WO2017014222A1 - Lithium-ion secondary battery - Google Patents

Lithium-ion secondary battery Download PDF

Info

Publication number
WO2017014222A1
WO2017014222A1 PCT/JP2016/071188 JP2016071188W WO2017014222A1 WO 2017014222 A1 WO2017014222 A1 WO 2017014222A1 JP 2016071188 W JP2016071188 W JP 2016071188W WO 2017014222 A1 WO2017014222 A1 WO 2017014222A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
layer
negative electrode
ion secondary
secondary battery
Prior art date
Application number
PCT/JP2016/071188
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 真吾
学 落田
翔 檜山
葉介 中林
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2017529901A priority Critical patent/JPWO2017014222A1/en
Publication of WO2017014222A1 publication Critical patent/WO2017014222A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery.
  • non-aqueous electrolyte secondary batteries particularly lithium ion secondary batteries
  • batteries having a high energy density are highly expected as batteries having a high energy density.
  • the energy of lithium ion secondary batteries increases, ensuring safety is an issue.
  • a separator disposed between a positive electrode and a negative electrode uses a nonwoven fabric using a fiber containing polyethylene terephthalate, a polyethylene microfiber
  • a lithium ion secondary battery comprising a porous membrane and having a nonwoven fabric disposed on the negative electrode side of the separator is described.
  • An object of the present invention is to provide a lithium ion secondary battery having excellent high-load discharge characteristics and safety in an overcharged state.
  • Means for solving the above problems include the following embodiments. ⁇ 1> A positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte,
  • the separator includes a first layer containing a polyolefin resin, and a second layer containing at least one selected from the group consisting of polyethylene resin, polypropylene resin, polyethylene terephthalate resin, polyvinyl alcohol resin, polyacrylonitrile resin, and aramid resin.
  • the second layer has a lower air permeability than the first layer and is disposed closer to the positive electrode than the first layer.
  • the nonaqueous electrolytic solution includes a cyclic carbonate ( ⁇ ), a chain carbonate ( ⁇ ), and a lithium salt, and a volume ratio ( ⁇ / ⁇ ) of ⁇ and ⁇ is 20/80 to 40/60,
  • the positive electrode includes layered lithium / nickel / manganese / cobalt composite oxide (NMC) as a positive electrode active material, and the negative electrode includes amorphous carbon as a negative electrode active material.
  • NMC nickel / manganese / cobalt composite oxide
  • a lithium ion secondary battery excellent in high load discharge characteristics and safety in an overcharged state is provided.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
  • numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. It means the content rate of.
  • the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
  • the term “layer” refers to the case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. Is also included.
  • the lithium ion secondary battery according to the present embodiment includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte, wherein the separator includes a first polyolefin resin. And a second layer containing at least one selected from the group consisting of a polyethylene resin, a polypropylene resin, a polyethylene terephthalate resin, a polyvinyl alcohol resin, a polyacrylonitrile resin, and an aramid resin, The air permeability is smaller than that of the first layer, and the gas is disposed closer to the positive electrode than the first layer.
  • the separator of the lithium ion secondary battery includes a first layer containing a polyolefin resin, and a group consisting of a polyethylene resin, a polypropylene resin, a polyethylene terephthalate resin, a polyvinyl alcohol resin, a polyacrylonitrile resin, and an aramid resin.
  • a second layer containing at least one selected from the second layer, the second layer has a lower air permeability than the first layer, and the second layer is a positive electrode than the first layer. It has been found that it is excellent in high load discharge characteristics and safety in an overcharged state by being arranged at a position close to.
  • the positive electrode, the negative electrode, the electrolytic solution, the separator, and other components that are components of the lithium ion secondary battery of the present embodiment will be described.
  • the positive electrode (positive electrode plate) includes a current collector and a positive electrode mixture layer (positive electrode mixture layer) formed on at least one surface thereof.
  • the positive electrode mixture layer is a layer containing a positive electrode active material, a binder, and a conductive material, a thickener, and the like used as necessary.
  • the positive electrode active material is not particularly limited, and examples thereof include lithium-containing composite metal oxides (including olivine-type lithium salts such as LiFePO 4 ), chalcogen compounds, and manganese dioxide.
  • a positive electrode active material may be used individually by 1 type, or may use 2 or more types together.
  • the lithium-containing composite metal oxide is a metal oxide containing lithium and a metal other than lithium.
  • metals other than lithium include Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B. Mn, Al, Co, Ni And at least one selected from the group consisting of Mg and Mg is preferred.
  • the metal other than lithium contained in the lithium-containing composite metal oxide may be one type or two or more types.
  • the lithium-containing composite metal oxide is preferably a metal oxide containing lithium and a transition metal. In the metal oxide containing lithium and a transition metal, a part of the transition metal may be substituted with a metal (heterogeneous element) other than the transition metal. Examples of the different element include metals other than lithium listed above that do not correspond to transition metals.
  • x value which shows the molar ratio of lithium increases / decreases by charging / discharging.
  • the chalcogen compound include titanium disulfide and molybdenum disulfide.
  • layered lithium-nickel-manganese-cobalt composite oxide is included as the positive electrode active material from the viewpoint of increasing capacity and extending the life.
  • NMC layered lithium-nickel-manganese-cobalt composite oxide
  • the content is preferably 50% by mass or more of the whole positive electrode active material, more preferably 70% by mass or more, and further preferably 90% by mass or more. .
  • the method for forming the positive electrode mixture layer is not particularly limited. For example, it is formed by a dry method or a wet method.
  • a positive electrode active material, a binder, and other materials such as a conductive material and a thickener used as needed are mixed without using a dispersion solvent to form a sheet, which is used as a current collector.
  • Crimp In the wet method, a positive electrode active material, a binder, and other materials such as a conductive material and a thickener used as necessary are dissolved or dispersed in a dispersion solvent to form a slurry, which is applied to a current collector. ,dry.
  • the positive electrode active material is generally in the form of particles, and examples of the particle shape include a lump shape, a polyhedron shape, a spherical shape, an elliptical spherical shape, a plate shape, a needle shape, and a column shape.
  • the median diameter d50 of the positive electrode active material particles (in the case where the primary particles aggregate to form secondary particles), the median diameter d50 of the secondary particles can be adjusted within the following range. From the viewpoint of obtaining a desired tap density without the tap density (fillability) of the positive electrode active material being too low, D50 of the positive electrode active material is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and more preferably 5 ⁇ m or more. More preferably.
  • the positive electrode is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, and even more preferably 15 ⁇ m or less.
  • the median diameter D50 is a value when the integration on the small diameter side is 50% in the volume-based particle size distribution obtained by the laser diffraction / scattering method.
  • the BET specific surface area of the positive electrode active material particles is preferably 0.2 m 2 / g or more, more preferably 0.3 m 2 / g or more, from the viewpoint of suppressing a decrease in battery performance. More preferably, it is 4 m 2 / g or more. Further, from the viewpoint of suppressing a decrease in miscibility with other materials such as a binder and a conductive material, it is preferably 4.0 m 2 / g or less, and is 2.5 m 2 / g or less. More preferably, it is still more preferably 1.5 m 2 / g or less.
  • the BET specific surface area is a specific surface area (area per unit g) determined by the BET method.
  • the conductive material is not particularly limited, and is a metal material such as copper or nickel; graphite such as natural graphite or artificial graphite; graphite black such as acetylene black; needle coke or the like Examples thereof include carbonaceous materials such as amorphous carbon. These conductive materials may be used alone or in combination of two or more.
  • the binder used for the positive electrode mixture layer is not particularly limited.
  • the binder include resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene) Rubber), fluoropolymer, isoprene rubber, butadiene rubber, ethylene-propylene rubber, and other rubbery polymers; styrene / butadiene / styrene block copolymers or hydrogenated products thereof, EPDM (ethylene / propylene / diene terpolymers) ), Thermoplastic elastomeric polymers such as styrene / ethylene / butadiene / ethylene copolymers, styrene / isoprene / styrene block copolymers or hydrogenated products
  • a binder may be used individually by 1 type, and may be used in combination of 2 or more type. From the viewpoint of the stability of the positive electrode, it is preferable to use a fluorine-based polymer such as polyvinylidene fluoride (PVdF) or a polytetrafluoroethylene / vinylidene fluoride copolymer.
  • PVdF polyvinylidene fluoride
  • PVdF polytetrafluoroethylene / vinylidene fluoride copolymer
  • the dispersion solvent used for preparing the slurry is not particularly limited, and either an aqueous solvent or an organic solvent may be used.
  • the aqueous solvent include water, a mixed solvent of alcohol and water
  • the organic solvent includes N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, Diethyltriamine, N, N-dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane Etc.
  • NMP N-methylpyrrolidone
  • dimethylformamide dimethylacetamide
  • the thickener is not particularly limited, and examples thereof include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used alone or in combination of two or more.
  • the positive electrode mixture layer formed on the current collector is preferably consolidated by a hand press, a roller press or the like in order to improve the packing density of the positive electrode active material.
  • the density of compacted the positive-electrode mixture layer as described above, the input-output characteristics and in view of further improvement of safety, it is preferably 2.4g / cm 3 ⁇ 2.8g / cm 3, 2 More preferably, it is from .45 g / cm 3 to 2.7 g / cm 3 .
  • the material of the positive electrode current collector is not particularly limited. Examples thereof include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum, and carbonaceous materials such as carbon cloth and carbon paper. Of these, metal materials are preferable, and aluminum is more preferable.
  • the shape of the current collector is not particularly limited, and materials processed into various shapes can be used. Examples of the shape when using a metal material include a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, and a foam metal, and the shape when using a carbonaceous material is a carbon plate, A carbon thin film, a carbon cylinder, etc. are mentioned. Among these, it is preferable to use a metal thin film. The thin film may be formed in a mesh shape as necessary.
  • Negative electrode The negative electrode (negative electrode plate) of the present embodiment is composed of a current collector and a negative electrode mixture layer (negative electrode mixture layer) formed on at least one surface thereof.
  • the negative electrode mixture layer is a layer containing a negative electrode active material, a binder, a thickener used as necessary, and the like.
  • the negative electrode active material preferably contains at least one carbon material selected from the group consisting of graphite and amorphous carbon.
  • Carbon materials are roughly classified into graphite-based carbon materials having a uniform crystal structure and non-graphite-based carbon materials having a disordered crystal structure. From the viewpoint of increasing the capacity of the lithium ion secondary battery, graphite is preferable, and from the viewpoint of safety, amorphous carbon is preferable.
  • Examples of graphite-based carbon materials include natural graphite and artificial graphite.
  • Non-graphite-based carbon materials include amorphous carbon, which includes graphitizable carbon (sometimes called soft carbon) and non-graphitizable carbon (sometimes called hard carbon). are categorized.
  • graphitizable carbon is amorphous carbon that tends to become graphite under temperature conditions of 2000 ° C. to 3000 ° C.
  • non-graphitizable carbon is amorphous that is difficult to become graphite under temperature conditions of 2000 ° C. to 3000 ° C. Carbon.
  • graphitizable carbon is defined as amorphous carbon having a value of the interplanar spacing d002 of less than 0.36 nm in the C-axis direction obtained by the X-ray wide angle diffraction method.
  • Non-graphitizable carbon is defined as amorphous carbon having a surface spacing d002 in the C-axis direction obtained by an X-ray wide-angle diffraction method of 0.36 nm or more.
  • the non-graphitizable carbon has a surface spacing d002 value in the C-axis direction obtained by the X-ray wide angle diffraction method of 0.36 nm to 0.40 nm.
  • the graphitizable carbon has a C-axis direction plane distance d002 value obtained by an X-ray wide angle diffraction method of preferably 0.34 nm or more and less than 0.36 nm, and preferably 0.341 nm to 0.355 nm or less. More preferably, it is 0.342 nm to 0.35 nm or less.
  • Graphite preferably has a C-axis direction plane distance d002 value of 0.33 nm or more and less than 0.34 nm, more preferably 0.335 nm to 0.337 nm or less, obtained by the X-ray wide angle diffraction method.
  • Amorphous carbon can be produced, for example, by heat treating petroleum pitch, polyacene, polyparaphenylene, polyfurfuryl alcohol, or the like. Further, by changing the temperature of the heat treatment, it can be made non-graphitizable carbon or easily graphitized carbon. For example, heat treatment at about 500 ° C. to 800 ° C. is suitable for producing non-graphitizable carbon, and heat treatment at about 800 ° C. to 1000 ° C. is suitable for producing graphitizable carbon.
  • the content ratio is preferably 20% by mass or more, more preferably 50% by mass or more, and still more preferably 70% by mass or more based on the total amount of the negative electrode active material.
  • the average particle size of the negative electrode active material is preferably 2.0 ⁇ m to 50 ⁇ m.
  • the average particle size is 5 ⁇ m or more, the specific surface area can be in an appropriate range, the initial charge / discharge efficiency of the lithium ion secondary battery is excellent, and the particles are in good contact with each other and have excellent input characteristics.
  • the average particle diameter is 30 ⁇ m or less, unevenness is hardly generated on the electrode surface, and short circuit of the battery can be suppressed, and the diffusion distance of Li from the particle surface to the inside becomes relatively short, so that the lithium ion secondary battery Input characteristics tend to improve.
  • the average particle size of the negative electrode active material is more preferably 5 ⁇ m to 30 ⁇ m, and even more preferably 10 ⁇ m to 20 ⁇ m.
  • the average particle diameter of the negative electrode active material is measured with a laser diffraction particle size distribution analyzer (for example, SALD-3000J manufactured by Shimadzu Corporation) by dispersing a sample in purified water containing a surfactant.
  • a laser diffraction particle size distribution analyzer for example, SALD-3000J manufactured by Shimadzu Corporation
  • the value (median diameter (D50)) when the integration from the small diameter side is 50% is used.
  • the negative electrode active material may include a material other than the carbon material.
  • the material other than the carbon material is not particularly limited.
  • a metal oxide such as tin oxide or silicon oxide, a metal composite oxide, a lithium simple substance, a lithium alloy such as a lithium aluminum alloy, or a material capable of forming an alloy with lithium ( Sn, Si, etc.). These materials may be used alone or in combination of two or more.
  • the material of the current collector for the negative electrode is not particularly limited, and examples thereof include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Among these, copper is preferable from the viewpoint of ease of processing and cost.
  • the shape of the current collector is not particularly limited, and materials processed into various shapes can be used. Specific examples include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal. Among these, a metal thin film is preferable, and a copper foil is more preferable.
  • the method for forming the negative electrode mixture layer is not particularly limited. For example, it can be formed by a dry method or a wet method similarly to the positive electrode mixture layer.
  • the binder contained in the negative electrode mixture layer is not particularly limited. For example, it can select from what was illustrated as a binder used for a positive mix layer.
  • the dispersion solvent used for preparing the slurry is not particularly limited. For example, it can select from what was illustrated as a dispersion
  • the thickener is not particularly limited. For example, it can select from what was illustrated as a thickener used for a positive mix layer.
  • Electrolytic Solution contains an electrolyte and a nonaqueous solvent that dissolves the electrolyte, and may contain other components such as additives as necessary.
  • the electrolyte is not particularly limited as long as it is a lithium salt that can be used as an electrolyte of a non-aqueous electrolyte for a lithium ion secondary battery.
  • the electrolyte include lithium salts such as the following inorganic lithium salts, fluorine-containing organic lithium salts, and oxalatoborate salts. These lithium salts may be used alone or in combination of two or more.
  • inorganic lithium salt LiPF 6, LiBF 4, LiAsF 6, inorganic fluoride salts LiSbF 6 such, LiClO 4, LiBrO 4, perhalogenate of LiIO 4 like, LiA and inorganic chloride salts of LCL 4, and the like.
  • fluorine-containing organic lithium salt examples include perfluoroalkane sulfonates such as LiCF 3 SO 3 ; LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C Perfluoroalkanesulfonylimide salts such as 4 F 9 SO 2 ); LiC (C Perfluoroalkanesulfonylmethide salts such as F 3 SO 2 ) 3 ; Li [PF 5 (CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 ( CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3
  • oxalatoborate salt examples include lithium bis (oxalato) borate and lithium difluorooxalatoborate.
  • LiPF 6 lithium hexafluorophosphate
  • a preferable combination when two or more lithium salts are used as the electrolyte includes a combination of LiPF 6 and LiBF 4 .
  • the proportion of LiBF 4 in the total of both is preferably 0.01% by mass to 20% by mass, and more preferably 0.1% by mass to 5% by mass.
  • Another preferable combination is a combination of an inorganic fluoride salt and a perfluoroalkanesulfonylimide salt.
  • the proportion of the inorganic fluoride salt in the total of both is preferably 70% by mass to 99% by mass, and more preferably 80% by mass to 98% by mass.
  • the concentration of the electrolyte in the electrolytic solution is not particularly limited. For example, 0.8 mol / L to 1.3 mol / L is preferable, and 0.9 mol / L to 1.2 mol / L is more preferable.
  • concentration of the electrolyte in the electrolytic solution is 0.8 mol / L or more, the electric conductivity of the electrolytic solution tends to be sufficiently secured.
  • concentration of the electrolyte is 1.3 mol / L or less, an increase in the viscosity of the electrolytic solution is suppressed, and a decrease in electrical conductivity tends to be suppressed.
  • the non-aqueous solvent is not particularly limited. Examples include cyclic carbonates, chain carbonates, chain esters, cyclic ethers, chain ethers, and cyclic sulfones, and these may be used alone or in combination of two or more.
  • an alkylene group constituting the cyclic carbonate preferably has 2 to 6 carbon atoms, and more preferably 2 to 4 carbon atoms.
  • Specific examples include ethylene carbonate, propylene carbonate, butylene carbonate, and the like. Of these, ethylene carbonate and propylene carbonate are preferable.
  • the chain carbonate is preferably a dialkyl carbonate, more preferably a dialkyl carbonate in which the two alkyl groups each have 1 to 5 carbon atoms, and even more preferably a dialkyl carbonate in which the two alkyl groups each have 1 to 4 carbon atoms.
  • Dialkyl carbonates include symmetric chain carbonates such as dimethyl carbonate, diethyl carbonate and di-n-propyl carbonate in which two alkyl groups have the same carbon number, and ethyl methyl carbonate and methyl having two different alkyl groups in carbon number. Examples include asymmetric chain carbonates such as -n-propyl carbonate and ethyl-n-propyl carbonate.
  • dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are preferable.
  • chain esters include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate. Among them, it is preferable to use methyl acetate from the viewpoint of improving the low temperature characteristics.
  • the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran and the like.
  • chain ethers include dimethoxyethane and dimethoxymethane.
  • the cyclic sulfone include sulfolane and 3-methylsulfolane.
  • the non-aqueous solvent preferably contains a cyclic carbonate that is a high dielectric constant solvent and a chain carbonate that is a low viscosity solvent.
  • the content is preferably 85% by mass or more and 90% by mass or more based on the total amount of the non-aqueous solvent from the viewpoint of battery characteristics. More preferably, it is more preferably 95% by mass or more.
  • the non-aqueous solvent includes cyclic carbonate and chain carbonate, and cyclic carbonate ( ⁇ ).
  • the volume ratio ( ⁇ / ⁇ ) of the chain carbonate ( ⁇ ) is more preferably 20/80 to 40/60, more preferably 22/78 to 38/62, and 25/75 to 35 / More preferably, it is 65.
  • cyclic carbonate and chain carbonate examples include ethylene carbonate and dimethyl carbonate, ethylene carbonate and diethyl carbonate, ethylene carbonate and ethyl methyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and ethyl Examples thereof include methyl carbonate, ethylene carbonate, diethyl carbonate, and ethyl methyl carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
  • a combination in which the chain carbonate includes both a symmetric chain carbonate and an asymmetric chain carbonate is preferable.
  • Specific examples include ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate, ethylene carbonate, diethyl carbonate and ethyl methyl carbonate, a combination of ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate.
  • Cycle characteristics and large current discharge characteristics of lithium ion secondary batteries tend to be further improved by combining cyclic carbonate, symmetric chain carbonate, and asymmetric chain carbonate.
  • a combination in which the asymmetric chain carbonate is ethyl methyl carbonate is preferable.
  • a combination in which the chain carbonate is a dialkyl carbonate in which the alkyl group has 1 to 2 carbon atoms is preferable.
  • the nonaqueous solvent may contain an additive from the viewpoint of improving battery characteristics.
  • the additive is not particularly limited.
  • the additive includes at least one selected from the group consisting of nitrogen and sulfur, a heterocyclic compound, a cyclic carboxylic acid ester, a cyclic sulfonic acid ester, a fluorine-containing cyclic carbonate, and other non-inorganic molecules. Examples include compounds having a saturated bond.
  • cyclic sulfonate esters examples include 1,3-propane sultone, 1-methyl-1,3-propane sultone, 3-methyl-1,3-propane sultone, 1,4-butane sultone, 1,3-propene sultone, 1 , 4-butene sultone and the like.
  • 1,3-propane sultone and 1,4-butane sultone are preferable from the viewpoint of reducing the DC resistance.
  • the fluorine-containing cyclic carbonate is not particularly limited, and examples thereof include fluoroethylene carbonate, difluoroethylene carbonate, trifluoroethylene carbonate, tetrafluoroethylene carbonate, and trifluoropropylene carbonate. Among these, fluoroethylene carbonate and the like are particularly preferable from the viewpoint of extending the life of the battery.
  • Other compounds having an unsaturated bond in the molecule include vinylene carbonate, vinyl ethylene carbonate, divinyl ethylene carbonate, methyl vinyl carbonate, ethyl vinyl carbonate, propyl vinyl carbonate, divinyl carbonate, allyl methyl carbonate, allyl ethyl carbonate, allyl propyl.
  • Carbonate compounds such as carbonate, diallyl carbonate, dimethallyl carbonate; vinyl acetate, vinyl propionate, vinyl acrylate, vinyl crotonic acid, vinyl methacrylate, allyl acetate, allyl propionate, methyl acrylate, ethyl acrylate, propyl acrylate , Ester compounds such as methyl methacrylate, ethyl methacrylate, propyl methacrylate; divinyl sulfone, methyl vinyl Sulfone compounds such as sulfone, ethyl vinyl sulfone, propyl vinyl sulfone, diallyl sulfone, allyl methyl sulfone, allyl ethyl sulfone, and allyl propyl sulfone; sulfites such as divinyl sulfite, methyl vinyl sulfite, ethyl vinyl sulfite, and diallyl s
  • vinylene carbonate, dimethacrylic carbonate, vinyl ethylene carbonate, divinyl ethylene carbonate, vinyl acetate, vinyl propionate, vinyl acrylate, divinyl sulfone, vinyl methanesulfonate, and the like are particularly preferable from the viewpoint of extending the life of the battery.
  • additives such as an overcharge inhibitor, a negative electrode film forming agent, a positive electrode protective agent, and a high input / output agent may be used depending on the required function.
  • the separator is disposed between the positive electrode and the negative electrode.
  • the separator includes at least one selected from the group consisting of a first layer containing a polyolefin resin, a polyethylene resin, a polypropylene resin, a polyethylene terephthalate resin, a polyvinyl alcohol resin, a polyacrylonitrile resin, and an aramid resin.
  • a first layer containing a polyolefin resin, a polyethylene resin, a polypropylene resin, a polyethylene terephthalate resin, a polyvinyl alcohol resin, a polyacrylonitrile resin, and an aramid resin.
  • Including a second layer The second layer has a lower air permeability than the first layer, and is disposed closer to the positive electrode than the first layer.
  • the number of first layers and the number of second layers included in the separator are not particularly limited.
  • the separator may include members other than the first layer and the second layer.
  • the thickness of the separator is not particularly limited.
  • the thickness is preferably 10 ⁇ m to 70 ⁇ m, more preferably 12 ⁇ m to 60 ⁇ m, and still more preferably 15 ⁇ m to 50 ⁇ m.
  • the thickness of the separator is 70 ⁇ m or more, the high load discharge characteristics tend to deteriorate.
  • the thickness of the separator is 10 ⁇ m or less, an internal short circuit due to foreign matter or the like tends to occur.
  • the first layer may be made of only a polyolefin resin, or may be made of a polyolefin resin and another resin.
  • the content of the polyolefin resin in the total mass of the first layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more.
  • the polyolefin resin contained in the first layer is not particularly limited, and examples thereof include polyethylene and polypropylene. Of these, polyethylene is preferable.
  • the first layer preferably has an air permeability of 20 s to 800 s, more preferably 40 s to 750 s, and still more preferably 60 s to 700 s.
  • the air permeability is a value measured according to the Gurley method (JIS P8117: 2009), and is the time (seconds) for 100 ml of air to pass through a sample area of 645 mm 2 .
  • the thickness of the first layer is not particularly limited.
  • the thickness is preferably 5 ⁇ m to 60 ⁇ m, more preferably 7 ⁇ m to 50 ⁇ m, and still more preferably 10 ⁇ m to 40 ⁇ m.
  • the thickness of the first layer is 60 ⁇ m or more, the high-load discharge characteristics tend to deteriorate.
  • the thickness of the first layer is 5 ⁇ m or less, an internal short circuit due to foreign matter or the like tends to occur.
  • the method for producing the first layer is not particularly limited, and can be selected from known methods.
  • the first layer is a porous sheet.
  • the “porous sheet” means a sheet-like object having pores and air permeability.
  • the second layer is composed of at least one selected from the group consisting of polyethylene resin, polypropylene resin, polyethylene terephthalate resin, polyvinyl alcohol resin, polyacrylonitrile resin and aramid resin, these resins and other resins are used. It may be.
  • the content of at least one selected from the group consisting of polyethylene resin, polypropylene resin, polyethylene terephthalate resin, polyvinyl alcohol resin, polyacrylonitrile resin, and aramid resin in the total mass of the second layer is 80% by mass or more. Is more preferable, 90 mass% or more is more preferable, and 95 mass% or more is further preferable.
  • the resin contained in the second layer is preferably at least one selected from the group consisting of polyethylene resin, polypropylene resin, polyethylene terephthalate resin and aramid resin, and at least selected from the group consisting of polyethylene resin and polypropylene resin.
  • One type is more preferable.
  • the second layer has a lower air permeability than the first layer. If the air permeability of the second layer is smaller than the air permeability of the first layer, when gas is generated in an overcharged state, the gas tends to disperse in the battery container and tends to be superior in safety. .
  • the air permeability of the second layer is preferably 100 s or less, and more preferably 50 s or less.
  • the second layer preferably has a heat shrinkage at 160 ° C. of 2% or less, and more preferably 1% or less.
  • the heat shrinkage rate at 160 ° C. of the second layer is 2% or less, the battery temperature rises in the overcharged state, and even when the first layer is largely heat shrunk, the second layer serves as a separator.
  • the short circuit between the positive electrode and the negative electrode can be suppressed by maintaining the shape.
  • the heat shrinkage rate at 160 ° C. is obtained by subjecting the second layer cut to a size of 70 mm (MD) in length and 58.5 mm (TD) in width to a heat treatment of 15 minutes in an oven at 160 ° C. And obtained from the measured value of the length of the second layer before and after the heat treatment as follows.
  • Thermal shrinkage (%) (length before heat treatment (TD) ⁇ length after heat treatment (TD)) / length before heat treatment ⁇ 100
  • the thickness of the second layer is not particularly limited. The thicker the second layer, the lower the probability of occurrence of a short circuit due to the inclusion of foreign matter or the like. On the other hand, the thinner the second layer, the smaller the distance between the electrodes, and the lower the internal resistance of the battery. Specifically, for example, the thickness is preferably 10 ⁇ m to 50 ⁇ m, more preferably 12 ⁇ m to 40 ⁇ m, and still more preferably 15 ⁇ m to 35 ⁇ m.
  • an inorganic substance may be attached to the second layer by coating, impregnation or the like.
  • inorganic substances include oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate.
  • the method for producing the second layer is not particularly limited, and can be selected from known methods.
  • the second layer is a nonwoven fabric.
  • the “nonwoven fabric” means a sheet-like object formed by intertwining fibers without weaving them.
  • the lithium ion secondary battery may have other components other than a positive electrode, a negative electrode, electrolyte solution, and a separator as needed.
  • a cleavage valve may be provided to suppress an increase in pressure inside the battery. By opening the cleavage valve, it is possible to suppress an increase in pressure inside the battery and to improve safety.
  • the cleavage valve can be opened quickly due to the generation of inert gas, and safety can be improved.
  • the shape of the lithium ion secondary battery is not particularly limited, and may be any of a cylindrical shape, a square shape, a laminate type, and the like.
  • the battery capacity of the lithium ion secondary battery is not particularly limited. From the viewpoint of battery control, it is preferably 20 Ah or more.
  • FIG. 1 shows a configuration example of a cylindrical lithium ion secondary battery.
  • an electrode body 5 in which a strip-like positive electrode 2 and a negative electrode 3 are wound in a spiral shape with a separator 4 interposed therebetween is accommodated in a cylindrical battery container 6.
  • a cylindrical battery container 6 Has a structured.
  • the inside of the battery container 6 is filled with an electrolyte solution (not shown).
  • an 18650 type lithium ion secondary battery is widely used as a consumer lithium ion secondary battery.
  • the outer diameter of the 18650 type lithium ion secondary battery is about 18 mm in diameter and about 65 mm in height.
  • the laminate type lithium ion secondary battery can be manufactured, for example, as follows. First, a positive electrode and a negative electrode are cut into squares, and tabs are welded to the respective electrodes to produce positive and negative electrode terminals. A laminate in which the positive electrode, the separator, and the negative electrode are laminated in this order is prepared, and in that state, accommodated in an aluminum laminate pack, and the positive and negative electrode terminals are taken out of the aluminum laminate pack and sealed. Next, the nonaqueous electrolyte is poured into the aluminum laminate pack, and the opening of the aluminum laminate pack is sealed. Thereby, a lithium ion secondary battery is obtained.
  • the capacity ratio between the negative electrode and the positive electrode is preferably 1 or more and less than 1.4 from the viewpoint of safety and energy density, and is 1.05 to 1.25. Is more preferable.
  • the negative electrode capacity means [negative electrode discharge capacity]
  • the positive electrode capacity means [positive charge capacity of positive electrode minus negative electrode or positive electrode, whichever is greater].
  • discharge capacity of negative electrode is defined as a value calculated by a charge / discharge device when lithium ions inserted into the negative electrode active material are desorbed.
  • the “initial charge capacity of the positive electrode” is defined as that calculated by the charge / discharge device when lithium ions are desorbed from the positive electrode active material.
  • the capacity ratio between the negative electrode and the positive electrode can be calculated from, for example, “discharge capacity of lithium ion secondary battery / discharge capacity of negative electrode”.
  • the discharge capacity of the lithium ion secondary battery is, for example, 0.4 V, 0.1 to 0.5 C, and a constant current and constant voltage (CCCV) charge with an end time of 2 hours to 5 hours, and then is set to 0. It can be measured under conditions when a constant current (CC) is discharged to 2.7 V at 1 to 0.5 C.
  • the discharge capacity of the negative electrode is obtained by cutting a negative electrode whose discharge capacity of a lithium ion secondary battery is measured into a predetermined area, using lithium metal as a counter electrode, and producing a single electrode cell through a separator impregnated with an electrolyte, Discharge capacity per predetermined area under the conditions of constant current (CCCV) charge at 0V, 0.1C, and final current 0.01C, and then constant current (CC) discharge to 1.5V at 0.1C Can be calculated by converting the total area when this is used as the negative electrode of a lithium ion secondary battery.
  • CCCV constant current
  • CC constant current
  • C means “current value (A) / battery discharge capacity (Ah)”.
  • the positive electrode was produced as follows.
  • As the positive electrode active material a layered type lithium / nickel / manganese / cobalt composite oxide (BET specific surface area of 0.4 m 2 / g, average particle diameter (D50) of 6.5 ⁇ m) was used.
  • acetylene black manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: HS-100, average particle size 48 nm (catalog value)
  • NMP N-methyl-2 of polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • a dispersion solvent was added to the above mixture and kneaded to prepare a slurry.
  • This slurry was applied to both surfaces of a 20 ⁇ m thick aluminum foil as a positive electrode current collector so that the thickness was substantially uniform and uniform.
  • a drying treatment was performed.
  • a notch was formed in the uncoated portion of the aluminum foil, and the remainder of the notch was used as a lead piece.
  • the width of the lead piece was 10 mm, and the interval between adjacent lead pieces was 20 mm.
  • the density of the positive electrode mixture was 2.5 g / cm 3 . This was cut again to produce a positive electrode having a width of 195 mm.
  • the negative electrode was produced as follows.
  • graphitizable carbon (d002 is 0.35 nm, average particle diameter (D50) is 17 ⁇ m) was used.
  • NMP N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • a drying treatment was performed. Next, a notch was made in the uncoated part of the rolled copper foil, and the remaining part of the notch was used as a lead piece. The width of the lead piece was 10 mm, and the interval between adjacent lead pieces was 20 mm. Then, it compacted with the press to the predetermined density. The negative electrode mixture density was 1.15 g / cm 3 . This was cut again to produce a negative electrode having a width of 196 mm.
  • ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) are mixed so that the volume ratio (EC: DMC: EMC) is 30:40:30, and a mixed solution.
  • LiPF 6 lithium hexafluorophosphate
  • Example 1 a positive electrode produced as described above, one nonwoven fabric made of polyethylene and polypropylene fibers having a thickness of 18 ⁇ m, and a polyethylene microporous film (hereinafter also referred to as a PE porous sheet) 1 having a thickness of 30 ⁇ m.
  • the sheet and the negative electrode prepared above were superposed in this order and wound from the end to prepare a roll-shaped electrode body.
  • the lead piece of the positive electrode and the lead piece of the negative electrode were arranged so as to be located on the opposite end surfaces of the electrode body, respectively.
  • the lengths of the positive electrode, the negative electrode, and the separator were adjusted so that the diameter of the electrode body was 65 ⁇ 0.1 mm.
  • the air permeability of a nonwoven fabric made of polyethylene and polypropylene fibers having a thickness of 18 ⁇ m was 1 s or less.
  • Example 2 the positive electrode prepared above, one nonwoven fabric made of polyethylene and polypropylene fibers having a thickness of 18 ⁇ m, one PE porous sheet having a thickness of 20 ⁇ m, and the negative electrode prepared above were used.
  • a roll-shaped electrode body was produced in the same manner as in Example 1 except that they were superposed in order.
  • Example 3 the positive electrode prepared above, one nonwoven fabric made of polyethylene and polypropylene fibers having a thickness of 21 ⁇ m, one PE porous sheet having a thickness of 20 ⁇ m, and the negative electrode prepared above were used.
  • a roll-shaped electrode body was produced in the same manner as in Example 1 except that they were superposed in order.
  • Comparative Example 1 a roll-shaped electrode was prepared in the same manner as in Example 1 except that the positive electrode prepared above, one PE porous sheet having a thickness of 30 ⁇ m, and the negative electrode prepared above were superposed in this order. The body was made.
  • a roll-shaped electrode was prepared in the same manner as in Example 1 except that the positive electrode prepared above, one PE porous sheet having a thickness of 50 ⁇ m, and the negative electrode prepared above were superposed in this order. The body was made.
  • Comparative Example 3 the positive electrode produced above, one PE porous sheet having a thickness of 30 ⁇ m, one nonwoven fabric made of polyethylene and polypropylene fibers having a thickness of 18 ⁇ m, and the negative electrode produced above were used.
  • a roll-shaped electrode body was produced in the same manner as in Example 1 except that they were superposed in order.
  • a lithium ion secondary battery having a structure as shown in FIG. 2 was produced using the electrode body and the electrolytic solution produced above.
  • the lead pieces 9 led out from the positive electrode were deformed, and all of them were gathered near the bottom of the flange 7 on the positive electrode side and brought into contact with each other.
  • the flange portion 7 on the positive electrode side is integrally formed so as to protrude from the periphery of the pole column (positive electrode external terminal 1) substantially on the extension line of the axis of the electrode body 6, and has a bottom portion and a side portion. Thereafter, the lead piece 9 was connected and fixed to the bottom of the flange 7 by ultrasonic welding. Similarly, the lead piece 9 led out from the negative electrode and the bottom of the flange 7 on the negative electrode side were connected and fixed.
  • the negative electrode side flange portion 7 is integrally formed so as to project from the periphery of the pole column (negative electrode external terminal 1 ′) substantially on the extension line of the axis of the electrode body 6, and has a bottom portion and a side portion.
  • an insulating coating 8 was formed by covering the side of the flange 7 on the positive electrode external terminal 1 side and the side of the flange 7 of the negative electrode external terminal 1 ′. Similarly, an insulating coating 8 was formed on the outer periphery of the electrode body 6. Specifically, the adhesive tape is stretched from the side of the flange 7 on the positive electrode external terminal 1 side to the outer peripheral surface of the electrode body 6, and further from the outer peripheral surface of the electrode body 6 to the negative electrode external terminal 1 ′ side. Insulating coating 8 was formed by winding several times over the side of 7.
  • the adhesive tape which apply
  • the thickness of the insulating coating 8 (the number of windings of the adhesive tape) is adjusted so that the maximum diameter portion of the electrode body 6 is slightly smaller than the inner diameter of the stainless steel battery container 5, and the electrode body 6 is placed in the battery container 5. Inserted. A battery container 5 having an outer diameter of 67 mm and an inner diameter of 66 mm was used.
  • the ceramic washer 3 ′ was fitted into a pole column whose tip constitutes the positive electrode external terminal 1 and a pole column whose tip constitutes the negative electrode external terminal 1 ′.
  • a ceramic washer having a thickness of 2 mm, an inner diameter of 16 mm, and an outer diameter of 25 mm made of alumina and in contact with the back surface of the battery lid 4 was used.
  • the positive external terminal 1 is passed through the ceramic washer 3, and with the other ceramic washer 3 placed on the other battery lid 4, the negative external terminal 1 'was passed through another ceramic washer 3.
  • a flat plate having a thickness of 2 mm, an inner diameter of 16 mm, and an outer diameter of 28 mm was used.
  • the battery lid 4 was provided with a cleavage valve 10 that cleaves in response to an increase in the internal pressure of the battery.
  • the cleavage pressure of the cleavage valve 10 was 13 kg / cm 2 to 18 kg / cm 2 .
  • the metal washer 11 was fitted into the positive external terminal 1 and the negative external terminal 1 '. Thereby, the metal washer 11 was arranged on the ceramic washer 3. As the metal washer 11, a material made of a material smoother than the bottom surface of the nut 2 was used.
  • a metal nut 2 is screwed to the positive electrode external terminal 1 and the negative electrode external terminal 1 ′, and the battery lid 4 is connected to the flange portion 7 and the nut 2 via the ceramic washer 3, the metal washer 11, and the ceramic washer 3 ′. And fixed by tightening between.
  • the tightening torque value at this time was 70 kgf ⁇ cm.
  • the metal washer 11 was not rotated until the tightening operation was completed.
  • the power generation element inside the battery container 5 is shielded from the outside air by the compression of the rubber (EPDM) O-ring 12 interposed between the back surface of the battery lid 4 and the flange 7.
  • the initialization charge / discharge cycle was performed in a temperature environment of 25 ° C.
  • the current value was 20 A for both charging and discharging.
  • Charging was constant current constant voltage (CCCV) charging with 4.1 V as the upper limit voltage, and the termination condition was 3 hours.
  • the discharge was a constant current (CC) discharge with 2.7 V as the end condition. Further, a pause of 30 minutes was put between charge and discharge. This was carried out for 3 cycles.
  • Comparative Example 1 and Comparative Example 2 using only one PE porous sheet were excellent in high-load discharge characteristics, but resulted in rupture, ignition or smoke in an overcharged state.
  • Comparative Example 3 in which the porous sheet was disposed on the positive electrode side and the non-woven fabric was disposed on the negative electrode side resulted in inferior high-load discharge characteristics although no rupture, ignition or smoke occurred in the overcharged state.
  • Comparative Example 3 The reason why the high-load discharge characteristics of Comparative Example 3 are particularly inferior is not clear, but, for example, if a viscosity distribution occurs due to the concentration distribution of the electrolyte during charge and discharge, it is easily affected by the air permeability of the separator. It is possible to become. Nonwoven fabrics have a lower air permeability than porous sheets, so even electrolytes with high viscosity are less affected, but PE (polyethylene) has a higher air permeability and is strongly affected by it. It seems that this has led to a decrease in the capacity ratio.
  • PE polyethylene
  • Comparative Example 1 and Comparative Example 2 The reason why the safety evaluation result in the overcharged state is inferior in Comparative Example 1 and Comparative Example 2 is considered as follows. It is known that in an overcharged state, the pressure inside the battery can increases due to decomposition and gasification of the electrolyte. In the case of a non-woven fabric, as described above, since the air permeability is low, the gas escape is good and the generated gas is well dispersed in the battery can, but the PE porous sheet is generated because the air permeability is high. It is considered that the positive electrode and the negative electrode were strongly pressed by the pressure of the gas and the short circuit was easily caused.
  • the lithium ion secondary battery of the present embodiment is excellent in high-load discharge characteristics and safety in an overcharged state.

Abstract

The present invention addresses the problem of providing a lithium-ion secondary battery having excellent high-load discharge characteristics and excellent safety when overcharged. The present invention pertains to a lithium-ion secondary battery that is provided with a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte. The separator has: a first layer containing a polyolefin resin; and a second layer containing at least one resin selected from the group consisting of polyolefin resins, polypropylene resins, polyethylene terephthalate resins, polyvinyl alcohol resins, polyacrylonitrile resins, and aramid resins, said second layer having a smaller air permeability than the first layer, and being disposed closer to the positive electrode than the first layer.

Description

リチウムイオン二次電池Lithium ion secondary battery
 本発明は、リチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery.
 近年、電子機器のポータブル化及びコードレス化が急速に進んでおり、これらの駆動用電源として小形で軽量であり、且つ高容量及び高電圧を有する二次電池への要望が高まっている。このような点で非水電解質系の二次電池、特にリチウムイオン二次電池は、とりわけ高エネルギー密度を有する電池として大きな期待が寄せられている。一方で、リチウムイオン二次電池の高エネルギー化に伴い、安全性の確保が課題となっている。 In recent years, electronic devices have become increasingly portable and cordless, and there is an increasing demand for secondary batteries that are small and lightweight as drive power sources, and that have high capacity and high voltage. In this respect, non-aqueous electrolyte secondary batteries, particularly lithium ion secondary batteries, are highly expected as batteries having a high energy density. On the other hand, as the energy of lithium ion secondary batteries increases, ensuring safety is an issue.
 例えば、特許文献1には過充電状態での安全性に優れるリチウムイオン二次電池として、正極と負極との間に配置されるセパレータがポリエチレンテレフタレートを含有する繊維を用いた不織布と、ポリエチレン製微多孔膜とからなり、不織布がセパレータの負極側に配置されたリチウムイオン二次電池が記載されている。 For example, in Patent Document 1, as a lithium ion secondary battery excellent in safety in an overcharged state, a separator disposed between a positive electrode and a negative electrode uses a nonwoven fabric using a fiber containing polyethylene terephthalate, a polyethylene microfiber A lithium ion secondary battery comprising a porous membrane and having a nonwoven fabric disposed on the negative electrode side of the separator is described.
特開2005-293891号公報Japanese Patent Laying-Open No. 2005-293891
 特許文献1に記載されているリチウムイオン二次電池は、高負荷放電特性に向上の余地があることが本発明者らの検討により明らかになった。
 本発明は、高負荷放電特性及び過充電状態での安全性に優れるリチウムイオン二次電池を提供することを課題とする。
The inventors have clarified that the lithium ion secondary battery described in Patent Document 1 has room for improvement in high-load discharge characteristics.
An object of the present invention is to provide a lithium ion secondary battery having excellent high-load discharge characteristics and safety in an overcharged state.
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>正極と、負極と、前記正極及び前記負極の間に配置されるセパレータと、非水電解液とを備え、
 前記セパレータはポリオレフィン樹脂を含む第一の層と、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、ポリビニルアルコール樹脂、ポリアクリロニトリル樹脂及びアラミド樹脂からなる群より選択される少なくとも1種を含む第二の層と、を有し、
 第二の層は第一の層よりも透気度が小さく、且つ、第一の層よりも前記正極に近い位置に配置される、リチウムイオン二次電池。
<2>第二の層は第一の層よりも熱収縮率が小さい、<1>に記載のリチウムイオン二次電池。
<3>前記非水電解液は環状カーボネート(α)、鎖状カーボネート(β)及びリチウム塩を含み、αとβの体積比(α/β)が20/80~40/60であり、前記リチウム塩の濃度が0.8mol/L~1.3mol/Lである、<1>又は<2>に記載のリチウムイオン二次電池。
<4>前記正極は層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)を正極活物質として含み、前記負極は非晶質炭素を負極活物質として含む、<1>~<3>のいずれか1項に記載のリチウムイオン二次電池。
<5>電池容量が20Ah以上である、<1>~<4>のいずれか1項に記載のリチウムイオン二次電池。
Means for solving the above problems include the following embodiments.
<1> A positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte,
The separator includes a first layer containing a polyolefin resin, and a second layer containing at least one selected from the group consisting of polyethylene resin, polypropylene resin, polyethylene terephthalate resin, polyvinyl alcohol resin, polyacrylonitrile resin, and aramid resin. Have
The lithium ion secondary battery in which the second layer has a lower air permeability than the first layer and is disposed closer to the positive electrode than the first layer.
<2> The lithium ion secondary battery according to <1>, wherein the second layer has a thermal contraction rate smaller than that of the first layer.
<3> The nonaqueous electrolytic solution includes a cyclic carbonate (α), a chain carbonate (β), and a lithium salt, and a volume ratio (α / β) of α and β is 20/80 to 40/60, The lithium ion secondary battery according to <1> or <2>, wherein the concentration of the lithium salt is 0.8 mol / L to 1.3 mol / L.
<4> The positive electrode includes layered lithium / nickel / manganese / cobalt composite oxide (NMC) as a positive electrode active material, and the negative electrode includes amorphous carbon as a negative electrode active material. The lithium ion secondary battery according to any one of the above.
<5> The lithium ion secondary battery according to any one of <1> to <4>, wherein the battery capacity is 20 Ah or more.
 本発明によれば、高負荷放電特性及び過充電状態での安全性に優れるリチウムイオン二次電池が提供される。 According to the present invention, a lithium ion secondary battery excellent in high load discharge characteristics and safety in an overcharged state is provided.
本発明が適用可能な実施形態の円柱状リチウムイオン二次電池の概略断面図である。It is a schematic sectional drawing of the cylindrical lithium ion secondary battery of embodiment which can apply this invention. 本発明が適用可能な実施形態の円柱状リチウムイオン二次電池の概略断面図である。It is a schematic sectional drawing of the cylindrical lithium ion secondary battery of embodiment which can apply this invention.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合以外は必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and the present invention is not limited thereto.
 本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において組成物中の各成分の含有率は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率を意味する。
 本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本明細書において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
In this specification, the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
In the present specification, numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the numerical ranges described stepwise in this specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
In the present specification, the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. It means the content rate of.
In the present specification, the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
In this specification, the term “layer” refers to the case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. Is also included.
 本実施の形態のリチウムイオン二次電池は、正極と、負極と、前記正極及び前記負極の間に配置されるセパレータと、非水電解液とを備え、前記セパレータはポリオレフィン樹脂を含む第一の層と、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、ポリビニルアルコール樹脂、ポリアクリロニトリル樹脂及びアラミド樹脂からなる群より選択される少なくとも1種を含む第二の層と、を有し、第二の層は第一の層よりも透気度が小さく、且つ、第一の層よりも前記正極に近い位置に配置される。 The lithium ion secondary battery according to the present embodiment includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte, wherein the separator includes a first polyolefin resin. And a second layer containing at least one selected from the group consisting of a polyethylene resin, a polypropylene resin, a polyethylene terephthalate resin, a polyvinyl alcohol resin, a polyacrylonitrile resin, and an aramid resin, The air permeability is smaller than that of the first layer, and the gas is disposed closer to the positive electrode than the first layer.
 本発明者らは検討の結果、リチウムイオン二次電池のセパレータがポリオレフィン樹脂を含む第一の層と、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、ポリビニルアルコール樹脂、ポリアクリロニトリル樹脂及びアラミド樹脂からなる群より選択される少なくとも1種を含む第二の層と、を有し、第二の層は第一の層よりも透気度が小さく、且つ、第二の層が第一の層よりも正極に近い位置に配置されていることで、高負荷放電特性と過充電状態での安全性とに優れることを見出した。 As a result of the study, the separator of the lithium ion secondary battery includes a first layer containing a polyolefin resin, and a group consisting of a polyethylene resin, a polypropylene resin, a polyethylene terephthalate resin, a polyvinyl alcohol resin, a polyacrylonitrile resin, and an aramid resin. A second layer containing at least one selected from the second layer, the second layer has a lower air permeability than the first layer, and the second layer is a positive electrode than the first layer. It has been found that it is excellent in high load discharge characteristics and safety in an overcharged state by being arranged at a position close to.
 以下、本実施の形態のリチウムイオン二次電池の構成要素である正極、負極、電解液、セパレータ及びその他の構成部材について説明する。 Hereinafter, the positive electrode, the negative electrode, the electrolytic solution, the separator, and other components that are components of the lithium ion secondary battery of the present embodiment will be described.
1.正極
 正極(正極板)は、集電体及びその少なくとも一方の面上に形成された正極合材層(正極合剤層)よりなる。正極合材層は、正極活物質、結着材、及び必要に応じて用いられる導電材、増粘材等を含む層である。
 正極活物質は特に制限されず、例えば、リチウム含有複合金属酸化物(LiFePO等のオリビン型リチウム塩を含む)、カルコゲン化合物、二酸化マンガン等が挙げられる。正極活物質は1種を単独で用いても、2種以上を併用してもよい。
1. Positive electrode The positive electrode (positive electrode plate) includes a current collector and a positive electrode mixture layer (positive electrode mixture layer) formed on at least one surface thereof. The positive electrode mixture layer is a layer containing a positive electrode active material, a binder, and a conductive material, a thickener, and the like used as necessary.
The positive electrode active material is not particularly limited, and examples thereof include lithium-containing composite metal oxides (including olivine-type lithium salts such as LiFePO 4 ), chalcogen compounds, and manganese dioxide. A positive electrode active material may be used individually by 1 type, or may use 2 or more types together.
 リチウム含有複合金属酸化物は、リチウムとリチウム以外の金属を含む金属酸化物である。リチウム以外の金属として具体的にはNa、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、B等が挙げられ、Mn、Al、Co、Ni及びMgからなる群より選択される少なくとも1種が好ましい。リチウム含有複合金属酸化物に含まれるリチウム以外の金属は、1種のみであっても2種以上であってもよい。
 リチウム含有複合金属酸化物は、リチウムと遷移金属を含む金属酸化物が好ましい。リチウムと遷移金属を含む金属酸化物は、遷移金属の一部が遷移金属以外の金属(異種元素)で置換されていてもよい。異種元素としては、上に挙げたリチウム以外の金属のうち遷移金属に該当しないものが挙げられる。
The lithium-containing composite metal oxide is a metal oxide containing lithium and a metal other than lithium. Specific examples of metals other than lithium include Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B. Mn, Al, Co, Ni And at least one selected from the group consisting of Mg and Mg is preferred. The metal other than lithium contained in the lithium-containing composite metal oxide may be one type or two or more types.
The lithium-containing composite metal oxide is preferably a metal oxide containing lithium and a transition metal. In the metal oxide containing lithium and a transition metal, a part of the transition metal may be substituted with a metal (heterogeneous element) other than the transition metal. Examples of the different element include metals other than lithium listed above that do not correspond to transition metals.
 リチウム含有複合金属酸化物としては、LiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-y、LiNi1-y、LiMn、LiMn2-y、LiMPO、LiMPOF(前記各式中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群から選択される少なくとも1種の元素を示し、x=0~1.2、y=0~0.9、z=2.0~2.3である。)等が挙げられる。ここで、リチウムのモル比を示すx値は、充放電により増減する。
 カルコゲン化合物としては、二硫化チタン、二硫化モリブデン等が挙げられる。
The lithium-containing composite metal oxides, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x Co y Ni 1-y O 2, Li x Co y M 1-y O z, Li x Ni 1 -y M y O z, Li x Mn 2 O 4, Li x Mn 2-y M y O 4, LiMPO 4, Li 2 MPO 4 F ( in the respective formulas, M is Na, Mg, Sc, Y, Mn And at least one element selected from the group consisting of Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, V, and B, x = 0 to 1.2, y = 0 to 0 .9, z = 2.0 to 2.3). Here, x value which shows the molar ratio of lithium increases / decreases by charging / discharging.
Examples of the chalcogen compound include titanium disulfide and molybdenum disulfide.
 本実施の形態においては、高容量化及び長寿命化の観点から、正極活物質として層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)を含むことが好ましい。
正極活物質としてNMCを含む場合は、その含有率が正極活物質全体の50%質量以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。
In the present embodiment, it is preferable that layered lithium-nickel-manganese-cobalt composite oxide (NMC) is included as the positive electrode active material from the viewpoint of increasing capacity and extending the life.
When NMC is included as the positive electrode active material, the content is preferably 50% by mass or more of the whole positive electrode active material, more preferably 70% by mass or more, and further preferably 90% by mass or more. .
 正極合材層の形成方法は、特に制限されない。例えば、乾式法又は湿式法によって形成される。乾式法では、正極活物質、結着材、及び必要に応じて用いられる導電材、増粘材等の他の材料を分散溶媒を用いずに混合してシート状にし、これを集電体に圧着する。湿式法では、正極活物質、結着材、及び必要に応じて用いられる導電材、増粘材等の他の材料を分散溶媒に溶解又は分散させてスラリーとし、これを集電体に塗布し、乾燥する。 The method for forming the positive electrode mixture layer is not particularly limited. For example, it is formed by a dry method or a wet method. In the dry method, a positive electrode active material, a binder, and other materials such as a conductive material and a thickener used as needed are mixed without using a dispersion solvent to form a sheet, which is used as a current collector. Crimp. In the wet method, a positive electrode active material, a binder, and other materials such as a conductive material and a thickener used as necessary are dissolved or dispersed in a dispersion solvent to form a slurry, which is applied to a current collector. ,dry.
 正極活物質は一般に粒子状であり、粒子の形状としては、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられる。正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子のメジアン径d50)は、次の範囲で調整可能である。正極活物質のタップ密度(充填性)が低すぎず、所望のタップ密度を得る観点からは、正極活物質のD50は1μm以上であることが好ましく、3μm以上であることがより好ましく、5μm以上であることが更に好ましい。また、粒子内のリチウムイオンの拡散に要する時間が長くなって電池性能が低下するのを抑制し、かつ、正極合材層を形成するためのスラリーの塗布性を良好にする観点からは、正極活物質のD50は30μm以下であることが好ましく、25μm以下であることがより好ましく、15μm以下であることが更に好ましい。なお、メジアン径D50は、レーザー回折・散乱法により求めた体積基準の粒度分布において小径側の積算が50%となるときの値である。 The positive electrode active material is generally in the form of particles, and examples of the particle shape include a lump shape, a polyhedron shape, a spherical shape, an elliptical spherical shape, a plate shape, a needle shape, and a column shape. The median diameter d50 of the positive electrode active material particles (in the case where the primary particles aggregate to form secondary particles), the median diameter d50 of the secondary particles can be adjusted within the following range. From the viewpoint of obtaining a desired tap density without the tap density (fillability) of the positive electrode active material being too low, D50 of the positive electrode active material is preferably 1 μm or more, more preferably 3 μm or more, and more preferably 5 μm or more. More preferably. In addition, from the viewpoint of suppressing the deterioration of battery performance due to the long time required for diffusion of lithium ions in the particles, and improving the coating property of the slurry for forming the positive electrode mixture layer, the positive electrode The D50 of the active material is preferably 30 μm or less, more preferably 25 μm or less, and even more preferably 15 μm or less. The median diameter D50 is a value when the integration on the small diameter side is 50% in the volume-based particle size distribution obtained by the laser diffraction / scattering method.
 正極活物質の粒子のBET比表面積は、電池性能の低下を抑制する観点からは0.2m/g以上であることが好ましく、0.3m/g以上であることがより好ましく、0.4m/g以上であることが更に好ましい。また、結着材、導電材等の他の材料との混合性の低下を抑制する観点からは、4.0m/g以下であることが好ましく、2.5m/g以下であることがより好ましく、1.5m/g以下であることが更に好ましい。BET比表面積は、BET法により求められた比表面積(単位gあたりの面積)である。 The BET specific surface area of the positive electrode active material particles is preferably 0.2 m 2 / g or more, more preferably 0.3 m 2 / g or more, from the viewpoint of suppressing a decrease in battery performance. More preferably, it is 4 m 2 / g or more. Further, from the viewpoint of suppressing a decrease in miscibility with other materials such as a binder and a conductive material, it is preferably 4.0 m 2 / g or less, and is 2.5 m 2 / g or less. More preferably, it is still more preferably 1.5 m 2 / g or less. The BET specific surface area is a specific surface area (area per unit g) determined by the BET method.
 正極合材層が導電材を含む場合、導電材は特に制限されず、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素質材料などが挙げられる。これらの導電材は1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。 When the positive electrode mixture layer includes a conductive material, the conductive material is not particularly limited, and is a metal material such as copper or nickel; graphite such as natural graphite or artificial graphite; graphite black such as acetylene black; needle coke or the like Examples thereof include carbonaceous materials such as amorphous carbon. These conductive materials may be used alone or in combination of two or more.
 正極合材層に用いられる結着材は、特に限定されない。結着材として具体的には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン-ブタジエンゴム)、NBR(アクリロニトリル-ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン-プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体、ポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物などが挙げられる。結着材は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。正極の安定性の観点から、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素系高分子を用いることが好ましい。 The binder used for the positive electrode mixture layer is not particularly limited. Specific examples of the binder include resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene) Rubber), fluoropolymer, isoprene rubber, butadiene rubber, ethylene-propylene rubber, and other rubbery polymers; styrene / butadiene / styrene block copolymers or hydrogenated products thereof, EPDM (ethylene / propylene / diene terpolymers) ), Thermoplastic elastomeric polymers such as styrene / ethylene / butadiene / ethylene copolymers, styrene / isoprene / styrene block copolymers or hydrogenated products thereof; syndiotactic-1,2-polybutadiene, poly Soft resin polymers such as vinyl acid, ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer; polyvinylidene fluoride (PVdF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene Fluorine polymers such as ethylene copolymers and polytetrafluoroethylene / vinylidene fluoride copolymers; polymer compositions having ion conductivity of alkali metal ions (particularly lithium ions), and the like. A binder may be used individually by 1 type, and may be used in combination of 2 or more type. From the viewpoint of the stability of the positive electrode, it is preferable to use a fluorine-based polymer such as polyvinylidene fluoride (PVdF) or a polytetrafluoroethylene / vinylidene fluoride copolymer.
 湿式法により正極合材層を形成する場合、スラリーを調製するために用いる分散溶媒は特に制限されず、水系溶媒と有機系溶媒のどちらを用いてもよい。水系溶媒としては、水、アルコールと水との混合溶媒等が挙げられ、有機系溶媒としては、N-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。特に水系溶媒を用いる場合、増粘材を用いることが好ましい。上記分散溶媒は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。 When the positive electrode mixture layer is formed by a wet method, the dispersion solvent used for preparing the slurry is not particularly limited, and either an aqueous solvent or an organic solvent may be used. Examples of the aqueous solvent include water, a mixed solvent of alcohol and water, and the organic solvent includes N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, Diethyltriamine, N, N-dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane Etc. In particular, when an aqueous solvent is used, it is preferable to use a thickener. The said dispersion solvent may be used individually by 1 type, or may be used in combination of 2 or more type.
 増粘材は特に制限されず、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を組み合わせて用いてもよい。 The thickener is not particularly limited, and examples thereof include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used alone or in combination of two or more.
 集電体上に形成された正極合材層は、正極活物質の充填密度を向上させるため、ハンドプレス、ローラープレス等により圧密化することが好ましい。
 前記のように圧密化した正極合材層の密度は、入出力特性及び安全性の更なる向上の観点からは、2.4g/cm~2.8g/cmであることが好ましく、2.45g/cm~2.7g/cmであることがより好ましい。
The positive electrode mixture layer formed on the current collector is preferably consolidated by a hand press, a roller press or the like in order to improve the packing density of the positive electrode active material.
The density of compacted the positive-electrode mixture layer as described above, the input-output characteristics and in view of further improvement of safety, it is preferably 2.4g / cm 3 ~ 2.8g / cm 3, 2 More preferably, it is from .45 g / cm 3 to 2.7 g / cm 3 .
 正極用の集電体の材質は特に制限されない。例えば、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料、及びカーボンクロス、カーボンペーパー等の炭素質材料が挙げられる。中でも金属材料が好ましく、アルミニウムがより好ましい。
 集電体の形状は特に制限されず、種々の形状に加工された材料を用いることができる。
金属材料を用いる場合の形状としては金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素質材料を用いる場合の形状としては炭素板、炭素薄膜、炭素円柱等が挙げられる。中でも、金属薄膜を用いることが好ましい。薄膜は、必要に応じてメッシュ状に形成してもよい。
The material of the positive electrode current collector is not particularly limited. Examples thereof include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum, and carbonaceous materials such as carbon cloth and carbon paper. Of these, metal materials are preferable, and aluminum is more preferable.
The shape of the current collector is not particularly limited, and materials processed into various shapes can be used.
Examples of the shape when using a metal material include a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, and a foam metal, and the shape when using a carbonaceous material is a carbon plate, A carbon thin film, a carbon cylinder, etc. are mentioned. Among these, it is preferable to use a metal thin film. The thin film may be formed in a mesh shape as necessary.
2.負極
 本実施の形態の負極(負極板)は、集電体及びその少なくとも一方の面上に形成された負極合材層(負極合剤層)よりなる。負極合材層は、負極活物質、結着材、及び必要に応じて用いられる増粘材等を含有する層である。
2. Negative electrode The negative electrode (negative electrode plate) of the present embodiment is composed of a current collector and a negative electrode mixture layer (negative electrode mixture layer) formed on at least one surface thereof. The negative electrode mixture layer is a layer containing a negative electrode active material, a binder, a thickener used as necessary, and the like.
 負極活物質としては、黒鉛及び非晶質炭素からなる群より選択される少なくとも1種の炭素材料を含むことが好ましい。炭素材料は、結晶構造がそろった黒鉛系の炭素材料と、結晶構造が乱れた非黒鉛系の炭素材料とに大別される。リチウムイオン二次電池の高容量化の観点からは黒鉛が好ましく、安全性の観点からは非晶質炭素が好ましい。 The negative electrode active material preferably contains at least one carbon material selected from the group consisting of graphite and amorphous carbon. Carbon materials are roughly classified into graphite-based carbon materials having a uniform crystal structure and non-graphite-based carbon materials having a disordered crystal structure. From the viewpoint of increasing the capacity of the lithium ion secondary battery, graphite is preferable, and from the viewpoint of safety, amorphous carbon is preferable.
 黒鉛系の炭素材料としては、天然黒鉛及び人造黒鉛が挙げられる。非黒鉛系の炭素材料としては、非晶質炭素が挙げられ、非晶質炭素は、易黒鉛化炭素(ソフトカーボンという場合もある)と、難黒鉛化炭素(ハードカーボンという場合もある)とに分類される。一般に、易黒鉛化炭素は2000℃~3000℃の温度条件下で黒鉛になりやすい非晶質炭素であり、難黒鉛化炭素は2000℃~3000℃の温度条件下で黒鉛になりにくい非晶質炭素である。 Examples of graphite-based carbon materials include natural graphite and artificial graphite. Non-graphite-based carbon materials include amorphous carbon, which includes graphitizable carbon (sometimes called soft carbon) and non-graphitizable carbon (sometimes called hard carbon). are categorized. Generally, graphitizable carbon is amorphous carbon that tends to become graphite under temperature conditions of 2000 ° C. to 3000 ° C., and non-graphitizable carbon is amorphous that is difficult to become graphite under temperature conditions of 2000 ° C. to 3000 ° C. Carbon.
 本明細書においては、易黒鉛化炭素は、X線広角回折法により得られるC軸方向の面間隔d002の値が0.36nm未満である非晶質炭素と定義する。難黒鉛化炭素は、X線広角回折法により得られるC軸方向の面間隔d002の値が0.36nm以上である非晶質炭素と定義する。 In the present specification, graphitizable carbon is defined as amorphous carbon having a value of the interplanar spacing d002 of less than 0.36 nm in the C-axis direction obtained by the X-ray wide angle diffraction method. Non-graphitizable carbon is defined as amorphous carbon having a surface spacing d002 in the C-axis direction obtained by an X-ray wide-angle diffraction method of 0.36 nm or more.
 難黒鉛化炭素は、X線広角回折法により得られるC軸方向の面間隔d002値が、0.36nm~0.40nmであることが好ましい。 It is preferable that the non-graphitizable carbon has a surface spacing d002 value in the C-axis direction obtained by the X-ray wide angle diffraction method of 0.36 nm to 0.40 nm.
 易黒鉛化炭素は、X線広角回折法により得られるC軸方向の面間隔d002値が、0.34nm以上0.36nm未満であることが好ましく、0.341nm~0.355nm以下であることがより好ましく、0.342nm~0.35nm以下であることが更に好ましい。 The graphitizable carbon has a C-axis direction plane distance d002 value obtained by an X-ray wide angle diffraction method of preferably 0.34 nm or more and less than 0.36 nm, and preferably 0.341 nm to 0.355 nm or less. More preferably, it is 0.342 nm to 0.35 nm or less.
 黒鉛は、X線広角回折法により得られるC軸方向の面間隔d002値が、0.33nm以上0.34nm未満であることが好ましく、0.335nm~0.337nm以下であることがより好ましい。 Graphite preferably has a C-axis direction plane distance d002 value of 0.33 nm or more and less than 0.34 nm, more preferably 0.335 nm to 0.337 nm or less, obtained by the X-ray wide angle diffraction method.
 非晶質炭素は、例えば、石油ピッチ、ポリアセン、ポリパラフェニレン、ポリフルフリルアルコール等を熱処理することにより製造することができる。また、熱処理の温度を変えることによって、難黒鉛化炭素としたり、易黒鉛化炭素としたりすることが可能である。例えば、500℃~800℃程度の熱処理は難黒鉛化炭素の製造に適しており、800℃~1000℃程度の熱処理は易黒鉛化炭素の製造に適している。 Amorphous carbon can be produced, for example, by heat treating petroleum pitch, polyacene, polyparaphenylene, polyfurfuryl alcohol, or the like. Further, by changing the temperature of the heat treatment, it can be made non-graphitizable carbon or easily graphitized carbon. For example, heat treatment at about 500 ° C. to 800 ° C. is suitable for producing non-graphitizable carbon, and heat treatment at about 800 ° C. to 1000 ° C. is suitable for producing graphitizable carbon.
 炭素材料を負極活物質として用いる場合の含有割合は、負極活物質の総量に対して、20質量%以上が好ましく、50質量%以上がより好ましく、70質量%以上が更に好ましい。 When the carbon material is used as the negative electrode active material, the content ratio is preferably 20% by mass or more, more preferably 50% by mass or more, and still more preferably 70% by mass or more based on the total amount of the negative electrode active material.
 負極活物質の平均粒子径は、2.0μm~50μmであることが好ましい。平均粒子径が5μm以上であると、比表面積を適正な範囲とすることができ、リチウムイオン二次電池の初回充放電効率が優れるとともに、粒子同士の接触が良く入力特性に優れる傾向がある。一方、平均粒子径が30μm以下であると、電極面に凸凹が発生しにくく電池の短絡を抑制できると共に、粒子表面から内部へのLiの拡散距離が比較的短くなるためリチウムイオン二次電池の入力特性が向上する傾向がある。負極活物質の平均粒子径は、5μm~30μmであることがより好ましく、10μm~20μmであることがさらに好ましい。 The average particle size of the negative electrode active material is preferably 2.0 μm to 50 μm. When the average particle size is 5 μm or more, the specific surface area can be in an appropriate range, the initial charge / discharge efficiency of the lithium ion secondary battery is excellent, and the particles are in good contact with each other and have excellent input characteristics. On the other hand, when the average particle diameter is 30 μm or less, unevenness is hardly generated on the electrode surface, and short circuit of the battery can be suppressed, and the diffusion distance of Li from the particle surface to the inside becomes relatively short, so that the lithium ion secondary battery Input characteristics tend to improve. The average particle size of the negative electrode active material is more preferably 5 μm to 30 μm, and even more preferably 10 μm to 20 μm.
 本明細書において負極活物質の平均粒子径は、界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所製SALD-3000J)で測定される体積基準の粒度分布において、小径側からの積算が50%となるときの値(メジアン径(D50))とする。 In the present specification, the average particle diameter of the negative electrode active material is measured with a laser diffraction particle size distribution analyzer (for example, SALD-3000J manufactured by Shimadzu Corporation) by dispersing a sample in purified water containing a surfactant. In the volume-based particle size distribution, the value (median diameter (D50)) when the integration from the small diameter side is 50% is used.
 負極活物質は、炭素材料以外の材料を含んでもよい。炭素材料以外の材料は特に制限されず、例えば、酸化錫、酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体、リチウムアルミニウム合金等のリチウム合金、及びリチウムと合金を形成可能な材料(Sn、Si等)が挙げられる。これらの材料は、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。 The negative electrode active material may include a material other than the carbon material. The material other than the carbon material is not particularly limited. For example, a metal oxide such as tin oxide or silicon oxide, a metal composite oxide, a lithium simple substance, a lithium alloy such as a lithium aluminum alloy, or a material capable of forming an alloy with lithium ( Sn, Si, etc.). These materials may be used alone or in combination of two or more.
 負極用の集電体の材質は特に制限されず、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工のし易さとコストの観点から銅が好ましい。
 集電体の形状は特に制限されず、種々の形状に加工された材料を用いることができる。
具体例としては、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、金属薄膜が好ましく、銅箔がより好ましい。
The material of the current collector for the negative electrode is not particularly limited, and examples thereof include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Among these, copper is preferable from the viewpoint of ease of processing and cost.
The shape of the current collector is not particularly limited, and materials processed into various shapes can be used.
Specific examples include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal. Among these, a metal thin film is preferable, and a copper foil is more preferable.
 負極合材層の形成方法は特に制限されない。例えば、正極合材層と同様に乾式法又は湿式法により形成することができる。
 負極合材層に含まれる結着材は特に制限されない。例えば、正極合材層に用いられる結着材として例示したものから選択することができる。
 負極合材層を湿式法により形成する場合、スラリーの調製に用いられる分散溶媒は特に制限されない。例えば、正極合材層に用いられる分散溶媒として例示したものから選択することができる。
 負極合材層が増粘剤を含む場合、増粘剤は特に制限されない。例えば、正極合材層に用いられる増粘剤として例示したものから選択することができる。
The method for forming the negative electrode mixture layer is not particularly limited. For example, it can be formed by a dry method or a wet method similarly to the positive electrode mixture layer.
The binder contained in the negative electrode mixture layer is not particularly limited. For example, it can select from what was illustrated as a binder used for a positive mix layer.
When the negative electrode mixture layer is formed by a wet method, the dispersion solvent used for preparing the slurry is not particularly limited. For example, it can select from what was illustrated as a dispersion | distribution solvent used for a positive electrode compound material layer.
When the negative electrode mixture layer includes a thickener, the thickener is not particularly limited. For example, it can select from what was illustrated as a thickener used for a positive mix layer.
3.電解液
 電解液は、電解質と、これを溶解する非水溶媒とを含み、必要に応じて、添加剤等のその他の成分を含んでもよい。
3. Electrolytic Solution The electrolytic solution contains an electrolyte and a nonaqueous solvent that dissolves the electrolyte, and may contain other components such as additives as necessary.
 電解質は、リチウムイオン二次電池用の非水電解液の電解質として使用可能なリチウム塩であれば特に制限されない。電解質としては、以下に示す無機リチウム塩、含フッ素有機リチウム塩、オキサラトボレート塩等のリチウム塩が挙げられる。これらのリチウム塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。 The electrolyte is not particularly limited as long as it is a lithium salt that can be used as an electrolyte of a non-aqueous electrolyte for a lithium ion secondary battery. Examples of the electrolyte include lithium salts such as the following inorganic lithium salts, fluorine-containing organic lithium salts, and oxalatoborate salts. These lithium salts may be used alone or in combination of two or more.
 無機リチウム塩としては、LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩、LiClO、LiBrO、LiIO等の過ハロゲン酸塩、LiA
lCl等の無機塩化物塩などが挙げられる。
Examples of the inorganic lithium salt, LiPF 6, LiBF 4, LiAsF 6, inorganic fluoride salts LiSbF 6 such, LiClO 4, LiBrO 4, perhalogenate of LiIO 4 like, LiA
and inorganic chloride salts of LCL 4, and the like.
 含フッ素有機リチウム塩としては、LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(C
SO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCF
CF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオ
ロアルキルフッ化リン酸塩などが挙げられる。
Examples of the fluorine-containing organic lithium salt include perfluoroalkane sulfonates such as LiCF 3 SO 3 ; LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C Perfluoroalkanesulfonylimide salts such as 4 F 9 SO 2 ); LiC (C
Perfluoroalkanesulfonylmethide salts such as F 3 SO 2 ) 3 ; Li [PF 5 (CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 ( CF 2 CF
2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 2 CF 3 ) 3 ] and other fluoroalkyl fluorophosphates.
 オキサラトボレート塩としては、リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等が挙げられる。 Examples of the oxalatoborate salt include lithium bis (oxalato) borate and lithium difluorooxalatoborate.
 非水溶媒に対する溶解性、二次電池とした場合の充放電特性、出力特性、サイクル特性等を総合的に判断すると、ヘキサフルオロリン酸リチウム(LiPF)を電解質として含むことが好ましい。 When comprehensively judging solubility in a non-aqueous solvent, charge / discharge characteristics, output characteristics, cycle characteristics, and the like in the case of a secondary battery, it is preferable to include lithium hexafluorophosphate (LiPF 6 ) as an electrolyte.
 電解質として2種以上のリチウム塩を用いる場合の好ましい組み合わせとしては、LiPFとLiBFとの組み合わせが挙げられる。この場合には、両者の合計に占めるLiBFの割合が、0.01質量%~20質量%以下であることが好ましく、0.1質量%~5質量%であることがより好ましい。
 また、他の好ましい組み合わせとしては、無機フッ化物塩とパーフルオロアルカンスルホニルイミド塩との組み合わせが挙げられる。この場合には、両者の合計に占める無機フッ化物塩の割合が70質量%~99質量%であることが好ましく、80質量%~98質量%以下であることがより好ましい。
 電解質が上記の好ましい組み合わせを含む場合は、高温保存によるリチウムイオン二次電池の特性の劣化が有効に抑制される傾向にある。
A preferable combination when two or more lithium salts are used as the electrolyte includes a combination of LiPF 6 and LiBF 4 . In this case, the proportion of LiBF 4 in the total of both is preferably 0.01% by mass to 20% by mass, and more preferably 0.1% by mass to 5% by mass.
Another preferable combination is a combination of an inorganic fluoride salt and a perfluoroalkanesulfonylimide salt. In this case, the proportion of the inorganic fluoride salt in the total of both is preferably 70% by mass to 99% by mass, and more preferably 80% by mass to 98% by mass.
When the electrolyte includes the above-described preferable combination, deterioration of the characteristics of the lithium ion secondary battery due to high temperature storage tends to be effectively suppressed.
 電解液中の電解質の濃度は特に制限されない。例えば、0.8mol/L~1.3mol/Lであることが好ましく、0.9mol/L~1.2mol/Lであることがより好ましい。電解液中の電解質の濃度が0.8mol/L以上であると、電解液の電気伝導率が充分確保される傾向にある。また、電解質の濃度が1.3mol/L以下であると、電解液の粘度の上昇が抑制されて電気伝導度の低下が抑制される傾向にある。 The concentration of the electrolyte in the electrolytic solution is not particularly limited. For example, 0.8 mol / L to 1.3 mol / L is preferable, and 0.9 mol / L to 1.2 mol / L is more preferable. When the concentration of the electrolyte in the electrolytic solution is 0.8 mol / L or more, the electric conductivity of the electrolytic solution tends to be sufficiently secured. Moreover, when the concentration of the electrolyte is 1.3 mol / L or less, an increase in the viscosity of the electrolytic solution is suppressed, and a decrease in electrical conductivity tends to be suppressed.
 非水溶媒は特に制限されない。例えば、環状カーボネート、鎖状カーボネート、鎖状エステル、環状エーテル、鎖状エーテル及び環状スルホンが挙げられ、1種を単独で用いても2種以上を併用してもよい。 The non-aqueous solvent is not particularly limited. Examples include cyclic carbonates, chain carbonates, chain esters, cyclic ethers, chain ethers, and cyclic sulfones, and these may be used alone or in combination of two or more.
 環状カーボネートとしては、環状カーボネートを構成するアルキレン基の炭素数が2~6のものが好ましく、2~4のものがより好ましい。具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネート及びプロピレンカーボネートが好ましい。 As the cyclic carbonate, an alkylene group constituting the cyclic carbonate preferably has 2 to 6 carbon atoms, and more preferably 2 to 4 carbon atoms. Specific examples include ethylene carbonate, propylene carbonate, butylene carbonate, and the like. Of these, ethylene carbonate and propylene carbonate are preferable.
 鎖状カーボネートとしては、ジアルキルカーボネートが好ましく、2つのアルキル基の炭素数がそれぞれ1~5であるジアルキルカーボネートがより好ましく、2つのアルキル基の炭素数がそれぞれ1~4であるジアルキルカーボネートが更に好ましい。ジアルキルカーボネートとしては、2つのアルキル基の炭素数が同じであるジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート等の対称鎖状カーボネート、及び2つのアルキル基の炭素数が異なるエチルメチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート等の非対称鎖状カーボネートが挙げられる。中でも、ジメチルカーボネート、ジエチルカーボネート及びエチルメチルカーボネートが好ましい。
 鎖状エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル等が挙げられる。中でも、低温特性改善の観点から酢酸メチルを用いることが好ましい。
 環状エーテルとしては、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン等が挙げられる。
 鎖状エーテルとしては、ジメトキシエタン、ジメトキシメタン等が挙げられる。
 環状スルホンとしては、スルホラン、3-メチルスルホラン等が挙げられる。
The chain carbonate is preferably a dialkyl carbonate, more preferably a dialkyl carbonate in which the two alkyl groups each have 1 to 5 carbon atoms, and even more preferably a dialkyl carbonate in which the two alkyl groups each have 1 to 4 carbon atoms. . Dialkyl carbonates include symmetric chain carbonates such as dimethyl carbonate, diethyl carbonate and di-n-propyl carbonate in which two alkyl groups have the same carbon number, and ethyl methyl carbonate and methyl having two different alkyl groups in carbon number. Examples include asymmetric chain carbonates such as -n-propyl carbonate and ethyl-n-propyl carbonate. Of these, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are preferable.
Examples of chain esters include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate. Among them, it is preferable to use methyl acetate from the viewpoint of improving the low temperature characteristics.
Examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran and the like.
Examples of chain ethers include dimethoxyethane and dimethoxymethane.
Examples of the cyclic sulfone include sulfolane and 3-methylsulfolane.
 非水溶媒は、高誘電率溶媒である環状カーボネートと、低粘度溶媒である鎖状カーボネートとを含むことが好ましい。
 非水溶媒が環状カーボネートと、鎖状カーボネートとを含む場合、その含有率は、電池特性の観点から、非水溶媒全量を基準として、85質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることが更に好ましい。
The non-aqueous solvent preferably contains a cyclic carbonate that is a high dielectric constant solvent and a chain carbonate that is a low viscosity solvent.
When the non-aqueous solvent includes a cyclic carbonate and a chain carbonate, the content is preferably 85% by mass or more and 90% by mass or more based on the total amount of the non-aqueous solvent from the viewpoint of battery characteristics. More preferably, it is more preferably 95% by mass or more.
 電池のサイクル特性や高温保存特性(特に、高温保存後の残存容量及び高負荷放電容量)を向上させる観点からは、非水溶媒は、環状カーボネートと鎖状カーボネートとを含み、環状カーボネート(α)と鎖状カーボネート(β)の体積比(α/β)が20/80~40/60であることがより好ましく、22/78~38/62であることがより好ましく、25/75~35/65であることが更に好ましい。 From the viewpoint of improving battery cycle characteristics and high-temperature storage characteristics (particularly, remaining capacity and high-load discharge capacity after high-temperature storage), the non-aqueous solvent includes cyclic carbonate and chain carbonate, and cyclic carbonate (α). The volume ratio (α / β) of the chain carbonate (β) is more preferably 20/80 to 40/60, more preferably 22/78 to 38/62, and 25/75 to 35 / More preferably, it is 65.
 環状カーボネートと鎖状カーボネートの好ましい組み合わせの具体例としては、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとジエチルカーボネート、エチレンカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。 Specific examples of preferred combinations of cyclic carbonate and chain carbonate include ethylene carbonate and dimethyl carbonate, ethylene carbonate and diethyl carbonate, ethylene carbonate and ethyl methyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and ethyl Examples thereof include methyl carbonate, ethylene carbonate, diethyl carbonate, and ethyl methyl carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
 これらの組み合わせの中でも、鎖状カーボネートが対称鎖状カーボネートと、非対称鎖状カーボネートの両方を含む組み合わせが好ましい。具体例としては、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートの組み合わせ等が挙げられる。 Among these combinations, a combination in which the chain carbonate includes both a symmetric chain carbonate and an asymmetric chain carbonate is preferable. Specific examples include ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate, ethylene carbonate, diethyl carbonate and ethyl methyl carbonate, a combination of ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate.
 環状カーボネートと、対称鎖状カーボネートと、非対称鎖状カーボネートとを組み合わせることで、リチウムイオン二次電池のサイクル特性及び大電流放電特性がさらに向上する傾向にある。中でも、非対称鎖状カーボネートがエチルメチルカーボネートである組み合わせが好ましい。また、鎖状カーボネートが、アルキル基の炭素数がそれぞれ1~2であるジアルキルカーボネートである組み合わせが好ましい。 Cycle characteristics and large current discharge characteristics of lithium ion secondary batteries tend to be further improved by combining cyclic carbonate, symmetric chain carbonate, and asymmetric chain carbonate. Among these, a combination in which the asymmetric chain carbonate is ethyl methyl carbonate is preferable. Further, a combination in which the chain carbonate is a dialkyl carbonate in which the alkyl group has 1 to 2 carbon atoms is preferable.
 非水溶媒は、電池特性を向上させる観点から、添加剤を含んでいてもよい。添加剤は特に制限されず、例えば、窒素及び硫黄からなる群より選択される少なくとも一方を含有する複素環化合物、環状カルボン酸エステル、環状スルホン酸エステル、フッ素含有環状カーボネート、その他の分子内に不飽和結合を有する化合物が挙げられる。 The nonaqueous solvent may contain an additive from the viewpoint of improving battery characteristics. The additive is not particularly limited. For example, the additive includes at least one selected from the group consisting of nitrogen and sulfur, a heterocyclic compound, a cyclic carboxylic acid ester, a cyclic sulfonic acid ester, a fluorine-containing cyclic carbonate, and other non-inorganic molecules. Examples include compounds having a saturated bond.
 環状スルホン酸エステルとしては、1,3-プロパンスルトン、1-メチル-1,3-プロパンスルトン、3-メチル-1,3-プロパンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトン、1,4-ブテンスルトン等が挙げられる。中でも、1,3-プロパンスルトン、1,4-ブタンスルトンがより直流抵抗を低減できる観点から好ましい。 Examples of cyclic sulfonate esters include 1,3-propane sultone, 1-methyl-1,3-propane sultone, 3-methyl-1,3-propane sultone, 1,4-butane sultone, 1,3-propene sultone, 1 , 4-butene sultone and the like. Among these, 1,3-propane sultone and 1,4-butane sultone are preferable from the viewpoint of reducing the DC resistance.
 フッ素含有環状カーボネートとしては、特に限定はないが、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、トリフルオロエチレンカーボネート、テトラフルオロエチレンカーボネート、トリフルオロプロピレンカーボネート等が挙げられる。中でも、フルオロエチレンカーボネート等が電池の長寿命化の観点から特に好ましい。 The fluorine-containing cyclic carbonate is not particularly limited, and examples thereof include fluoroethylene carbonate, difluoroethylene carbonate, trifluoroethylene carbonate, tetrafluoroethylene carbonate, and trifluoropropylene carbonate. Among these, fluoroethylene carbonate and the like are particularly preferable from the viewpoint of extending the life of the battery.
 その他の分子内に不飽和結合を有する化合物としては、ビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネート、メチルビニルカーボネート、エチルビニルカーボネート、プロピルビニルカーボネート、ジビニルカーボネート、アリルメチルカーボネート、アリルエチルカーボネート、アリルプロピルカーボネート、ジアリルカーボネート、ジメタリルカーボネート等のカーボネート化合物;酢酸ビニル、プロピオン酸ビニル、アクリル酸ビニル、クロトン酸ビニル、メタクリル酸ビニル、酢酸アリル、プロピオン酸アリル、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル等のエステル化合物;ジビニルスルホン、メチルビニルスルホン、エチルビニルスルホン、プロピルビニルスルホン、ジアリルスルホン、アリルメチルスルホン、アリルエチルスルホン、アリルプロピルスルホン等のスルホン化合物;ジビニルサルファイト、メチルビニルサルファイト、エチルビニルサルファイト、ジアリルサルファイト等のサルファイト化合物;ビニルメタンスルホネート、ビニルエタンスルホネート、アリルメタンスルホネート、アリルエタンスルホネート、メチルビニルスルホネート、エチルビニルスルホネート等のスルホネート類;ジビニルサルフェート、メチルビニルサルフェート、エチルビニルサルフェート、ジアリルサルフェート等のサルフェート化合物等が挙げられる。中でも、ビニレンカーボネート、ジメタクリルカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネート、酢酸ビニル、プロピオン酸ビニル、アクリル酸ビニル、ジビニルスルホン、ビニルメタンスルホネート等が電池の長寿命化の観点から特に好ましい。 Other compounds having an unsaturated bond in the molecule include vinylene carbonate, vinyl ethylene carbonate, divinyl ethylene carbonate, methyl vinyl carbonate, ethyl vinyl carbonate, propyl vinyl carbonate, divinyl carbonate, allyl methyl carbonate, allyl ethyl carbonate, allyl propyl. Carbonate compounds such as carbonate, diallyl carbonate, dimethallyl carbonate; vinyl acetate, vinyl propionate, vinyl acrylate, vinyl crotonic acid, vinyl methacrylate, allyl acetate, allyl propionate, methyl acrylate, ethyl acrylate, propyl acrylate , Ester compounds such as methyl methacrylate, ethyl methacrylate, propyl methacrylate; divinyl sulfone, methyl vinyl Sulfone compounds such as sulfone, ethyl vinyl sulfone, propyl vinyl sulfone, diallyl sulfone, allyl methyl sulfone, allyl ethyl sulfone, and allyl propyl sulfone; sulfites such as divinyl sulfite, methyl vinyl sulfite, ethyl vinyl sulfite, and diallyl sulfite Compounds; sulfonates such as vinyl methane sulfonate, vinyl ethane sulfonate, allyl methane sulfonate, allyl ethane sulfonate, methyl vinyl sulfonate, and ethyl vinyl sulfonate; sulfate compounds such as divinyl sulfate, methyl vinyl sulfate, ethyl vinyl sulfate, and diallyl sulfate It is done. Among these, vinylene carbonate, dimethacrylic carbonate, vinyl ethylene carbonate, divinyl ethylene carbonate, vinyl acetate, vinyl propionate, vinyl acrylate, divinyl sulfone, vinyl methanesulfonate, and the like are particularly preferable from the viewpoint of extending the life of the battery.
 上記添加剤以外に、求められる機能に応じて過充電防止剤、負極皮膜形成剤、正極保護剤、高入出力剤等の他の添加剤を用いてもよい。 In addition to the above additives, other additives such as an overcharge inhibitor, a negative electrode film forming agent, a positive electrode protective agent, and a high input / output agent may be used depending on the required function.
4.セパレータ
 セパレータは、正極と負極との間に配置される。本実施の形態では、セパレータは、ポリオレフィン樹脂を含む第一の層と、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、ポリビニルアルコール樹脂、ポリアクリロニトリル樹脂及びアラミド樹脂からなる群より選択される少なくとも1種を含む第二の層と、を有する。第二の層は第一の層よりも透気度が小さく、且つ、第一の層よりも前記正極に近い位置に配置される。
4). Separator The separator is disposed between the positive electrode and the negative electrode. In the present embodiment, the separator includes at least one selected from the group consisting of a first layer containing a polyolefin resin, a polyethylene resin, a polypropylene resin, a polyethylene terephthalate resin, a polyvinyl alcohol resin, a polyacrylonitrile resin, and an aramid resin. Including a second layer. The second layer has a lower air permeability than the first layer, and is disposed closer to the positive electrode than the first layer.
 セパレータに含まれる第一の層の数及び第二の層の数は、特に制限されない。また、セパレータは、第一の層及び第二の層以外の部材を含んでもよい。 The number of first layers and the number of second layers included in the separator are not particularly limited. The separator may include members other than the first layer and the second layer.
 セパレータの厚さは特に制限されない。例えば、10μm~70μmであることが好ましく、12μm~60μmであることがより好ましく、15μm~50μmであることが更に好ましい。セパレータの厚さが70μm以上であると、高負荷放電特性が低下する傾向にある。セパレータの厚さが10μm以下であると、異物等による内部短絡が発生しやすくなる傾向にある。 The thickness of the separator is not particularly limited. For example, the thickness is preferably 10 μm to 70 μm, more preferably 12 μm to 60 μm, and still more preferably 15 μm to 50 μm. When the thickness of the separator is 70 μm or more, the high load discharge characteristics tend to deteriorate. When the thickness of the separator is 10 μm or less, an internal short circuit due to foreign matter or the like tends to occur.
〔第一の層〕
 第一の層はポリオレフィン樹脂のみからなっても、ポリオレフィン樹脂とその他の樹脂とからなってもよい。第一の層の全質量におけるポリオレフィン樹脂の含有率は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることが更に好ましい。
[First layer]
The first layer may be made of only a polyolefin resin, or may be made of a polyolefin resin and another resin. The content of the polyolefin resin in the total mass of the first layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more.
 第一の層に含まれるポリオレフィン樹脂は特に制限されず、ポリエチレン、ポリプロピレン等が挙げられる。中でもポリエチレンが好ましい。 The polyolefin resin contained in the first layer is not particularly limited, and examples thereof include polyethylene and polypropylene. Of these, polyethylene is preferable.
 第一の層は、透気度が20s~800sであることが好ましく、40s~750sであることがより好ましく、60s~700sであることが更に好ましい。本明細書において透気度は、ガーレー法(JIS P8117:2009)に準じて測定される値であり、サンプル面積645mmを空気100mlが通過する時間(秒)である。 The first layer preferably has an air permeability of 20 s to 800 s, more preferably 40 s to 750 s, and still more preferably 60 s to 700 s. In this specification, the air permeability is a value measured according to the Gurley method (JIS P8117: 2009), and is the time (seconds) for 100 ml of air to pass through a sample area of 645 mm 2 .
 第一の層の厚さは特に制限されない。例えば、5μm~60μmであることが好ましく、7μm~50μmであることがより好ましく、10μm~40μmであることが更に好ましい。第一の層の厚さが60μm以上であると、高負荷放電特性が低下する傾向にある。第一の層の厚さが5μm以下であると、異物等による内部短絡が発生しやすくなる傾向にある。 The thickness of the first layer is not particularly limited. For example, the thickness is preferably 5 μm to 60 μm, more preferably 7 μm to 50 μm, and still more preferably 10 μm to 40 μm. When the thickness of the first layer is 60 μm or more, the high-load discharge characteristics tend to deteriorate. When the thickness of the first layer is 5 μm or less, an internal short circuit due to foreign matter or the like tends to occur.
 第一の層の製造方法は特に制限されず、公知の方法から選択することができる。ある実施態様では、第一の層は多孔性シートである。本明細書において「多孔性シート」とは、細孔を有し、透気性を有するシート状の物体を意味する。 The method for producing the first layer is not particularly limited, and can be selected from known methods. In some embodiments, the first layer is a porous sheet. In the present specification, the “porous sheet” means a sheet-like object having pores and air permeability.
〔第二の層〕
 第二の層はポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、ポリビニルアルコール樹脂、ポリアクリロニトリル樹脂及びアラミド樹脂からなる群より選択される少なくとも1種のみからなっても、これらの樹脂とその他の樹脂とからなってもよい。第二の層の全質量におけるポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、ポリビニルアルコール樹脂、ポリアクリロニトリル樹脂及びアラミド樹脂からなる群より選択される少なくとも1種の含有率は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることが更に好ましい。
[Second layer]
Even if the second layer is composed of at least one selected from the group consisting of polyethylene resin, polypropylene resin, polyethylene terephthalate resin, polyvinyl alcohol resin, polyacrylonitrile resin and aramid resin, these resins and other resins are used. It may be. The content of at least one selected from the group consisting of polyethylene resin, polypropylene resin, polyethylene terephthalate resin, polyvinyl alcohol resin, polyacrylonitrile resin, and aramid resin in the total mass of the second layer is 80% by mass or more. Is more preferable, 90 mass% or more is more preferable, and 95 mass% or more is further preferable.
 第二の層に含まれる樹脂はポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂及びアラミド樹脂からなる群より選択される少なくとも1種であることが好ましく、ポリエチレン樹脂及びポリプロピレン樹脂からなる群より選択される少なくとも1種であることがより好ましい。 The resin contained in the second layer is preferably at least one selected from the group consisting of polyethylene resin, polypropylene resin, polyethylene terephthalate resin and aramid resin, and at least selected from the group consisting of polyethylene resin and polypropylene resin. One type is more preferable.
 第二の層は、透気度が第一の層よりも小さい。第二の層の透気度が第一の層の透気度よりも小さいと、過充電状態でガスが発生した場合に、ガスが電池容器内に分散しやすく、安全性により優れる傾向にある。第二の層の透気度は、100s以下であることが好ましく、50s以下であることがより好ましい。 The second layer has a lower air permeability than the first layer. If the air permeability of the second layer is smaller than the air permeability of the first layer, when gas is generated in an overcharged state, the gas tends to disperse in the battery container and tends to be superior in safety. . The air permeability of the second layer is preferably 100 s or less, and more preferably 50 s or less.
 第二の層は、160℃における熱収縮率が2%以下であることが好ましく、1%以下であることがより好ましい。第二の層の160℃における熱収縮率が2%以下であると、過充電状態において電池温度が上昇し、第一の層が大きく熱収縮した場合にも、第二の層によってセパレータとしての形状が維持されることで正極と負極との間の短絡を抑制できる。 The second layer preferably has a heat shrinkage at 160 ° C. of 2% or less, and more preferably 1% or less. When the heat shrinkage rate at 160 ° C. of the second layer is 2% or less, the battery temperature rises in the overcharged state, and even when the first layer is largely heat shrunk, the second layer serves as a separator. The short circuit between the positive electrode and the negative electrode can be suppressed by maintaining the shape.
 本明細書において160℃における熱収縮率は、長さ70mm(MD)、幅58.5mm(TD)の大きさにカットした第二の層に対し、160℃のオーブンにて15分の熱処理を行い、熱処理の前後における第二の層の長さの測定値から以下のようにして求める。
 熱収縮率(%)=(熱処理前の長さ(TD)-熱処理後の長さ(TD))/熱処理前の長さ×100
In this specification, the heat shrinkage rate at 160 ° C. is obtained by subjecting the second layer cut to a size of 70 mm (MD) in length and 58.5 mm (TD) in width to a heat treatment of 15 minutes in an oven at 160 ° C. And obtained from the measured value of the length of the second layer before and after the heat treatment as follows.
Thermal shrinkage (%) = (length before heat treatment (TD) −length after heat treatment (TD)) / length before heat treatment × 100
 第二の層の厚さは特に制限されない。第二の層が厚いほど、異物等の混入による短絡の発生確率が低下する傾向にある。一方、第二の層が薄いほど、電極間距離が充分に小さく、電池の内部抵抗が小さくなる傾向にある。具体的には、例えば、10μm~50μmであることが好ましく、12μm~40μmであることがより好ましく、15μm~35μmであることが更に好ましい。 The thickness of the second layer is not particularly limited. The thicker the second layer, the lower the probability of occurrence of a short circuit due to the inclusion of foreign matter or the like. On the other hand, the thinner the second layer, the smaller the distance between the electrodes, and the lower the internal resistance of the battery. Specifically, for example, the thickness is preferably 10 μm to 50 μm, more preferably 12 μm to 40 μm, and still more preferably 15 μm to 35 μm.
 第二の層の160℃における熱収縮率を小さくする観点からは、無機物を塗布、含浸等により第二の層に付着させてもよい。無機物としては、アルミナ、二酸化珪素等の酸化物、窒化アルミニウム、窒化珪素等の窒化物、硫酸バリウム、硫酸カルシウム等の硫酸塩などが挙げられる。 From the viewpoint of reducing the heat shrinkage rate of the second layer at 160 ° C., an inorganic substance may be attached to the second layer by coating, impregnation or the like. Examples of inorganic substances include oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate.
 第二の層の製造方法は特に制限されず、公知の方法から選択することができる。ある実施態様では、第二の層は不織布である。本明細書において「不織布」とは、繊維を織らずに絡み合わせて形成されたシート状の物体を意味する。 The method for producing the second layer is not particularly limited, and can be selected from known methods. In certain embodiments, the second layer is a nonwoven fabric. In the present specification, the “nonwoven fabric” means a sheet-like object formed by intertwining fibers without weaving them.
5.その他の構成部材
 リチウムイオン二次電池は、必要に応じて正極、負極、電解液及びセパレータ以外のその他の構成部材を有していてもよい。例えば、電池内部の圧力の上昇を抑制するために開裂弁を設けてもよい。開裂弁が開放することで、電池内部の圧力上昇を抑制でき、安全性を向上させることができる。
5). Other components The lithium ion secondary battery may have other components other than a positive electrode, a negative electrode, electrolyte solution, and a separator as needed. For example, a cleavage valve may be provided to suppress an increase in pressure inside the battery. By opening the cleavage valve, it is possible to suppress an increase in pressure inside the battery and to improve safety.
 また、温度上昇に伴い不活性ガス(二酸化炭素等)を放出する構成部を設けてもよい。
このような構成部を設けることで、電池内部の温度が上昇した場合に、不活性ガスの発生により速やかに開裂弁を開けることができ、安全性を向上させることができる。
Moreover, you may provide the structure part which discharge | releases inert gas (carbon dioxide etc.) with a temperature rise.
By providing such a component, when the temperature inside the battery rises, the cleavage valve can be opened quickly due to the generation of inert gas, and safety can be improved.
6.リチウムイオン二次電池の構成
 リチウムイオン二次電池の形状は特に制限されず、円筒形、角形、ラミネート型等のいずれであってもよい。リチウムイオン二次電池の電池容量は特に制限されない。電池制御の観点からは、20Ah以上であることが好ましい。
6). Configuration of Lithium Ion Secondary Battery The shape of the lithium ion secondary battery is not particularly limited, and may be any of a cylindrical shape, a square shape, a laminate type, and the like. The battery capacity of the lithium ion secondary battery is not particularly limited. From the viewpoint of battery control, it is preferably 20 Ah or more.
 図1に円筒形のリチウムイオン二次電池の構成例を示す。本構成例のリチウムイオン二次電池1は、帯状の正極2及び負極3がセパレータ4を間に挟んで渦巻状に捲回されてなる電極体5が、円筒形の電池容器6の内部に収容された構造を有する。電池容器6の内部は、図示しない電解液で満たされている。円筒形リチウムイオン二次電池としては、18650型リチウムイオン二次電池が、民生用リチウムイオン二次電池として広く普及している。18650型リチウムイオン二次電池の外径寸法は、直径が18mmで、高さが65mm程度である。 FIG. 1 shows a configuration example of a cylindrical lithium ion secondary battery. In the lithium ion secondary battery 1 of this configuration example, an electrode body 5 in which a strip-like positive electrode 2 and a negative electrode 3 are wound in a spiral shape with a separator 4 interposed therebetween is accommodated in a cylindrical battery container 6. Has a structured. The inside of the battery container 6 is filled with an electrolyte solution (not shown). As the cylindrical lithium ion secondary battery, an 18650 type lithium ion secondary battery is widely used as a consumer lithium ion secondary battery. The outer diameter of the 18650 type lithium ion secondary battery is about 18 mm in diameter and about 65 mm in height.
 ラミネート型のリチウムイオン二次電池は、例えば、次のようにして作製できる。まず、正極と負極を角形に切断し、それぞれの電極にタブを溶接して、正負極端子を作製する。正極、セパレータ、負極をこの順番に積層した積層体を作製し、その状態でアルミニウム製のラミネートパック内に収容し、正負極端子をアルミラミネートパックの外に出し密封する。次いで、非水電解質をアルミラミネートパック内に注液し、アルミラミネートパックの開口部を密封する。これにより、リチウムイオン二次電池が得られる。 The laminate type lithium ion secondary battery can be manufactured, for example, as follows. First, a positive electrode and a negative electrode are cut into squares, and tabs are welded to the respective electrodes to produce positive and negative electrode terminals. A laminate in which the positive electrode, the separator, and the negative electrode are laminated in this order is prepared, and in that state, accommodated in an aluminum laminate pack, and the positive and negative electrode terminals are taken out of the aluminum laminate pack and sealed. Next, the nonaqueous electrolyte is poured into the aluminum laminate pack, and the opening of the aluminum laminate pack is sealed. Thereby, a lithium ion secondary battery is obtained.
(リチウムイオン二次電池の負極と正極の容量比)
 本発明において、負極と正極の容量比(負極容量/正極容量)は、安全性とエネルギー密度の観点からは1以上1.4未満であることが好ましく、1.05~1.25であることがより好ましい。
(Capacity ratio of negative electrode to positive electrode of lithium ion secondary battery)
In the present invention, the capacity ratio between the negative electrode and the positive electrode (negative electrode capacity / positive electrode capacity) is preferably 1 or more and less than 1.4 from the viewpoint of safety and energy density, and is 1.05 to 1.25. Is more preferable.
 ここで、負極容量とは、[負極の放電容量]を示し、正極容量とは、[正極の初回充電容量-負極又は正極のどちらか大きい方の不可逆容量]を示す。[負極の放電容量]とは、負極活物質に挿入されているリチウムイオンが脱離されるときに充放電装置で算出されるものと定義する。[正極の初回充電容量]とは、正極活物質からリチウムイオンが脱離されるときに充放電装置で算出されるものと定義する。 Here, the negative electrode capacity means [negative electrode discharge capacity], and the positive electrode capacity means [positive charge capacity of positive electrode minus negative electrode or positive electrode, whichever is greater]. [Discharge capacity of negative electrode] is defined as a value calculated by a charge / discharge device when lithium ions inserted into the negative electrode active material are desorbed. The “initial charge capacity of the positive electrode” is defined as that calculated by the charge / discharge device when lithium ions are desorbed from the positive electrode active material.
 負極と正極の容量比は、例えば、「リチウムイオン二次電池の放電容量/負極の放電容量」からも算出することができる。前記リチウムイオン二次電池の放電容量は、例えば、4.2V、0.1~0.5C、終止時間を2時間~5時間とする定電流定電圧(CCCV)充電を行った後、0.1~0.5Cで2.7Vまで定電流(CC)放電したときの条件で測定できる。負極の放電容量は、リチウムイオン二次電池の放電容量を測定した負極を所定の面積に切断し、対極としてリチウム金属を用い、電解液を含浸させたセパレータを介して単極セルを作製し、0V、0.1C、終止電流0.01Cで定電流定電圧(CCCV)充電を行った後、0.1Cで1.5Vまで定電流(CC)放電したときの条件で所定面積当たりの放電容量を測定し、これをリチウムイオン二次電池の負極として用いたときの総面積に換算することで算出できる。この単極セルにおいて、負極活物質にリチウムイオンが挿入される方向を充電、負極活物質に挿入されているリチウムイオンが脱離する方向を放電、と定義する。上記の定義において、Cは「電流値(A)/電池の放電容量(Ah)」を意味する。 The capacity ratio between the negative electrode and the positive electrode can be calculated from, for example, “discharge capacity of lithium ion secondary battery / discharge capacity of negative electrode”. The discharge capacity of the lithium ion secondary battery is, for example, 0.4 V, 0.1 to 0.5 C, and a constant current and constant voltage (CCCV) charge with an end time of 2 hours to 5 hours, and then is set to 0. It can be measured under conditions when a constant current (CC) is discharged to 2.7 V at 1 to 0.5 C. The discharge capacity of the negative electrode is obtained by cutting a negative electrode whose discharge capacity of a lithium ion secondary battery is measured into a predetermined area, using lithium metal as a counter electrode, and producing a single electrode cell through a separator impregnated with an electrolyte, Discharge capacity per predetermined area under the conditions of constant current (CCCV) charge at 0V, 0.1C, and final current 0.01C, and then constant current (CC) discharge to 1.5V at 0.1C Can be calculated by converting the total area when this is used as the negative electrode of a lithium ion secondary battery. In this single electrode cell, the direction in which lithium ions are inserted into the negative electrode active material is defined as charging, and the direction in which lithium ions inserted into the negative electrode active material are desorbed is defined as discharging. In the above definition, C means “current value (A) / battery discharge capacity (Ah)”.
 以下、実施例に基づき本実施の形態をさらに詳細に説明する。なお、本発明は以下の実施例によって限定されるものではない。 Hereinafter, the present embodiment will be described in more detail based on examples. The present invention is not limited to the following examples.
[正極の作製]
 正極の作製を以下のように行った。正極活物質として、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(BET比表面積が0.4m/g、平均粒径(D50)が6.5μm)を用いた。この正極活物質に、導電材としてアセチレンブラック(電気化学工業株式会社製、商品名:HS-100、平均粒径48nm(カタログ値))と、結着材としてポリフッ化ビニリデンのN-メチル-2-ピロリドン(NMP)溶液と、を順次添加し、混合することにより正極材料の混合物を得た。質量比(固形分換算)は、正極活物質:導電材:結着材=90:5:5とした。
[Production of positive electrode]
The positive electrode was produced as follows. As the positive electrode active material, a layered type lithium / nickel / manganese / cobalt composite oxide (BET specific surface area of 0.4 m 2 / g, average particle diameter (D50) of 6.5 μm) was used. In this positive electrode active material, acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: HS-100, average particle size 48 nm (catalog value)) as a conductive material, and N-methyl-2 of polyvinylidene fluoride as a binder -A pyrrolidone (NMP) solution was sequentially added and mixed to obtain a mixture of positive electrode materials. The mass ratio (in terms of solid content) was positive electrode active material: conductive material: binder = 90: 5: 5.
 さらに、上記混合物に対し、分散溶媒であるN-メチル-2-ピロリドン(NMP)を添加し、混練することによりスラリーを作製した。このスラリーを正極用の集電体である厚さ20μmのアルミニウム箔の両面に、厚みが実質的に均等かつ均質になるように塗布した。スラリーの塗布後、乾燥処理を施した。次いで、アルミニウム箔のスラリー未塗布部に切り欠きを入れ、切り欠き残部をリード片とした。リード片の幅は10mmとし、隣り合うリード片の間隔は20mmとした。その後、所定密度までプレスにより圧密化した。正極合材密度は2.5g/cmとした。これをもう一度裁断し、幅が195mmの正極を作製した。 Further, N-methyl-2-pyrrolidone (NMP) as a dispersion solvent was added to the above mixture and kneaded to prepare a slurry. This slurry was applied to both surfaces of a 20 μm thick aluminum foil as a positive electrode current collector so that the thickness was substantially uniform and uniform. After applying the slurry, a drying treatment was performed. Next, a notch was formed in the uncoated portion of the aluminum foil, and the remainder of the notch was used as a lead piece. The width of the lead piece was 10 mm, and the interval between adjacent lead pieces was 20 mm. Then, it compacted with the press to the predetermined density. The density of the positive electrode mixture was 2.5 g / cm 3 . This was cut again to produce a positive electrode having a width of 195 mm.
[負極の作製]
 負極の作製を以下のように行った。負極活物質として、易黒鉛化性炭素(d002が0.35nm、平均粒径(D50)が17μm)を用いた。この負極活物質に結着材としてポリフッ化ビニリデンのN-メチル-2-ピロリドン(NMP)溶液を添加した。これらの質量比(固形分換算)は、負極活物質:結着材=92:8とした。これに分散溶媒であるN-メチル-2-ピロリドン(NMP)を添加し、混練することによりスラリーを調製した。このスラリーを負極用の集電体である厚さ10μmの圧延銅箔の両面に、厚みが実質的に均等かつ均質になるように塗布した。
[Production of negative electrode]
The negative electrode was produced as follows. As the negative electrode active material, graphitizable carbon (d002 is 0.35 nm, average particle diameter (D50) is 17 μm) was used. To this negative electrode active material, an N-methyl-2-pyrrolidone (NMP) solution of polyvinylidene fluoride was added as a binder. The mass ratio (in terms of solid content) of these materials was negative electrode active material: binder = 92: 8. To this was added N-methyl-2-pyrrolidone (NMP) as a dispersion solvent and kneaded to prepare a slurry. This slurry was applied to both sides of a rolled copper foil having a thickness of 10 μm, which is a negative electrode current collector, so that the thickness was substantially uniform and uniform.
 スラリーの塗布後、乾燥処理を施した。次いで、圧延銅箔のスラリー未塗布部に切り欠きを入れ、切り欠き残部をリード片とした。リード片の幅は10mmとし、隣り合うリード片の間隔は20mmとした。その後、所定密度までプレスにより圧密化した。負極合材密度は1.15g/cm3 とした。これをもう一度裁断し、幅196mmの負極を作製した。 After applying the slurry, a drying treatment was performed. Next, a notch was made in the uncoated part of the rolled copper foil, and the remaining part of the notch was used as a lead piece. The width of the lead piece was 10 mm, and the interval between adjacent lead pieces was 20 mm. Then, it compacted with the press to the predetermined density. The negative electrode mixture density was 1.15 g / cm 3 . This was cut again to produce a negative electrode having a width of 196 mm.
[電解液の調製]
 電解液としては、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)を、体積比(EC:DMC:EMC)が30:40:30となるように混合して、混合溶液を調製した、次いで、6フッ化リン酸リチウム(LiPF)を1.2mol/Lの濃度となるように混合液に溶解して、電解液を調製した。
[Preparation of electrolyte]
As an electrolytic solution, ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) are mixed so that the volume ratio (EC: DMC: EMC) is 30:40:30, and a mixed solution. Next, lithium hexafluorophosphate (LiPF 6 ) was dissolved in the mixed solution to a concentration of 1.2 mol / L to prepare an electrolytic solution.
[電極体の作製]
 実施例1では、上記で作製した正極と、厚さが18μmのポリエチレン及びポリプロピレンの繊維からなる不織布1枚と、厚さが30μmのポリエチレン製微多孔膜(以下、PE多孔性シートともいう)1枚と、上記で作製した負極とをこの順に重ね合わせ、端から巻いてロール状の電極体を作製した。
[Production of electrode body]
In Example 1, a positive electrode produced as described above, one nonwoven fabric made of polyethylene and polypropylene fibers having a thickness of 18 μm, and a polyethylene microporous film (hereinafter also referred to as a PE porous sheet) 1 having a thickness of 30 μm. The sheet and the negative electrode prepared above were superposed in this order and wound from the end to prepare a roll-shaped electrode body.
 ここで、正極のリード片と負極のリード片とが、それぞれ電極体の互いに反対側の両端面に位置するように配置した。正極、負極及びセパレータの長さは、電極体の直径が65±0.1mmになるように調整した。電極体の作製に用いた厚さが30μmのPE多孔性シート及び厚さが50μmのPE多孔性シートの透気度は、それぞれ630s及び340sであった。厚さが18μmのポリエチレン及びポリプロピレンの繊維からなる不織布の透気度は、1s以下であった。 Here, the lead piece of the positive electrode and the lead piece of the negative electrode were arranged so as to be located on the opposite end surfaces of the electrode body, respectively. The lengths of the positive electrode, the negative electrode, and the separator were adjusted so that the diameter of the electrode body was 65 ± 0.1 mm. The air permeability of the PE porous sheet having a thickness of 30 μm and the PE porous sheet having a thickness of 50 μm, which were used for producing the electrode body, was 630 s and 340 s, respectively. The air permeability of a nonwoven fabric made of polyethylene and polypropylene fibers having a thickness of 18 μm was 1 s or less.
実施例2では、上記で作製した正極と、厚さが18μmのポリエチレン及びポリプロピレンの繊維からなる不織布1枚と、厚さが20μmのPE多孔性シート1枚と、上記で作製した負極とをこの順に重ね合わせた以外は実施例1と同様にしてロール状の電極体を作製した。 In Example 2, the positive electrode prepared above, one nonwoven fabric made of polyethylene and polypropylene fibers having a thickness of 18 μm, one PE porous sheet having a thickness of 20 μm, and the negative electrode prepared above were used. A roll-shaped electrode body was produced in the same manner as in Example 1 except that they were superposed in order.
実施例3では、上記で作製した正極と、厚さが21μmのポリエチレン及びポリプロピレンの繊維からなる不織布1枚と、厚さが20μmのPE多孔性シート1枚と、上記で作製した負極とをこの順に重ね合わせた以外は実施例1と同様にしてロール状の電極体を作製した。 In Example 3, the positive electrode prepared above, one nonwoven fabric made of polyethylene and polypropylene fibers having a thickness of 21 μm, one PE porous sheet having a thickness of 20 μm, and the negative electrode prepared above were used. A roll-shaped electrode body was produced in the same manner as in Example 1 except that they were superposed in order.
 比較例1では、上記で作製した正極と、厚さが30μmのPE多孔性シート1枚と、上記で作製した負極とをこの順に重ね合わせた以外は実施例1と同様にしてロール状の電極体を作製した。 In Comparative Example 1, a roll-shaped electrode was prepared in the same manner as in Example 1 except that the positive electrode prepared above, one PE porous sheet having a thickness of 30 μm, and the negative electrode prepared above were superposed in this order. The body was made.
 比較例2では、上記で作製した正極と、厚さが50μmのPE多孔性シート1枚と、上記で作製した負極とをこの順に重ね合わせた以外は実施例1と同様にしてロール状の電極体を作製した。 In Comparative Example 2, a roll-shaped electrode was prepared in the same manner as in Example 1 except that the positive electrode prepared above, one PE porous sheet having a thickness of 50 μm, and the negative electrode prepared above were superposed in this order. The body was made.
 比較例3では、上記で作製した正極と、厚さが30μmのPE多孔性シート1枚と、厚さが18μmのポリエチレン及びポリプロピレンの繊維からなる不織布1枚と、上記で作製した負極とをこの順に重ね合わせた以外は実施例1と同様にしてロール状の電極体を作製した。 In Comparative Example 3, the positive electrode produced above, one PE porous sheet having a thickness of 30 μm, one nonwoven fabric made of polyethylene and polypropylene fibers having a thickness of 18 μm, and the negative electrode produced above were used. A roll-shaped electrode body was produced in the same manner as in Example 1 except that they were superposed in order.
[リチウムイオン二次電池の作製]
 上記で作製した電極体及び電解液を用いて、図2に示すような構造のリチウムイオン二次電池を作製した。
[Production of lithium ion secondary battery]
A lithium ion secondary battery having a structure as shown in FIG. 2 was produced using the electrode body and the electrolytic solution produced above.
 図2に示すように、正極から導出されているリード片9を変形させ、その全てを正極側の鍔部7の底部付近に集合し、接触させた。正極側の鍔部7は、電極体6の軸芯のほぼ延長線上にある極柱(正極外部端子1)の周囲から張り出すよう一体成形されており、底部と側部とを有する。その後、超音波溶接によりリード片9を鍔部7の底部に接続して固定した。負極から導出されているリード片9と負極側の鍔部7の底部も同様に接続して固定した。この負極側の鍔部7は、電極体6の軸芯のほぼ延長線上にある極柱(負極外部端子1’)周囲から張り出すよう一体成形されており、底部と側部とを有する。 As shown in FIG. 2, the lead pieces 9 led out from the positive electrode were deformed, and all of them were gathered near the bottom of the flange 7 on the positive electrode side and brought into contact with each other. The flange portion 7 on the positive electrode side is integrally formed so as to protrude from the periphery of the pole column (positive electrode external terminal 1) substantially on the extension line of the axis of the electrode body 6, and has a bottom portion and a side portion. Thereafter, the lead piece 9 was connected and fixed to the bottom of the flange 7 by ultrasonic welding. Similarly, the lead piece 9 led out from the negative electrode and the bottom of the flange 7 on the negative electrode side were connected and fixed. The negative electrode side flange portion 7 is integrally formed so as to project from the periphery of the pole column (negative electrode external terminal 1 ′) substantially on the extension line of the axis of the electrode body 6, and has a bottom portion and a side portion.
 その後、粘着テープを用い、正極外部端子1側の鍔部7の側部及び負極外部端子1’の鍔部7の側部を覆い、絶縁被覆8を形成した。同様に、電極体6の外周にも絶縁被覆8を形成した。具体的には、粘着テープを、正極外部端子1側の鍔部7の側部から電極体6の外周面にかけて亘って、さらに、電極体6の外周面から負極外部端子1’側の鍔部7の側部に亘って、何重にも巻くことにより絶縁被覆8を形成した。粘着テープとしては、ポリイミド基材の片面にヘキサメタアクリレートからなる粘着材を塗布した粘着テープを用いた。電極体6の最大径部がステンレス製の電池容器5の内径よりも僅かに小さくなるように絶縁被覆8の厚さ(粘着テープの巻き数)を調整し、電極体6を電池容器5内に挿入した。電池容器5としては、外径が67mm、内径が66mmのものを用いた。 Then, using an adhesive tape, an insulating coating 8 was formed by covering the side of the flange 7 on the positive electrode external terminal 1 side and the side of the flange 7 of the negative electrode external terminal 1 ′. Similarly, an insulating coating 8 was formed on the outer periphery of the electrode body 6. Specifically, the adhesive tape is stretched from the side of the flange 7 on the positive electrode external terminal 1 side to the outer peripheral surface of the electrode body 6, and further from the outer peripheral surface of the electrode body 6 to the negative electrode external terminal 1 ′ side. Insulating coating 8 was formed by winding several times over the side of 7. As an adhesive tape, the adhesive tape which apply | coated the adhesive material which consists of hexamethacrylate to the single side | surface of the polyimide base material was used. The thickness of the insulating coating 8 (the number of windings of the adhesive tape) is adjusted so that the maximum diameter portion of the electrode body 6 is slightly smaller than the inner diameter of the stainless steel battery container 5, and the electrode body 6 is placed in the battery container 5. Inserted. A battery container 5 having an outer diameter of 67 mm and an inner diameter of 66 mm was used.
 次いで、図2に示すように、セラミックワッシャ3’を、先端が正極外部端子1を構成する極柱、及び先端が負極外部端子1’を構成する極柱に、それぞれ嵌め込んだ。セラミックワッシャ3’としては、アルミナ製であり、電池蓋4の裏面と当接する部分の厚さが2mm、内径16mm、外径25mmのものを用いた。次いで、セラミックワッシャ3を電池蓋4に載置した状態で、正極外部端子1をセラミックワッシャ3に通し、また、他のセラミックワッシャ3を他の電池蓋4に載置した状態で、負極外部端子1’を他のセラミックワッシャ3に通した。セラミックワッシャ3としては、アルミナ製であり、厚さ2mm、内径16mm、外径28mmの平板状のものを用いた。 Next, as shown in FIG. 2, the ceramic washer 3 ′ was fitted into a pole column whose tip constitutes the positive electrode external terminal 1 and a pole column whose tip constitutes the negative electrode external terminal 1 ′. As the ceramic washer 3 ', a ceramic washer having a thickness of 2 mm, an inner diameter of 16 mm, and an outer diameter of 25 mm made of alumina and in contact with the back surface of the battery lid 4 was used. Next, with the ceramic washer 3 placed on the battery lid 4, the positive external terminal 1 is passed through the ceramic washer 3, and with the other ceramic washer 3 placed on the other battery lid 4, the negative external terminal 1 'was passed through another ceramic washer 3. As the ceramic washer 3, a flat plate having a thickness of 2 mm, an inner diameter of 16 mm, and an outer diameter of 28 mm was used.
 その後、電池蓋4の周端面を電池容器5の開口部に嵌合し、双方の接触部の全域をレーザー溶接した。このとき、正極外部端子1及び負極外部端子1’は、それぞれ電池蓋4の中心にある穴(孔)を貫通して電池蓋4の外部に突出していた。電池蓋4には、電池の内圧上昇に応じて開裂する開裂弁10を設けた。なお、開裂弁10の開裂圧は、13kg/cm~18kg/cmとした。 Thereafter, the peripheral end surface of the battery lid 4 was fitted into the opening of the battery container 5, and the entire area of both contact portions was laser welded. At this time, the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ protruded through the hole (hole) in the center of the battery cover 4 and to the outside of the battery cover 4. The battery lid 4 was provided with a cleavage valve 10 that cleaves in response to an increase in the internal pressure of the battery. The cleavage pressure of the cleavage valve 10 was 13 kg / cm 2 to 18 kg / cm 2 .
 次いで、図2に示すように、金属ワッシャ11を、正極外部端子1及び負極外部端子1’にそれぞれ嵌め込んだ。これにより、セラミックワッシャ3上に金属ワッシャ11を配置した。金属ワッシャ11としては、ナット2の底面より平滑な材料よりなる物を用いた。 Next, as shown in FIG. 2, the metal washer 11 was fitted into the positive external terminal 1 and the negative external terminal 1 '. Thereby, the metal washer 11 was arranged on the ceramic washer 3. As the metal washer 11, a material made of a material smoother than the bottom surface of the nut 2 was used.
 次いで、金属製のナット2を正極外部端子1及び負極外部端子1’にそれぞれ螺着し、セラミックワッシャ3、金属ワッシャ11、及びセラミックワッシャ3’を介して電池蓋4を鍔部7とナット2との間で締め付けることにより固定した。このときの締め付けトルク値は、70kgf・cmとした。なお、締め付け作業が終了するまで金属ワッシャ11は回転させなかった。この状態では、電池蓋4の裏面と鍔部7との間に介在させたゴム(EPDM)製のOリング12の圧縮により、電池容器5の内部の発電要素は外気から遮断されている。 Next, a metal nut 2 is screwed to the positive electrode external terminal 1 and the negative electrode external terminal 1 ′, and the battery lid 4 is connected to the flange portion 7 and the nut 2 via the ceramic washer 3, the metal washer 11, and the ceramic washer 3 ′. And fixed by tightening between. The tightening torque value at this time was 70 kgf · cm. The metal washer 11 was not rotated until the tightening operation was completed. In this state, the power generation element inside the battery container 5 is shielded from the outside air by the compression of the rubber (EPDM) O-ring 12 interposed between the back surface of the battery lid 4 and the flange 7.
 その後、負極側の電池蓋4に設けられた注液口13から電解液を電池容器5内に注入した。その後、注液口13を封止することにより、円筒形のリチウムイオン二次電池20を作製した。次いで、以下に示す初期化充放電サイクル及びエージング処理を行い、製造工程を完了した。 Thereafter, an electrolytic solution was injected into the battery container 5 from a liquid injection port 13 provided in the battery lid 4 on the negative electrode side. Thereafter, the liquid injection port 13 was sealed to produce a cylindrical lithium ion secondary battery 20. Next, the following initialization charge / discharge cycle and aging treatment were performed to complete the manufacturing process.
[初期化充放電サイクル]
 初期化充放電サイクルは、25℃の温度環境下で実施した。充電、放電ともに電流値は20Aとした。充電は4.1Vを上限電圧とする定電流定電圧(CCCV)充電で、終止条件を3時間とした。放電は定電流(CC)放電で、2.7Vを終止条件とした。また、充放電間には30分の休止を入れた。これを3サイクル実施した。
[Initialization charge / discharge cycle]
The initialization charge / discharge cycle was performed in a temperature environment of 25 ° C. The current value was 20 A for both charging and discharging. Charging was constant current constant voltage (CCCV) charging with 4.1 V as the upper limit voltage, and the termination condition was 3 hours. The discharge was a constant current (CC) discharge with 2.7 V as the end condition. Further, a pause of 30 minutes was put between charge and discharge. This was carried out for 3 cycles.
[エージング]
 初期化充放電サイクル後、電池電圧を3.9Vに調整し、25℃環境下で21日間放置させた。
[aging]
After the initialization charge / discharge cycle, the battery voltage was adjusted to 3.9 V and allowed to stand at 25 ° C. for 21 days.
[高負荷放電特性の評価]
 エージング処理後のリチウムイオン二次電池を、20Aで2.7VまでCC放電させた。その後、20Aで上限電圧を4.1VとするCCCV充電を3時間実施した。さらにその後、8Aで2.7VまでCC放電させた。同様にして、20Aで上限電圧を4.1VとするCCCV充電を3時間実施した後、200Aで2.7Vまで放電させた。なお充放電間には30分の休止を入れた。その後、8Aでの放電に対する200Aでの放電の容量比を下記式により求め、値が90%以上のものを「A」とし、90%未満85%以上のものを「B」とし、85%未満のものを「C」とした。
 放電容量比(%)=200Aでの放電容量/8Aでの放電容量×100
[Evaluation of high load discharge characteristics]
The lithium ion secondary battery after the aging treatment was CC discharged to 2.7 V at 20A. Thereafter, CCCV charging was performed for 3 hours at 20 A with an upper limit voltage of 4.1 V. Thereafter, CC discharge was performed at 8 A to 2.7 V. Similarly, CCCV charging was performed for 3 hours at 20 A and the upper limit voltage was 4.1 V, and then discharged to 2.7 V at 200 A. A 30-minute pause was inserted between charge and discharge. Thereafter, the capacity ratio of the discharge at 200 A to the discharge at 8 A is obtained by the following formula, a value of 90% or more is designated as “A”, a value less than 90% and 85% or more is designated as “B”, and less than 85% Was designated as “C”.
Discharge capacity ratio (%) = discharge capacity at 200 A / 8 discharge capacity at 8 A × 100
[過充電状態での安全性の評価]
 初期容量確認後のリチウムイオン二次電池(8Aで2.7Vまで放電させたリチウムイオン二次電池)を用いて過充電状態での安全性を評価する試験を実施した。
 具体的には、本試験で用いるリチウムイオン二次電池の正常動作範囲を2.7~4.1Vとし、それを超える電圧まで充電した状態を「過充電状態」と定義した。60Aで5.16VまでCC充電させ、5.16Vに到達した時点で試験装置を止めた。5.16Vに到達するまでに、破裂、発火又は発煙が起きなかったものを「OK」とし、破裂、発火又は発煙が起きたものを「NG」とした。
[Evaluation of safety in overcharged state]
The test which evaluates the safety | security in an overcharge state was implemented using the lithium ion secondary battery (lithium ion secondary battery discharged to 2.7V by 8A) after initial capacity confirmation.
Specifically, the normal operation range of the lithium ion secondary battery used in this test was set to 2.7 to 4.1 V, and the state of charging up to a voltage exceeding this range was defined as the “overcharged state”. CC charging was performed to 5.16 V at 60 A, and the test apparatus was stopped when 5.16 V was reached. The case where explosion, ignition or smoke did not occur before reaching 5.16 V was designated as “OK”, and the case where explosion, ignition or smoke occurred was designated as “NG”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、PE多孔性シートを1枚のみ用いた比較例1及び比較例2は、高負荷放電特性に優れるが、過充電状態において破裂、発火又は発煙が起きるという結果であった、またPE多孔性シートを正極側に、不織布を負極側に配置した比較例3は、過充電状態における破裂、発火又は発煙は起きなかったものの、高負荷放電特性が劣るという結果であった。以下に結果の考察を記載するが、本実施の形態はこれらの考察に限定されるものではない。 From Table 1, Comparative Example 1 and Comparative Example 2 using only one PE porous sheet were excellent in high-load discharge characteristics, but resulted in rupture, ignition or smoke in an overcharged state. Comparative Example 3 in which the porous sheet was disposed on the positive electrode side and the non-woven fabric was disposed on the negative electrode side resulted in inferior high-load discharge characteristics although no rupture, ignition or smoke occurred in the overcharged state. Although discussion of results will be described below, the present embodiment is not limited to these considerations.
 比較例1及び比較例2の高負荷放電特性の評価結果より、PE多孔性シートの厚みが厚くなることで、高負荷放電特性が若干低下していることがわかる。これは電極間の距離が長くなったことが要因と考えられる。 From the evaluation results of the high load discharge characteristics of Comparative Example 1 and Comparative Example 2, it can be seen that the high load discharge characteristics are slightly lowered as the thickness of the PE porous sheet is increased. This is probably because the distance between the electrodes is increased.
 比較例3の高負荷放電特性が特に劣っている理由は明らかではないが、例えば、充放電中に電解液の濃度分布ができることで粘度分布が生じると、セパレータの透気度の影響を受けやすくなることが考えられる。不織布は多孔性シートに比べて、透気度が小さいため、粘度が高い電解液であっても影響を受けにくいが、PE(ポリエチレン)は透気度が高いため、その影響を強く受けることになり、それが容量比を低下につながったのではないかと考えられる。 The reason why the high-load discharge characteristics of Comparative Example 3 are particularly inferior is not clear, but, for example, if a viscosity distribution occurs due to the concentration distribution of the electrolyte during charge and discharge, it is easily affected by the air permeability of the separator. It is possible to become. Nonwoven fabrics have a lower air permeability than porous sheets, so even electrolytes with high viscosity are less affected, but PE (polyethylene) has a higher air permeability and is strongly affected by it. It seems that this has led to a decrease in the capacity ratio.
 比較例1及び比較例2において過充電状態での安全性の評価結果が劣っている理由としては、次のように考えられる。過充電状態では電解液が分解し、ガス化することで、電池缶内部の圧力が高まることが知られている。不織布の場合、上記で述べたように、透気度が低いため、ガス抜けが良く、発生したガスが電池缶内にうまく分散されるが、PE多孔性シートは透気度が高いため、発生したガスの圧力で正極と負極とが強く押し合い、短絡しやすくなったと考えられる。 The reason why the safety evaluation result in the overcharged state is inferior in Comparative Example 1 and Comparative Example 2 is considered as follows. It is known that in an overcharged state, the pressure inside the battery can increases due to decomposition and gasification of the electrolyte. In the case of a non-woven fabric, as described above, since the air permeability is low, the gas escape is good and the generated gas is well dispersed in the battery can, but the PE porous sheet is generated because the air permeability is high. It is considered that the positive electrode and the negative electrode were strongly pressed by the pressure of the gas and the short circuit was easily caused.
 また、別の理由として、セパレータを構成するPE多孔性シートと不織布の熱収縮率の違いも考えられる。過充電状態では電池温度が上昇することが知られており、その温度が高くなると、セパレータは熱収縮を起こす。本試験で用いたセパレータを120℃環境で15分放置した場合、PE多孔性シートでは数%の熱収縮が見られたが、不織布ではほとんど収縮は見られなかった。PE多孔性シートを1枚のみ用いた比較例1及び比較例2では、セパレータが収縮し、短絡することで発煙したのではないかと考えられる。一方、不織布とPE多孔性シートを重ねた実施例1~実施例3及び比較例3では、PE多孔性シートは熱収縮を起こしたが、不織布は熱収縮を起こさず、セパレータ全体としての形状が維持されたため、短絡せず、発煙等を起こすに至らなかったのではないかと考えられる。 As another reason, a difference in heat shrinkage between the PE porous sheet and the nonwoven fabric constituting the separator can be considered. It is known that the battery temperature rises in an overcharged state, and when the temperature rises, the separator undergoes thermal contraction. When the separator used in this test was left in a 120 ° C. environment for 15 minutes, thermal contraction of several percent was observed in the PE porous sheet, but almost no shrinkage was observed in the nonwoven fabric. In Comparative Example 1 and Comparative Example 2 using only one PE porous sheet, it is considered that the separator contracted and smoked due to a short circuit. On the other hand, in Examples 1 to 3 and Comparative Example 3 in which the nonwoven fabric and the PE porous sheet were overlapped, the PE porous sheet caused heat shrinkage, but the nonwoven fabric did not cause heat shrinkage, and the shape of the separator as a whole was Since it was maintained, it was thought that it was not short-circuited and did not cause smoke.
 以上より、本実施の形態のリチウムイオン二次電池は、高負荷放電特性及び過充電状態での安全性に優れることがわかった。 From the above, it was found that the lithium ion secondary battery of the present embodiment is excellent in high-load discharge characteristics and safety in an overcharged state.

Claims (5)

  1.  正極と、負極と、前記正極及び前記負極の間に配置されるセパレータと、非水電解液とを備え、
     前記セパレータはポリオレフィン樹脂を含む第一の層と、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、ポリビニルアルコール樹脂、ポリアクリロニトリル樹脂及びアラミド樹脂からなる群より選択される少なくとも1種を含む第二の層と、を有し、
     第二の層は第一の層よりも透気度が小さく、且つ、第一の層よりも前記正極に近い位置に配置される、リチウムイオン二次電池。
    A positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte,
    The separator includes a first layer containing a polyolefin resin, and a second layer containing at least one selected from the group consisting of polyethylene resin, polypropylene resin, polyethylene terephthalate resin, polyvinyl alcohol resin, polyacrylonitrile resin, and aramid resin. Have
    The lithium ion secondary battery in which the second layer has a lower air permeability than the first layer and is disposed closer to the positive electrode than the first layer.
  2.  第二の層は第一の層よりも熱収縮率が小さい、請求項1に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein the second layer has a smaller thermal shrinkage rate than the first layer.
  3.  前記非水電解液は環状カーボネート(α)、鎖状カーボネート(β)及びリチウム塩を含み、αとβの体積比(α/β)が20/80~40/60であり、前記リチウム塩の濃度が0.8mol/L~1.3mol/Lである、請求項1又は請求項2に記載のリチウムイオン二次電池。 The non-aqueous electrolyte contains a cyclic carbonate (α), a chain carbonate (β), and a lithium salt, and a volume ratio (α / β) of α and β is 20/80 to 40/60. The lithium ion secondary battery according to claim 1 or 2, wherein the concentration is 0.8 mol / L to 1.3 mol / L.
  4.  前記正極は層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)を正極活物質として含み、前記負極は非晶質炭素を負極活物質として含む、請求項1~請求項3のいずれか1項に記載のリチウムイオン二次電池。 The positive electrode includes layered lithium-nickel-manganese-cobalt composite oxide (NMC) as a positive electrode active material, and the negative electrode includes amorphous carbon as a negative electrode active material. The lithium ion secondary battery according to item.
  5.  電池容量が20Ah以上である、請求項1~請求項4のいずれか1項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 4, wherein the battery capacity is 20 Ah or more.
PCT/JP2016/071188 2015-07-21 2016-07-19 Lithium-ion secondary battery WO2017014222A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017529901A JPWO2017014222A1 (en) 2015-07-21 2016-07-19 Lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-143696 2015-07-21
JP2015143696 2015-07-21

Publications (1)

Publication Number Publication Date
WO2017014222A1 true WO2017014222A1 (en) 2017-01-26

Family

ID=57834398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071188 WO2017014222A1 (en) 2015-07-21 2016-07-19 Lithium-ion secondary battery

Country Status (2)

Country Link
JP (1) JPWO2017014222A1 (en)
WO (1) WO2017014222A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902696A (en) * 1997-06-02 1999-05-11 Wilson Greatbatch Ltd. Separator for nonaqueous electrochemical cells
JP2006261093A (en) * 2005-02-10 2006-09-28 Maxell Hokuriku Seiki Kk Non-aqueous secondary battery
JP2010080284A (en) * 2008-09-26 2010-04-08 Panasonic Corp Flat nonaqueous electrolytic solution secondary battery
JP2011070789A (en) * 2008-09-26 2011-04-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2011198532A (en) * 2010-03-18 2011-10-06 Hitachi Maxell Ltd Lithium ion secondary battery
JP2013511124A (en) * 2009-11-16 2013-03-28 コカン カンパニー リミテッド Lithium secondary battery separator and lithium secondary battery including the same
JP2013191345A (en) * 2012-03-13 2013-09-26 Hitachi Maxell Ltd Lithium secondary battery and manufacturing method thereof
JP2013536981A (en) * 2010-09-06 2013-09-26 エルジー・ケム・リミテッド Separator, method for manufacturing the same, and electrochemical device including the same
JP2014035926A (en) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2014116101A (en) * 2012-12-06 2014-06-26 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2014203649A (en) * 2013-04-04 2014-10-27 Fdkトワイセル株式会社 Separator and alkali storage battery using the separator

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902696A (en) * 1997-06-02 1999-05-11 Wilson Greatbatch Ltd. Separator for nonaqueous electrochemical cells
JP2006261093A (en) * 2005-02-10 2006-09-28 Maxell Hokuriku Seiki Kk Non-aqueous secondary battery
JP2010080284A (en) * 2008-09-26 2010-04-08 Panasonic Corp Flat nonaqueous electrolytic solution secondary battery
JP2011070789A (en) * 2008-09-26 2011-04-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2013511124A (en) * 2009-11-16 2013-03-28 コカン カンパニー リミテッド Lithium secondary battery separator and lithium secondary battery including the same
JP2011198532A (en) * 2010-03-18 2011-10-06 Hitachi Maxell Ltd Lithium ion secondary battery
JP2013536981A (en) * 2010-09-06 2013-09-26 エルジー・ケム・リミテッド Separator, method for manufacturing the same, and electrochemical device including the same
JP2013191345A (en) * 2012-03-13 2013-09-26 Hitachi Maxell Ltd Lithium secondary battery and manufacturing method thereof
JP2014035926A (en) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2014116101A (en) * 2012-12-06 2014-06-26 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2014203649A (en) * 2013-04-04 2014-10-27 Fdkトワイセル株式会社 Separator and alkali storage battery using the separator

Also Published As

Publication number Publication date
JPWO2017014222A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6065901B2 (en) Lithium ion battery
JP6281638B2 (en) Lithium ion battery
WO2013128679A1 (en) Lithium-ion battery
JP5621933B2 (en) Lithium ion battery
US10153471B2 (en) Lithium ion secondary battery
CN106463768B (en) Lithium ion secondary battery
WO2015005228A1 (en) Lithium ion battery and manufacturing method therefor
WO2016163282A1 (en) Lithium ion secondary battery
JP2015230816A (en) Lithium ion battery
JP2014192142A (en) Lithium ion battery
JP5626473B2 (en) Lithium ion battery
JP5258499B2 (en) Non-aqueous secondary battery
JP2016152113A (en) Lithium ion secondary battery
WO2016021614A1 (en) Lithium ion cell and method for determinining bad lithium ion cell
JP5637316B2 (en) Lithium ion battery
JP2016076317A (en) Lithium ion secondary battery
JP2016139548A (en) Lithium ion battery
JP5708597B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
WO2017022731A1 (en) Lithium ion secondary battery
JP6631535B2 (en) Lithium ion battery
JP6315230B2 (en) Lithium ion battery
JP2017152311A (en) Lithium ion secondary battery
WO2017014222A1 (en) Lithium-ion secondary battery
JP2015046237A (en) Lithium ion battery
JP2016035879A (en) Lithium ion battery and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017529901

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827782

Country of ref document: EP

Kind code of ref document: A1