JP4588319B2 (en) * 2001-07-05 2010-12-01 株式会社ブリヂストン Non-aqueous electrolyte battery and electrode stabilizer for non-aqueous electrolyte battery
JPWO2003005479A1 (en) * 2001-07-05 2004-10-28 株式会社ブリヂストン Non-aqueous electrolyte battery, electrode stabilizer, phosphazene derivative and method for producing the same
WO2004001882A1 (en) * 2002-06-19 2003-12-31 Bridgestone Corporation Supporting electrolyte for cell and method for production thereof, and cell
JP4697382B2 (en) * 2003-11-11 2011-06-08 日本電気株式会社 Nonaqueous electrolyte secondary battery
JP2005149750A (en) * 2003-11-11 2005-06-09 Nec Corp Nonaqueous electrolyte secondary battery
JP2005310479A (en) * 2004-04-20 2005-11-04 Bridgestone Corp Nonaqueous electrolyte secondary battery
JP2006261093A (en) * 2005-02-10 2006-09-28 Maxell Hokuriku Seiki Kk Non-aqueous secondary battery
US11769871B2 (en) 2005-10-20 2023-09-26 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2007180016A (en) * 2005-11-29 2007-07-12 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolyte secondary battery using it
JP2007165114A (en) * 2005-12-14 2007-06-28 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
EP1970990A1 (en) * 2005-12-26 2008-09-17 Bridgestone Corporation Nonaqueous electrolyte solution for battery, nonaqueous electrolyte battery comprising same, electrolyte solution for electric double layer capacitor and electric double layer capacitor comprising same
EP1970990A4 (en) * 2005-12-26 2011-09-07 Bridgestone Corp Nonaqueous electrolyte solution for battery, nonaqueous electrolyte battery comprising same, electrolyte solution for electric double layer capacitor and electric double layer capacitor comprising same
WO2007074609A1 (en) 2005-12-26 2007-07-05 Bridgestone Corporation Nonaqueous electrolyte solution for battery, nonaqueous electrolyte battery comprising same, electrolyte solution for electric double layer capacitor and electric double layer capacitor comprising same
EP2230711A1 (en) * 2007-12-13 2010-09-22 Bridgestone Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte secondary power supply comprising the same
EP2230711A4 (en) * 2007-12-13 2011-09-07 Bridgestone Corp Nonaqueous electrolyte solution and nonaqueous electrolyte secondary power supply comprising the same
JP2011096672A (en) * 2010-12-27 2011-05-12 Nec Corp Nonaqueous electrolyte secondary battery
WO2012120847A1 (en) * 2011-03-04 2012-09-13 株式会社ブリヂストン Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
KR101515316B1 (en) 2011-03-04 2015-04-24 가부시키가이샤 브리지스톤 Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
CN103403949A (en) * 2011-03-04 2013-11-20 株式会社普利司通 Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
EP2683014A1 (en) * 2011-03-04 2014-01-08 Bridgestone Corporation Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
EP2683013A1 (en) * 2011-03-04 2014-01-08 Bridgestone Corporation Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
EP2683013A4 (en) * 2011-03-04 2014-08-20 Bridgestone Corp Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
EP2683014A4 (en) * 2011-03-04 2014-08-20 Bridgestone Corp Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
JP2012186011A (en) * 2011-03-04 2012-09-27 Bridgestone Corp Additive for nonaqueous electrolyte, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
KR101515315B1 (en) 2011-03-04 2015-04-24 가부시키가이샤 브리지스톤 Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
JP2012186009A (en) * 2011-03-04 2012-09-27 Bridgestone Corp Additive for nonaqueous electrolyte, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
WO2012120846A1 (en) * 2011-03-04 2012-09-13 株式会社ブリヂストン Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
US9391346B2 (en) 2011-03-04 2016-07-12 Bridgestone Corporation Non-aqueous electrolyte additive, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery
US9312567B2 (en) 2011-03-04 2016-04-12 Bridgestone Corporation Non-aqueous electrolyte additive, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery
US9206210B2 (en) 2011-10-05 2015-12-08 Battelle Energy Alliance, Llc Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids
EP2764003A4 (en) * 2011-10-05 2015-05-13 Battelle Energy Alliance Llc Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids
JP2017021986A (en) * 2015-07-10 2017-01-26 日立マクセル株式会社 Nonaqueous secondary battery

Also Published As

Publication number Publication date
JP4314503B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
EP2190054B1 (en) Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery
KR102469213B1 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
EP2541663B1 (en) Nonaqueous electrolyte and lithium secondary battery using the same
EP2840641B1 (en) Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
CN108886166B (en) Nonaqueous electrolyte additive, and nonaqueous electrolyte for lithium secondary battery and lithium secondary battery containing same
EP2840642B1 (en) Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
CN105576279B (en) Lithium secondary battery
JP4314503B2 (en) Lithium secondary battery
KR101440347B1 (en) Anode Having Multi-Layer Structure for Secondary Battery and Lithium Secondary Battery Including The Same
KR101382502B1 (en) Active material for battery, and battery
JP2011508956A (en) Pouch-type lithium secondary battery
TW201826607A (en) Lithium ion secondary battery and method for manufacturing same
KR20150022647A (en) Electrolyte for lithium secondary battery and lithium secondary battery
JP2000030740A (en) Lithium secondary battery
JP2002025615A (en) Lithium secondary battery
JP2002260634A (en) Lithium secondary battery
CN111048831B (en) Electrolyte for secondary battery and lithium secondary battery comprising same
CN114641883A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2013122901A (en) Electrolyte solution for nonaqueous secondary battery, and secondary battery
JP6396136B2 (en) Lithium secondary battery
CN113711408A (en) Lithium secondary battery
WO2020149199A1 (en) Secondary battery
CA3213615A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
CN112119531A (en) Lithium ion secondary battery electrolyte and lithium ion secondary battery
JP2002184458A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees