JPS59163758A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPS59163758A
JPS59163758A JP58036881A JP3688183A JPS59163758A JP S59163758 A JPS59163758 A JP S59163758A JP 58036881 A JP58036881 A JP 58036881A JP 3688183 A JP3688183 A JP 3688183A JP S59163758 A JPS59163758 A JP S59163758A
Authority
JP
Japan
Prior art keywords
negative electrode
alloy
lithium
lead
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58036881A
Other languages
Japanese (ja)
Other versions
JPH0364988B2 (en
Inventor
Yoshinori Toyoguchi
豊口 吉徳
Junichi Yamaura
純一 山浦
Toru Matsui
徹 松井
Takashi Iijima
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58036881A priority Critical patent/JPS59163758A/en
Priority to US06/873,093 priority patent/US4683182A/en
Priority to PCT/JP1984/000086 priority patent/WO1984003590A1/en
Priority to DE8484901015T priority patent/DE3483244D1/en
Priority to EP84901015A priority patent/EP0144429B1/en
Publication of JPS59163758A publication Critical patent/JPS59163758A/en
Publication of JPH0364988B2 publication Critical patent/JPH0364988B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a nonaqueous electrolyte secondary battery having a high energy density and a long charge-and-discharge life and being excellently safe and reliable by causing lithium or the like to be absorbed by a negative electrode material during charging and causing the negative electrode material to discharge lithium ion or the like into electrolyte during discharging by using an alloy principally consisting of lead as the negative electrode material. CONSTITUTION:Either an alloy principally consisting of lead and containing at least one element chosen from among cadmium, bismuth and indium, or an alloy prepared by adding tin to the above alloy is used to form a negative electrode. Such a negative electrode absorbs alkali metal ion contained in electrolyte during charging and discharges alkali metal ion into the electrolyte during discharging.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非水電解質二次電池用の負極の改良に係るもの
で、この改良の結果高エネルギー密度で充放厄寿昂が長
く、安全性、信頼性に優れた充電=J能な電池を提供す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an improvement of a negative electrode for a non-aqueous electrolyte secondary battery, and as a result of this improvement, it has a high energy density, a long charging/discharging life, safety, and This provides a highly reliable charging battery.

従来例の構成とその問題点 現在まで、リチウム、ナトリウムなどのアルカリ金属を
負極とする非水電解質二次電池としては、たとえは、二
硫化チタン(TI S2 )をはじめ各種のノー間化合
物などを正極活物質として用い、電解質としては、炭酸
プロピレン(以後PCと略す)などの有機溶媒に過塩素
酸リチウム(L ICQ 04 )などを溶解した有機
電解質を用いる電池の開発が活発に進められてきた。こ
の二次電池の特徴は、負極にリチウムを用いることによ
り、電池電圧が高くなり、高エネルギー摺度の二次電池
となることである。
Structures of conventional examples and their problems Until now, non-aqueous electrolyte secondary batteries using alkali metals such as lithium and sodium as negative electrodes have been made using titanium disulfide (TIS2) and various other intercalary compounds. The development of batteries that use organic electrolytes such as lithium perchlorate (LICQ 04 ) dissolved in organic solvents such as propylene carbonate (hereinafter abbreviated as PC), which are used as positive electrode active materials, has been actively developed. . A feature of this secondary battery is that by using lithium for the negative electrode, the battery voltage increases and the secondary battery has high energy resistance.

しかし、この種の二次成池は、現在、まだ実用化されて
いない。その主な理由は、充放電回数(サイクル)の寿
命が短かく、また充放電に際しての充放電効率が低いた
めである。この原因は、リチウム負極の劣化によるとこ
ろが非常に大きい。
However, this type of secondary pond has not yet been put into practical use. The main reason for this is that the life of the number of charging and discharging times (cycles) is short and the charging and discharging efficiency during charging and discharging is low. This is largely due to deterioration of the lithium negative electrode.

すなわち、現在のリチウム負極は、ニッケルなどのスク
リーン状集電体に板状の金属リチウムを圧着したものが
主に用いられているか、放電時に金属リチウムは、電解
質中にリチウムイオンとして溶解する。しかし、これを
充電して、放電前のような板状のリチウムに析出させる
ことは姥しく、デンドライト状(樹枝状)のリチウムが
発生してこれが根元より折れて脱落したり、あるいは、
小球状(凸状)に析出したリチウムが集電体より脱離す
るなどの現象が起こる。このため充放電が不能の電池と
なってしまう。オだ、発生したデンドライト状の金属リ
チウムが、正極、負極間を隔離しているセパレータをA
″通して、正極に接し短絡を起こし、′成1lI2の機
能を失なわせるようなことも度々生じる。
That is, current lithium negative electrodes are mainly made of plate-shaped metallic lithium crimped onto a screen-shaped current collector made of nickel or the like, or metallic lithium dissolves in the electrolyte as lithium ions during discharge. However, it is difficult to charge this and deposit it into the plate-shaped lithium that it was before discharging, and dendrite-like lithium may be generated and break off from the base and fall off.
Phenomena such as lithium deposited in a small spherical (convex shape) detaching from the current collector occur. This results in a battery that cannot be charged or discharged. Oh, the generated dendrite-like metallic lithium will damage the separator separating the positive and negative electrodes.
It often happens that the electrode comes in contact with the positive electrode and causes a short circuit, causing the electrode to lose its function.

このような負極の欠点を改良するための方法は従来から
各種試みられている。一般的には、負極集成体の材料を
替えて析出するリチウムとの密着性を良くしたり、ある
いは、電解質中にデンドライト発生防止の添加剤を加え
たりする方法が報告されている。しかし、これらの方法
は必ずしも効果的ではない。すなわち、集電体材料に関
しては、集電体材料に直接析出するリチウムに有効であ
るが、更に充電(析出)を続けると析出リチウム上′と ヘリチウム、析出することになり、集電体材料の効果は
消失する。また添加剤に関しても、充放電サイクルの初
期では有効であるが、サイクルが進むと電池内での酸化
還元反応などにより分解し、その効果がなくなるものが
殆んどである。さらに最近は負極として、リチウムとの
合金を用いることが提案されている。この列としては、
リチウム−アルミニウム合金がよく知られている。この
場合は、一応均一の合金が形成されるが、充放電をくり
返すとその均一性を消失し、特にリチウム量を多くする
と電極が微粒化し崩壊するなどの欠点があった。また、
銀とアルカリ金属との固溶体を用いることも提案されて
いる(特開昭66−7386)。
Various methods have been tried in the past to improve these drawbacks of negative electrodes. In general, methods have been reported in which the material of the negative electrode assembly is changed to improve adhesion to precipitated lithium, or an additive to prevent dendrite formation is added to the electrolyte. However, these methods are not always effective. In other words, with regard to the current collector material, it is effective for lithium that is deposited directly on the current collector material, but if the charging (deposition) continues, helium and helium will be deposited on the precipitated lithium, and the current collector material will be The effect disappears. Furthermore, most additives are effective at the beginning of the charge/discharge cycle, but as the cycle progresses, they decompose due to oxidation-reduction reactions within the battery and lose their effectiveness. Furthermore, recently it has been proposed to use an alloy with lithium as a negative electrode. For this column,
Lithium-aluminum alloys are well known. In this case, a somewhat uniform alloy is formed, but this uniformity disappears when charging and discharging are repeated, and especially when the amount of lithium is increased, the electrode becomes atomized and collapses. Also,
It has also been proposed to use a solid solution of silver and an alkali metal (JP-A-66-7386).

この場合は、アルミニウムとの合金のような崩壊はない
とされているが、十分に速く合金化するリチウムの量は
少なく、金属状のリチウムが合金化しないま\析出する
場合があり、これを防ぐために多孔体の便用などを推奨
している。したがって、大電流の充電効率は悪く、また
リチウム量の多い合金は、充放′成による微細化が徐々
に加速され、サイクル寿命が急激に減少する。
In this case, it is said that there is no collapse like in alloying with aluminum, but the amount of lithium that alloys quickly enough is small, and metallic lithium may precipitate without being alloyed. To prevent this, it is recommended to use porous materials for toilet use. Therefore, charging efficiency at large currents is poor, and alloys containing a large amount of lithium gradually accelerate refinement due to charging and discharging, resulting in a rapid decrease in cycle life.

この他には、リチウム−水銀合金を用いる考案(特開昭
67−98978)、リチウム−鉛合金を用いる考案(
特開昭57−141869 )がある。
In addition to this, there are ideas using a lithium-mercury alloy (Japanese Unexamined Patent Publication No. 67-98978), and ideas using a lithium-lead alloy (
JP-A-57-141869).

しかし、リチウム−水銀合金の場合は、放電により、負
極は液状粒子の水銀となり電極形状を保持しなくなる。
However, in the case of a lithium-mercury alloy, the negative electrode becomes liquid particle mercury due to discharge and no longer maintains its electrode shape.

また、リチウム−鉛合金の場合は、電極の充放電による
微側扮化は、銀面溶体以上であり、このため合金中の鉛
量を80係位にすることが望ましいとされているが、こ
れでは高エネルギー密度電池を実現できない。以上のよ
うに非水電解質二次電池川負極としては、実用上満足で
きるものは、また見い出されていないといえる。
In addition, in the case of a lithium-lead alloy, the fine side transformation due to charging and discharging of the electrode is more than that of a silver surface solution, and therefore it is said that it is desirable to set the amount of lead in the alloy to a modulus of 80. This makes it impossible to realize high energy density batteries. As described above, it can be said that a practically satisfactory negative electrode for non-aqueous electrolyte secondary batteries has not been found.

したがって、浸れた負極としては、アルカリ金属の吸蔵
量が大きく、しかも放出や吸蔵速度の犬なる負極材料の
開発が望まれている。
Therefore, as a submerged negative electrode, it is desired to develop a negative electrode material that has a large amount of alkali metal occlusion and has a fast release and occlusion rate.

発明の目的 本発明は負極材料を特定するこ七により、単位体積当り
の充放電量の多い、また充放電寿命の長い、良好な特性
を示す非水電解質二次電池を提供するものである。
OBJECTS OF THE INVENTION The present invention provides a non-aqueous electrolyte secondary battery that exhibits good characteristics such as a large charge/discharge capacity per unit volume and a long charge/discharge life by specifying a negative electrode material.

発明の構成 本発明の二次電池は、鉛を主成分とする合金を負極材料
に用いることを特徴とし、充電により負極材料に用いた
合金中に、リチウムを吸蔵せしめ、放電により電解質中
にリチウムイオンを放出させるものである。
Structure of the Invention The secondary battery of the present invention is characterized in that an alloy containing lead as a main component is used as the negative electrode material, and lithium is occluded in the alloy used as the negative electrode material by charging, and lithium is stored in the electrolyte by discharging. It releases ions.

実施例の説明 前記のように本発明の二次電池においては、負極材料合
金に、充電によりリチウムを吸蔵させ、放電により電解
質中にリチウムイオンを放出させるものであるので、充
電により鉛合金とリチウムの合金が8釆ることになる。
Description of Examples As mentioned above, in the secondary battery of the present invention, lithium is occluded in the negative electrode material alloy by charging, and lithium ions are released into the electrolyte by discharging. There will be 8 alloys.

本発明で述べる負極材料とは、リチウムとの合金を作る
以前の鉛合金のことである。
The negative electrode material described in the present invention is a lead alloy before forming an alloy with lithium.

例えは重量パーセントで70%の鉛と30%のスズより
なる合金を用いた時の充放電反応は(1)式%式%(1
) 式中 (Pb(70)−8n(30))Li、  は充
′亀により生成した鉛、スズ、リチウム合金を示してお
り、本発明で定義した負極材料とは(1)式中ではPb
(yo)−8n(30ンのことである。
For example, when using an alloy consisting of 70% lead and 30% tin by weight, the charge/discharge reaction is expressed by the formula (1).
) In the formula (1), (Pb(70)-8n(30))Li, represents a lead, tin, and lithium alloy produced by charging, and the negative electrode material defined in the present invention is Pb in the formula (1).
(yo)-8n (30 ns).

捷た、充放電の範囲としては、(1)式のように完全に
負極中よりリチウムがなくなるまで放電する必要はなり
、(2)式のように負極中の吸蔵されたりチウム 〔Pb(7o)−5n(30)〕Li   ・・・・・
(2)X+Y 舵を変えるようにして、充放電ができることは当然であ
る。また(2)式においても負極材料がPb(yo)−
8n(30)  であることは自明である。
As for the range of charging and discharging, it is necessary to discharge until lithium completely disappears from the negative electrode as shown in equation (1), and it is necessary to discharge until lithium is completely removed from the negative electrode as shown in equation (2). )-5n(30)]Li...
(2) X+Y It goes without saying that charging and discharging can be done by changing the rudder. Also in equation (2), the negative electrode material is Pb(yo)-
It is obvious that 8n(30).

丑だ鉛を主成分とする合金とは、合金中最も重量が多い
金属が鉛である合金とする。
An alloy whose main component is lead is an alloy in which lead is the heaviest metal in the alloy.

発明者らは、鉛を主成分とする合金を負極材料″# として、アルカリ金属イオンを含む非水電解中で△ 完成を行うことにより、高率充電を行ってもアルカリ金
属の析出が起らずに負極材料中にアルカリ金属が吸蔵さ
れ、さらに放電を行うと高電流効率で吸蔵されたアルカ
リ金属がアルカリ金属イオンとして′成解質中に放出さ
れることを見い出した。
The inventors have discovered that by using an alloy containing lead as the main component as the negative electrode material and performing △ completion in non-aqueous electrolysis containing alkali metal ions, alkali metal precipitation does not occur even during high rate charging. We have discovered that the alkali metal is occluded in the negative electrode material without any deterioration, and that when further discharge is performed, the occluded alkali metal is released as alkali metal ions into the disintegrate with high current efficiency.

また充放電をくり返し行っても負極材料の微細粉化が起
らず、良好な非水電解質二次電池の負極特性を示すこと
がわかった。
It was also found that the negative electrode material did not become finely pulverized even after repeated charging and discharging, and exhibited good negative electrode characteristics of a non-aqueous electrolyte secondary battery.

負極材料として、金属鉛と鉛を主成分とする合金を比較
すると合金の方が良好な負極特性を示した。鉛を主成分
とする合金の池の成分として、ビスマス、カドミウム、
スズ、インジウムなどを加えて作った合金の多く(す、
微視的に見ると、各金属成分や金属間化合物などの多く
の相からなっており、均一なものではない。充電により
吸蔵されたリチウムなどのアルカリ金属は合金中と相の
間の界面に沿って、早い速度で拡散してゆくと考えられ
、高率充放電を行うと鉛を生成分とする合金を用いる方
が良好であった。したがって金属鉛を用いた場合に比べ
、充放電電気量、サイクル特注の両方とも向上すること
になる。
When comparing lead metal and an alloy mainly composed of lead as negative electrode materials, the alloy showed better negative electrode characteristics. Bismuth, cadmium,
Many alloys are made by adding tin, indium, etc.
Microscopically, it consists of many phases such as various metal components and intermetallic compounds, and is not uniform. Alkali metals such as lithium absorbed by charging are thought to diffuse at a high rate along the interface between the alloy and the phase, and when high-rate charging and discharging is performed, alloys containing lead as a generating component are used. It was better. Therefore, compared to the case where metallic lead is used, both the amount of electricity charged and discharged and the cycle customization are improved.

第1図に示したセルを構成して、各種金属や合金の非水
電解質二次電池の負極の特性を調べた。
The cell shown in FIG. 1 was constructed and the characteristics of the negative electrode of a non-aqueous electrolyte secondary battery made of various metals and alloys were investigated.

第1図中、Aは検討した金属2合金よりなる試験極、B
はTI S2  よりなる正極、Cは照合電極としての
リチウム板である。各々の電極のリードEA  、 E
B  、 ECにはニッケル線を用いた。試験極Aは第
2図に示すように、1cm×1m厚さ1 mmの金属あ
るいは合金りに、リードとしてニッケルリボンEAをと
りつけた。電解質には、1モル/2のL z C1l 
O4を溶かしたPCを用いた。試験極Aの液槽Hと照合
極Cの液槽Gとは連通管Iで接続されている。金属や合
金の非水電解質二次電池の負極としての特注を測定する
ために、試験極Aの電位が、リチウム照合電極Cに対し
てOmVになるまで5mAの定電流でカソード方向に充
電した。この条件では、試験極上にリチウムは析出せず
合金中に入る。試験極Aの電位がOmVに達した後、照
合電極Cに対して1.o’VKなるまで、5mへの定電
流でアノード方向に放電し、その後充電、放電を同じ条
件で繰り返した。表には、試験極Aに用いた合金、金属
の第1サイクルと第10サイクルにおける充電電気量、
放電電気量、および効率として放電電気量を充電電気量
で除したもの、サイクル特注として第10サイクルの放
電電気量を第1サイクルの放電電気量で除したものを示
す。充電電気量、放祇眠気は、効率、サイクル特性の数
値が犬である程よい負極と言える。捷だ表中に記号で示
した試験極Aの第10サイクルでの充電曲線を第3図に
、放電曲線を第4図に示す。
In Figure 1, A is a test electrode made of the two metal alloys studied, B is
is a positive electrode made of TI S2, and C is a lithium plate as a reference electrode. Leads of each electrode EA, E
B, Nickel wire was used for EC. As shown in FIG. 2, the test electrode A was a 1 cm x 1 m thick metal or alloy board with a nickel ribbon EA attached as a lead. The electrolyte contains 1 mol/2 L z C1l
PC in which O4 was dissolved was used. The liquid tank H of the test electrode A and the liquid tank G of the reference electrode C are connected by a communication pipe I. In order to measure the custom made metal or alloy as a negative electrode for a non-aqueous electrolyte secondary battery, the test electrode A was charged in the cathode direction with a constant current of 5 mA until the potential of the test electrode A became OmV with respect to the lithium reference electrode C. Under these conditions, lithium does not precipitate on the test electrode but enters the alloy. After the potential of test electrode A reaches OmV, 1. The battery was discharged toward the anode at a constant current of 5 m until o'VK, and then charging and discharging were repeated under the same conditions. The table shows the alloy used for test electrode A, the amount of electricity charged in the 1st cycle and the 10th cycle of the metal,
The amount of discharged electricity and the efficiency are shown as the amount of discharged electricity divided by the amount of charged electricity, and as a custom cycle, the amount of discharged electricity of the 10th cycle divided by the amount of discharged electricity of the first cycle is shown. It can be said that it is a negative electrode with good charging electricity amount, drowsiness, efficiency, and cycle characteristics. The charging curve and the discharging curve of test electrode A at the 10th cycle, indicated by symbols in the table, are shown in FIG. 3 and FIG. 4, respectively.

以下余白 以上の結果より、非水電解質二次電池用負極材料として
、従来より用いられて来たアルミニウム。
From the results shown in the margin below, aluminum has traditionally been used as a negative electrode material for non-aqueous electrolyte secondary batteries.

船、銀、水銀に比べ、本発明の鉛を主成分とする合金が
良好であることがわかった。
It has been found that the lead-based alloy of the present invention is better than silver, silver, and mercury.

址だ鉛と鉛合金を比較すると合金の方が良好な特性を示
している。第1表中には、鉛合金を作るのに使用した他
の成分である金属単体の負極特注をも示した。これによ
り、各成分の金属単体より合金を用いた方が性能が向上
していた。また箒4表に示したように鉛−スズ合金で示
すように、他の成分はが増加する程、性能は同上する傾
向が見られた。
Comparing raw lead and lead alloy, the alloy shows better properties. Table 1 also shows custom-made negative electrodes made of simple metals, which are other components used to make the lead alloy. As a result, the performance was improved by using an alloy rather than using individual metals of each component. Furthermore, as shown in Table 4 for lead-tin alloys, there was a tendency for the performance to improve as the other components increased.

合金組成中の主成分である鉛の量については、−1#4
−表の8に示したように、重量パーセントで35係以上
が適当と思われる。
Regarding the amount of lead, which is the main component in the alloy composition, -1#4
-As shown in Table 8, a weight percentage of 35 or higher seems appropriate.

なお、負極材料として水銀を用いた場合、充放亀成気紙
が小さいのは、水銀の食塩電解におけるナトリウムアマ
ルガム中のナトリウムが0.2チ程度しかないことと関
連しているがもじれない。
In addition, when mercury is used as the negative electrode material, the reason why the charged and discharged mercury paper is small is related to the fact that the sodium content in the sodium amalgam in mercury salt electrolysis is only about 0.2%, but this is not surprising. .

上記実施例では、負極電極材料にリチウムを吸蔵、放出
させる例を示した。リチウム以外にもナトリウムやカリ
ウムなどのアルカリ金属の吸蔵、放出を行わせる負極を
構成することも可能である。
In the above embodiment, an example was shown in which lithium was inserted into and released from the negative electrode material. It is also possible to construct a negative electrode that intercalates and desorbs alkali metals such as sodium and potassium in addition to lithium.

また電解質として、実施例に示したL i CQ O4
を溶解したPCだけでなく、L 13N (g化すチウ
ム)やLiI(ヨウ化リチウム)のような固体電解質を
用いた場合でも、従来のアルミニウム、鉛、銀。
In addition, as an electrolyte, L i CQ O4 shown in the example
Conventional aluminum, lead, silver, even when using solid electrolytes such as L 13N (g lithium oxide) and LiI (lithium iodide), as well as PC dissolved in .

水銀に比べ本発明のビスマスまたはビスマスを主成分と
する合金を負極材料とする方が優れた勺1・)tが得ら
れた。
Compared to mercury, the use of bismuth or an alloy containing bismuth as a main component of the present invention as a negative electrode material was superior to that of 1.).

発明の効果 以上のように主成分を鉛とする合金を負極材料とするこ
とにより、充放電戒気皇の多い、サイクル特性の良い、
すなわち充放電寿命の長い信頼性に優れた非水電解質電
池を得ることができる。
As described above, by using an alloy whose main component is lead as the negative electrode material, it has good cycle characteristics with many charge and discharge cycles.
In other words, a highly reliable non-aqueous electrolyte battery with a long charge/discharge life can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は負極特性の検討に用いたセルの構成図、第2図
は試験極の側面図、第3図および第4図は充電曲線図と
放電曲線図である。 A・・・・・・試験極、B・・・・・・正極、C・・・
・・・J(6合電極。 第1図 第 第2rXJ 3図 4o     先光時間(林間) 紋健1118−間(時間ン w3.000PIi懸 mbUυ(H’:u5特許庁長
官殿 l事件の表示 昭和58年特許願第 36881 −号2発明の名称 非水電解質二次電池 3補正をする者 事件との関係      特   許   出  願 
 人任 所  大阪府門真市大字門真1006番地名 
称 (582)松下電器産業株式会社代表者    山
  下  俊  彦 4代理人′ご〒571 住 所  大阪府門真市大字門真1006番地松下電器
産業株式会社内 7、補正の内容 (1)明細書の特許請求の範囲の欄を別紙のように訂正
します。 (2)明細書第6頁第4〜8行の記載を次のように訂正
し捷す。 「本発明は、アルカリ金属イオンを含む非水電解質と、
可逆性正極と、充電時に電解質中のアルカリ金属イオン
を吸蔵し、放電時に前記金属イオンを電解質中に放出す
る機能を有する合金からなる負極とを備え、前記負極の
合金として鉛合金を用いるものである。さらに詳しくは
、この鉛合金として、鉛を主成分とし、他の成分として
カドミウム、ビスマス及びインジウムよりなる群から選
んだ少なくとも1種を含む合金、またはさらにスズを加
えた合金を用いることを特徴とする。」 (3)同第6頁第17行〜第7頁下から7行目の記載を
次のように訂正します。 [例えば重量パーセントで70%の鉛と30係のカドミ
ウムよりなる合金 (Pb(7o) −Cd(3o))を用いた時の充放電
反応は(1)式のようになる。 (Pb(70) −Cd(30)’)+xLi ++X
8充電 (:Pb(7o) −cc+ (30) 、1lLix
放〜電 (1) 式中(Pb(70)−Cd(30)、:ILixは充電
により生成した鉛−カドミウム−リチウム合金を示して
おり、本発明で定義した負極材料とは(1)式%式% また、充放電の範囲としては、(1)式のように完全に
負極中よりリチウムがなくなる寸で放電する必要はなく
、(2)式のように負極中の吸蔵されたリチウム量を寧
えるようにして、充放電ができることは当然である。 [:Pb(7o) −Cd(30))Lix+yLz+
+ya充電 [:Pb(70) Cd (30) ) L lx+7
放電 ・(2) (2)式においても負極材料がPb(70)−cd(3
o)であることは自明である。」 (4)同第13頁第19行と第20行との間に次の文を
挿入します。 「さらに、負極材料の機械的安定性について倹討した。 5 mAの定電流充放電では、鉛合金は全て微細化は起
らなかった。次に、長時間、低率充電を想定して、負極
材料を電解質中で金属リチウムと短絡させた。短絡させ
ることにより負極材料中には最大量のリチウムが吸蔵さ
れることになる。 表に示した1〜90合金のうち、2〜4の鉛−スズ合金
において、合金の微細粉化が起り、他の合金では起らな
かった。8,9の合金のように、鉛、スズを含む合金で
も、他の成分が含まれていると、微細粉化が起らなかっ
た。鉛、スズのみで構成されている合金でも、スズが多
い程、微細粉化の程度は小さかった。 以上より、鉛を主成分とする合金を用いることにより、
リチウムの吸蔵、放出を行う良好な負極か得られること
になり、吸蔵リチウム量が多くなると電極の微細化が起
る鉛−スズ合金でも、さらに他の成分カドミウム、ビス
マス、インジウムの1種を添加することにより良好な負
極材料となる。」 (6)同第14頁第8行の[ビスマスまたはビスマス」
を「鉛」と訂正し1す。 2、特許請求の範囲 二次電池。 3ト充電時に電解質中のアルカリ金属イオンを吸蔵し、
放電時に前記金属イオンを電解質中に放出する機能を有
する合金からなる負極を備え、前記合金が、鉛を主成分
とし、他の成分としてカドミウム、ビスマス及びインジ
ウムよりなる群から選んだ少なくとも1種とスズを含む
合金である非水電解質二次電池。
FIG. 1 is a configuration diagram of a cell used for examining negative electrode characteristics, FIG. 2 is a side view of a test electrode, and FIGS. 3 and 4 are charging and discharging curve diagrams. A...Test electrode, B...Positive electrode, C...
...J (6 combined electrodes. Fig. 1 Fig. 2 r 1981 Patent Application No. 36881-2 Title of Invention Nonaqueous Electrolyte Secondary Battery 3 Relationship with the Amendment Case Patent Application
Appointment Address: 1006 Kadoma, Kadoma City, Osaka Prefecture
Name (582) Matsushita Electric Industrial Co., Ltd. Representative Toshihiko Yamashita 4 Agent'571 Address 7, Matsushita Electric Industrial Co., Ltd., 1006 Kadoma, Kadoma City, Osaka Prefecture Contents of amendments (1) Patent in the specification Correct the scope of claims column as shown in the attached sheet. (2) The statement on page 6, lines 4 to 8 of the specification is corrected and omitted as follows. “The present invention provides a non-aqueous electrolyte containing alkali metal ions,
It is equipped with a reversible positive electrode and a negative electrode made of an alloy that has the function of occluding alkali metal ions in an electrolyte during charging and releasing the metal ions into the electrolyte during discharging, and uses a lead alloy as the alloy of the negative electrode. be. More specifically, the lead alloy is characterized by using an alloy containing lead as a main component and at least one selected from the group consisting of cadmium, bismuth, and indium as another component, or an alloy further containing tin. do. (3) The statement from page 6, line 17 to page 7, line 7 from the bottom is corrected as follows. [For example, when an alloy (Pb(7o)-Cd(3o)) consisting of 70% lead and 30% cadmium by weight is used, the charge/discharge reaction is as shown in equation (1). (Pb(70) -Cd(30)')+xLi ++X
8 charging (:Pb(7o) -cc+ (30), 1lLix
Discharge - Discharge (1) In the formula (Pb(70)-Cd(30),: ILix indicates a lead-cadmium-lithium alloy produced by charging, and the negative electrode material defined in the present invention is the formula (1) % formula % Also, as for the range of charging and discharging, it is not necessary to discharge until the lithium is completely exhausted from the negative electrode as in equation (1), but it is not necessary to discharge until the amount of lithium occluded in the negative electrode is determined as in equation (2). It is natural that charging and discharging can be performed by adjusting the .
+ya charge [:Pb (70) Cd (30) ) L lx+7
Discharge・(2) Also in equation (2), the negative electrode material is Pb(70)-cd(3
It is obvious that o). (4) Insert the following sentence between page 13, line 19 and line 20. ``Furthermore, we considered the mechanical stability of the negative electrode material. When charging and discharging at a constant current of 5 mA, no refinement occurred in any lead alloy.Next, assuming long-term, low-rate charging, The negative electrode material was short-circuited with metallic lithium in the electrolyte. By short-circuiting, the maximum amount of lithium was occluded in the negative electrode material. Among the alloys 1 to 90 shown in the table, 2 to 4 lead - Fine powdering of the alloy occurred in tin alloys, but not in other alloys. Even in alloys containing lead and tin, such as alloys 8 and 9, fine powdering occurs when other components are included. No pulverization occurred. Even in alloys composed only of lead and tin, the more tin there was, the smaller the degree of pulverization was. From the above, by using an alloy whose main component is lead,
A good negative electrode that absorbs and desorbs lithium can be obtained, and even in lead-tin alloys, where the electrode becomes finer when the amount of lithium absorbed increases, one of the other components cadmium, bismuth, and indium can be added. By doing so, it becomes a good negative electrode material. (6) [Bismuth or bismuth] on page 14, line 8.
Correct ``lead'' to 1. 2. Claimed secondary battery. When charging, it absorbs alkali metal ions in the electrolyte,
A negative electrode made of an alloy having a function of releasing the metal ions into the electrolyte during discharge, the alloy containing lead as a main component and at least one member selected from the group consisting of cadmium, bismuth, and indium as other components. A nonaqueous electrolyte secondary battery that is an alloy containing tin.

Claims (2)

【特許請求の範囲】[Claims] (1)充電時に電解質中のアルカリ金属イオンを吸蔵し
、放電時には首記金属イオンを電解質中に放出する機能
を有し、負極材料として、鉛を主成分とする合金を用い
ることを特徴とする非水′電解質二次電池。
(1) It has the function of occluding alkali metal ions in the electrolyte during charging and releasing the listed metal ions into the electrolyte during discharging, and is characterized by using an alloy containing lead as the main component as the negative electrode material. Non-aqueous electrolyte secondary battery.
(2)負極材料は主成分を紛とし、々し):オドミラ4
、e:、’スマス、スス゛フィン; ”) la f)
う5 t5 ’((t 4−秤カi爪看47“あ歩帝寿
めることを特徴とする特許請求の軸囲第1項記載の非水
電解質二次電tm。
(2) The main component of the negative electrode material is mixed): Odomira 4
,e:,'Smas, Susfin; ”) la f)
The non-aqueous electrolyte secondary electricity tm according to claim 1, characterized in that 5 t5' ((t 4-Weighing 47 "Aho Teishumeru").
JP58036881A 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery Granted JPS59163758A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58036881A JPS59163758A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery
US06/873,093 US4683182A (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus
PCT/JP1984/000086 WO1984003590A1 (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus and negative pole therefor
DE8484901015T DE3483244D1 (en) 1983-03-07 1984-03-06 RECHARGEABLE ELECTROCHEMICAL DEVICE AND NEGATIVE POLE THEREOF.
EP84901015A EP0144429B1 (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus and negative pole therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58036881A JPS59163758A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS59163758A true JPS59163758A (en) 1984-09-14
JPH0364988B2 JPH0364988B2 (en) 1991-10-09

Family

ID=12482114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58036881A Granted JPS59163758A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS59163758A (en)

Also Published As

Publication number Publication date
JPH0364988B2 (en) 1991-10-09

Similar Documents

Publication Publication Date Title
JPH05101846A (en) Non-aqueous electrolytic secondary battery
WO1984004001A1 (en) Process for manufacturing re-chargeable electrochemical device
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
EP0139756B1 (en) Rechargeable electrochemical apparatus and negative pole therefor
US5122375A (en) Zinc electrode for alkaline batteries
JPH02239566A (en) Hydrogen storage alloy electrode for alkaline storage battery
JPH05135776A (en) Cylindrical alkaline battery
JPS6086760A (en) Nonaqueous electrolyte secondary battery
JPS59163758A (en) Nonaqueous electrolyte secondary battery
JPH0364987B2 (en)
JPH0992277A (en) Negative active material for secondary battery, electrode and secondary battery using it
JPS6089069A (en) Nonaqueous electrolyte battery
JPS59163757A (en) Nonaqueous electrolyte secondary battery
JPS6089068A (en) Nonaqueous electrolyte secondary battery
JPH0421986B2 (en)
JPS59163759A (en) Nonaqueous electrolyte secondary battery
JP3587213B2 (en) Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same
JPH0412586B2 (en)
JPS6049565A (en) Nonaqueous electrolyte secondary battery
JPS59163756A (en) Nonaqueous electrolyte secondary battery
JPS6188466A (en) Nonaqueous electrolyte secondary battery
JPS62140358A (en) Nonaqueous electrolyte secondary cell
JPS5942775A (en) Zinc electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS6084768A (en) Alkaline zinc storage battery