JP3738293B2 - Negative electrode for lithium secondary battery and lithium secondary battery using the same - Google Patents

Negative electrode for lithium secondary battery and lithium secondary battery using the same Download PDF

Info

Publication number
JP3738293B2
JP3738293B2 JP23815199A JP23815199A JP3738293B2 JP 3738293 B2 JP3738293 B2 JP 3738293B2 JP 23815199 A JP23815199 A JP 23815199A JP 23815199 A JP23815199 A JP 23815199A JP 3738293 B2 JP3738293 B2 JP 3738293B2
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
lithium secondary
negative electrode
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23815199A
Other languages
Japanese (ja)
Other versions
JP2001068095A (en
Inventor
司 園田
卓也 藤枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyogo Prefectural Government
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Hyogo Prefectural Government
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyogo Prefectural Government, National Institute of Advanced Industrial Science and Technology AIST filed Critical Hyogo Prefectural Government
Priority to JP23815199A priority Critical patent/JP3738293B2/en
Publication of JP2001068095A publication Critical patent/JP2001068095A/en
Application granted granted Critical
Publication of JP3738293B2 publication Critical patent/JP3738293B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解液を用いるリチウム二次電池用負極及びこれを用いたリチウム二次電池に関するものである。
【0002】
【従来の技術】
近年、ノートパソコン、携帯電話などの携帯電子機器の普及に伴い、これらの機器をより軽量化し、かつ、長時間の使用を可能とするため、電源として使用される二次電池の小型化及び高エネルギー密度化が要求されている。二次電池としては、従来、ニッケル−カドミウム電池、ニッケル−水素電池などが主流であったが、上記小型化及び高エネルギー密度化の要請から、リチウム二次電池の使用が増大する傾向にある。
【0003】
かかるリチウム二次電池は、現在、正極としてコバルト酸リチウムが、負極としてカーボン電極が、電解液としてプロピレンカーボネートなどの有機溶媒にリチウムイオンを溶解させた非水電解液が一般的に使用されている。
【0004】
【発明が解決しようとする課題】
上記リチウム二次電池の負極にカーボン電極を使用すると、充電時にリチウムイオンがカーボン層間に取り込まれるため、充放電反応において、電極の体積変化は、見かけ上少ない特徴を有する。しかし、カーボン電極では、使用可能な電流密度が低く、また、容量密度も理論値が372mAh/gと低く、さらに、製造工程が複雑で、歩留まりが低いため、製造コストが増大する短所を有する。
【0005】
一方、容量密度が最も大きいのは金属リチウムであり、金属リチウムの容量密度は理論値が3860mAh/gと高く、カーボン電極の10倍以上の充放電容量を有する。しかし、金属リチウムをリチウム二次電池の負極として使用した場合、充放電反応の繰り返しに伴って、リチウムデンドライトが成長し、電極間の短絡やセパレーターの破壊などが発生する。その結果、リチウム二次電池の充放電サイクル効率が急激に低下し、かつ、電池の安全性も低下するという不都合がある。
【0006】
本発明はこれらの不都合に鑑みてなされたものであり、電流密度及びエネルギー密度が高く、充放電サイクル特性に優れ、かつ、製造が比較的容易なリチウム二次電池用負極及びこれを用いたリチウム二次電池の提供を目的とするものである。
【0007】
【課題を解決するための手段】
上記課題を解決するためになされたリチウム二次電池用負極に係る発明は、集電体と、この集電体の表面に電気メッキ法により積層されたスズ−ビスマス合金皮膜とを有するものであり、上記スズ−ビスマス合金皮膜のビスマス含有量が、30重量%以下である(請求項1)。
【0008】
この手段のリチウム二次電池用負極を用いたリチウム二次電池(請求項3)によれば、集電体表面に積層されたスズ−ビスマス合金皮膜がリチウムを吸蔵できることから、金属リチウムと比較して、充放電容量は若干低下するが、充放電時におけるリチウムデンドライトの発生を抑制し、電池の安全性を向上させることが可能である。また、ビスマスにもリチウムが吸蔵されることから、スズ単体の皮膜の場合と比較して、リチウム析出による電流値が増大し、充放電特性が改善される。さらに、集電体表面にスズ単体の皮膜を積層した場合には、スズ皮膜からウィスカーが発生し、電極間が短絡するおそれがあるが、当該リチウム二次電池のようにスズ皮膜にビスマスを合金化させることによって、ウィスカーの発生を防止することができる。また上述のようにスズ単体の皮膜を負極とした場合、溶質がヘキサフルオロリン酸リチウムで溶媒がプロピレンカーボネートの電解液を使用すると高い電流密度において充放電サイクル効率が低下するが、本発明のようにスズ−ビスマス合金皮膜を負極とすると、上記電解液を用いても充放電サイクル効率の低下が防止できる。
【0009】
また、集電体表面へのスズ−ビスマス合金皮膜の積層方法としては、電気メッキ法が好適である。電気メッキ法によれば、スズ−ビスマス合金皮膜と集電体との密着性がよく、大きな面積の積層が容易かつ安価になる。
【0010】
上記スズ−ビスマス合金皮膜のビスマス含有量は30重量%以下であることが好ましい。これは、ビスマス含有量を上記範囲よりも大きくすると、電位も貴な方向へシフトし、容量も低下するからである。
【0011】
上記リチウム二次電池における電解液の溶質としては、ヘキサフルオロリン酸リチウム、過塩素酸リチウム、テトラフルオロホウ酸リチウム及びトリフルオロメタンスルホン酸リチウムからなる群より選択された1又は2以上のものを用いるとよい(請求項)。これらの物質は、電気的陰性度が高く、イオン化しやすいことから、充放電サイクル特性に優れ、二次電池の充放電容量を向上させることができる。
【0012】
また上記リチウム二次電池における電解液の溶媒として、プロピレンカーボネート、エチレンカーボネート及びγ−ブチロラクトンからなる群より選択された1又は2以上のものを用いるとよい(請求項)。この手段によれば、上述のリチウム塩、つまりヘキサフルオロリン酸リチウム、過塩素酸リチウム、テトラフルオロホウ酸リチウム及びトリフルオロメタンスルホン酸リチウムの溶媒として好適であり、これらを安定して解離させることができる。
【0013】
【発明の実施の形態】
以下、適宜図面を参照しつつ本発明の実施の形態を詳説する。当該リチウム二次電池は、正極、負極及び電解液を主要構成要素とする。
【0014】
当該リチウム二次電池の正極としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムなどが用いられる。
【0015】
当該リチウム二次電池の負極は、銅板等からなる集電体と、この集電体の表面に積層されたスズ−ビスマス合金皮膜とを有するものである。スズ及びビスマスはリチウムを吸蔵できるため、リチウム二次電池の負極として使用でき、かつ、金属リチウムを負極として使用した場合のように充放電時にリチウムデンドライトが生成してしまう不都合を防止できる。
【0016】
かかる集電体の表面へのスズ−ビスマス合金皮膜の積層方法としては、電気メッキ法が好適である。電気メッキ法によれば、スズ−ビスマス合金皮膜の密着性がよく、スズ−ビスマス合金皮膜表面の平滑度が向上でき、さらに大きな面積の積層が容易かつ安価になる。
【0017】
当該リチウム二次電池の電解液はリチウムイオンを含有する必要があることから、その溶質としてはリチウム塩が好適である。かかるリチウム塩としては、具体的には、ヘキサフルオロリン酸リチウム、過塩素酸リチウム、テトラフルオロホウ酸リチウム及びトリフルオロメタンスルホン酸リチウムからなる群より選択された1又は2以上のものを用いることができる。上記のリチウム塩は、電気的陰性度が高くイオン化しやすいことから、充放電サイクル特性に優れ、充放電容量を向上させることができる。
【0018】
また上記電解液の溶媒としては、プロピレンカーボネート、エチレンカーボネート及びγ−ブチロラクトンからなる群より選択された1又は2以上のものを用いることができ、特にプロピレンカーボネート単体、プロピレンカーボネートとエチレンカーボネートとの混合物又はγ−ブチロラクトン単体が好適である。なお、上記プロピレンカーボネートとエチレンカーボネートとの混合物の混合比は10%以上90%以下の範囲で任意に調整することができる。
【0019】
上述の構造のリチウム二次電池によれば、下記化学式に示す充放電反応により二次電池として機能する。
【0020】
【化1】

Figure 0003738293
【0021】
なお、上記化学式の式▲1▼、式▲2▼、式▲3▼はそれぞれ正極としてコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムを用いた場合の正極における充放電反応を示す。当該リチウム二次電池は、450mAh/g以上の充放電容量が得られ、実用化されているカーボン負極のリチウム二次電池の充放電容量より大きくなる。
【0022】
【実施例】
以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるべきものではないことはもちろんである。
【0023】
(実験1)
[実施例1]
図1に示すように、銅板表面に約1μm厚のスズ−11%ビスマス合金皮膜を電気メッキ法により形成した負極1と、金属リチウムからなる正極2と、電解液3とを装備した実施例1の実験用リチウム二次電池を得た。この電解液3は、プロピレンカーボネートの溶媒に1Mのヘキサフルオロリン酸リチウムの溶質を溶解させたものである。当該電気メッキ法としては、硫酸第一スズ;0.09M、硫酸ビスマス;適量、グルコン酸ナトリウム;0.3M、エチレンジアミン四酢酸2ナトリウム;適量、ポリエチレングリコール(平均分子量7500);1g/L、ホルマリン;0.6mL/Lからなる浴組成とし、浴のpHが8、浴温が35℃、電流密度が10mA/cm2の条件下で行った。なお、当該電気メッキ法において、硫酸第一スズに対する硫酸ビスマスとエチレンジアミン四酢酸2ナトリウムの混合量比を調整して、スズ−11%ビスマス合金皮膜を電析させる。
【0024】
[比較例1]
銅板表面に約1μm厚のスズ皮膜を電気メッキ法により形成した負極を用いた他は実施例1と同様にして比較例1のリチウム二次電池を得た。当該電気メッキ法としては、硫酸第一スズ;0.2M、グルコン酸ナトリウム;0.6M、p−アニスアルデヒド;0.1g/L、ポリエチレングリコール(平均分子量7500);1g/L、ホルマリン;0.6mL/Lからなる浴組成とし、浴のpHが6、浴温が35℃、電流密度が20mA/cm2の条件下で行った。
【0025】
[特性の評価]
上記実施例1及び比較例1のリチウム二次電池において、サイクリックボルタンメトリーによって電流と電位との関係を測定し、その結果を図2のボルタモグラムに示した。なお、1mV/sの速度で電位を走査した。
【0026】
図2のボルタモグラムに示すように、スズ−ビスマス合金皮膜の負極を用いる実施例1のリチウム二次電池は、スズ皮膜負極を用いる比較例1のリチウム二次電池と比較して、リチウム析出の電流値が増大し、充放電サイクル特性が改善される。これは、スズに加えてビスマスにもリチウムが吸蔵されるためであると考えられる。なお、上述のように負極を評価するための正極として、リチウム酸化物ではなく、大面積の金属リチウムを用いたのは、正極の劣化の影響を受けず、負極単体のみの性能を厳密に評価することができることからである。
【0027】
(実験2)
上記実施例1及び比較例1のリチウム二次電池を用いて充放電試験を行い、充放電サイクル数に対するサイクル効率を求め、その結果を図3に示した。かかる充放電試験の充放電条件は、充電(1mA/cm2、10分)、休止(10分)、放電(1mA/cm2、カットオフ電圧+1Vvs.Li+/Li)、休止(10分)を1サイクルとした。ここで「サイクル効率」とは、充電時間を放電時間で割ることにより求めた。
【0028】
図3のグラフに示すように、負極として単なるスズ皮膜を用いた比較例1のリチウム二次電池は、溶質がヘキサフルオロリン酸リチウムで溶媒がプロピレンカーボネートの電解液を用いた場合、サイクル効率が低下した。一方、負極としてスズ−ビスマス合金皮膜を用いた実施例1のリチウム二次電池は、サイクル数が増加してもサイクル効率があまり低下しなかった。
【0029】
(実験3)
[実施例2]
銅板表面に約1μm厚のスズ−21%ビスマス合金皮膜を電気メッキ法により形成した負極を用い、電解液の溶媒としてプロピレンカーボネートとエチレンカーボネートとの混合物を使用した他は実施例1と同様にして実施例2のリチウム二次電池を得た。当該電気メッキ法としては、メタンスルホン酸スズ;18g/L、メタンスルホン酸ビスマス;適量、メタンスルホン酸;200g/L、添加剤;適量からなる浴組成とし、浴温が20℃、電流密度が20mA/cm2の条件下で行った。なお、メタンスルホン酸スズに対するメタンスルホン酸ビスマスの混合量比を調整し、スズ−21%ビスマス合金被膜を電析させる。
【0030】
[実施例3]
銅板表面に約1μm厚のスズ−21%ビスマス合金皮膜を電気メッキ法で形成した上記実施例2と同様の負極を用い、電解液の溶質として1M過塩素酸リチウムを用いた他は実施例1と同様にして実施例3のリチウム二次電池を得た。
【0031】
[特性の評価]
上記実施例2及び実施例3のリチウム二次電池を用いて充放電試験を行い、充放電サイクル数に対するサイクル効率を求め、その結果を図4に示した。かかる充放電試験の充放電条件は、充電(0.2mA/cm2、30分)、休止(10分)、放電(0.2mA/cm2、カットオフ電圧+1Vvs.Li+/Li)、休止(10分)を1サイクルとした。
【0032】
図4のグラフに示すように、負極としてスズ−21%ビスマス合金皮膜、電解液の溶質としてヘキサフルオロリン酸リチウム、溶媒としてプロピレンカーボネートとエチレンカーボネートとの混合物を用いた実施例2のリチウム二次電池、及び負極としてスズ−21%ビスマス合金皮膜、電解液の溶質として過塩素酸リチウム、溶媒としてプロピレンカーボネートを用いた実施例3のリチウム二次電池ともに良好な充放電サイクル特性を示した。
【0033】
(実験4)
[実施例4]
銅板表面に約1μm厚のスズ−11%ビスマス合金皮膜を電気メッキ法により形成した負極を用い、電解液の溶質として1Mトリフルオロメタンスルホン酸リチウムを用いた他は実施例1と同様にして実施例4のリチウム二次電池を得た。なお当該電気メッキ法は実施例2の場合と同様であり、具体的にはメタンスルホン酸スズ;18g/L、メタンスルホン酸ビスマス;適量、メタンスルホン酸;200g/L、添加剤;適量からなる浴組成とし、浴温が20℃、電流密度が20mA/cm2の条件下で行い、メタンスルホン酸スズに対するメタンスルホン酸ビスマスの混合量比を調整してスズ−11%ビスマス合金被膜を電析させる。
【0034】
[比較例2]
銅板表面に約1μm厚のスズ皮膜を電気メッキ法で形成した比較例1と同様の負極を用い、電解液の溶質として1Mトリフルオロメタンスルホン酸リチウムを用いた他は実施例1と同様にして比較例2のリチウム二次電池を得た。
【0035】
[比較例3]
負極として銅板を用い、電解液の溶質として1Mトリフルオロメタンスルホン酸リチウムを用いた他は実施例1と同様にして比較例3のリチウム二次電池を得た。
【0036】
[特性の評価]
上記実施例4、比較例2及び比較例3のリチウム二次電池を用いて充放電試験を行い、充放電サイクル数に対するサイクル効率を求め、その結果を図5に示した。かかる充放電試験の充放電条件は、実施例4及び比較例2については充電(1mA/cm2、10分)、休止(10分)、放電(1mA/cm2、カットオフ電圧+1Vvs.Li+/Li)、休止(10分)を1サイクルとし、比較例3については充電(0.5mA/cm2、10分)、休止(10分)、放電(0.5mA/cm2、カットオフ電圧+1Vvs.Li+/Li)、休止(10分)を1サイクルとした。
【0037】
図5のグラフに示すように、負極として銅板を用いた比較例3のリチウム二次電池は、サイクル数が40〜50で急激にサイクル効率が低下した。一方、負極としてスズ−ビスマス合金皮膜を用いた実施例4のリチウム二次電池と、負極としてスズ皮膜を用いた比較例2のリチウム二次電池は、サイクル数が増加してもサイクル効率が低下せず、良好な充放電サイクル特性を示した。ただし、比較例2のリチウム二次電池は、スズ皮膜からウィスカーが発生し、電極間が短絡するおそれがあるため、その使用に注意を要する。
【0038】
(実験5)
[実施例5]
銅板表面に約1μm厚のスズ−11%ビスマス合金皮膜を電気メッキ法で形成した実施例4と同様の負極を用い、電解液の溶媒としてγ−ブチロラクトンを用いた他は実施例1と同様にして実施例5のリチウム二次電池を得た。
【0039】
[実施例6]
銅板表面に約1μm厚のスズ−11%ビスマス合金皮膜を電気メッキ法で形成した実施例4と同様の負極を用い、電解液の溶質として1M過塩素酸リチウム、溶媒としてγ−ブチロラクトンを用いた他は実施例1と同様にして実施例6のリチウム二次電池を得た。
【0040】
[比較例4]
銅板表面に約1μm厚のスズ皮膜を電気メッキ法で形成した比較例1と同様の負極を用い、電解液の溶媒としてγ−ブチロラクトンを用いた他は実施例1と同様にして比較例4のリチウム二次電池を得た。
【0041】
[比較例5]
負極として銅板を用い、電解液の溶媒としてγ−ブチロラクトンを用いた他は実施例1と同様にして比較例5のリチウム二次電池を得た。
【0042】
[特性の評価]
上記実施例5、実施例6、比較例4及び比較例5のリチウム二次電池を用いて充放電試験を行い、充放電サイクル数に対するサイクル効率を求め、その結果を図6に示した。かかる充放電試験の充放電条件は、上記実施例5、実施例6及び比較例4については充電(1mA/cm2、10分)、休止(10分)、放電(1mA/cm2、カットオフ電圧+1Vvs.Li+/Li)、休止(10分)を1サイクルとし、比較例5については充電(0.5mA/cm2、10分)、休止(10分)、放電(0.5mA/cm2、カットオフ電圧+1Vvs.Li+/Li)、休止(10分)を1サイクルとした。
【0043】
図6のグラフに示すように、負極としてスズ皮膜を用いた比較例4のリチウム二次電池及びスズ−ビスマス合金皮膜を用いた実施例5、実施例6のリチウム二次電池の場合、良好な充放電サイクル特性を示した。一方、負極として銅板を用いた比較例5のリチウム二次電池の場合は、上記実施例5等のリチウム二次電池と比較して充放電サイクル特性が低下した。
【0044】
なお、上述の実験に使用したリチウム二次電池は、実験及び製造の容易性を考慮して図1に示すような簡易な構造にしたが、本発明のリチウム二次電池はかかる構造に限定されるものではなく、例えば、コイン型、円筒型、角型、扁平型などの形状も可能であり、上記と同様の作用効果が得られる。また以上に示した各実験において、負極の性能を評価するために正極に金属リチウムを用いたが、正極としてリチウム酸化物を用いることも可能であり、金属リチウムの代わりにリチウム酸化物を用いると、従来よりも長寿命のリチウム二次電池を得ることができる。
【0045】
【発明の効果】
以上説明したように、本発明のリチウム二次電池用負極及びこれを用いたリチウム二次電池によれば、電流密度及びエネルギー密度を向上させることができ、充放電サイクル特性も優れたものにすることができる。さらに、負極からウィスカーが発生することを防止し、安全性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施例に係るリチウム二次電池を示す概略構成図である。
【図2】実験1のサイクリックボルタンメトリーの結果である、電位と電流との関係を示すボルタモグラムである。
【図3】実験2の充放電試験の実験結果である、サイクル数とサイクル効率との関係を示すグラフである。
【図4】実験3の充放電試験の実験結果である、サイクル数とサイクル効率との関係を示すグラフである。
【図5】実験4の充放電試験の実験結果である、サイクル数とサイクル効率との関係を示すグラフである。
【図6】実験5の充放電試験の実験結果である、サイクル数とサイクル効率との関係を示すグラフである。
【符号の説明】
1 負極
2 正極
3 電解液[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative electrode for a lithium secondary battery using a non-aqueous electrolyte and a lithium secondary battery using the same.
[0002]
[Prior art]
In recent years, with the spread of portable electronic devices such as notebook computers and mobile phones, in order to reduce the weight of these devices and enable them to be used for a long time, the size and height of secondary batteries used as a power source are reduced. Energy density is required. Conventionally, nickel-cadmium batteries, nickel-hydrogen batteries and the like have been mainstream as secondary batteries. However, the use of lithium secondary batteries tends to increase due to the demands for downsizing and high energy density.
[0003]
In such lithium secondary batteries, currently, lithium cobaltate is generally used as a positive electrode, a carbon electrode as a negative electrode, and a nonaqueous electrolytic solution in which lithium ions are dissolved in an organic solvent such as propylene carbonate as an electrolytic solution. .
[0004]
[Problems to be solved by the invention]
When a carbon electrode is used for the negative electrode of the lithium secondary battery, since lithium ions are taken in between the carbon layers during charging, the volume change of the electrode in the charge / discharge reaction is apparently small. However, the carbon electrode has a disadvantage that the usable current density is low, the capacity density is low as a theoretical value of 372 mAh / g, the manufacturing process is complicated, and the yield is low.
[0005]
On the other hand, metallic lithium has the largest capacity density, and the theoretical density of metallic lithium is as high as 3860 mAh / g, and has a charge / discharge capacity 10 times or more that of the carbon electrode. However, when metallic lithium is used as the negative electrode of a lithium secondary battery, lithium dendrite grows with repeated charge / discharge reactions, causing short-circuiting between electrodes, destruction of the separator, and the like. As a result, the charge / discharge cycle efficiency of the lithium secondary battery is abruptly lowered, and the safety of the battery is also lowered.
[0006]
The present invention has been made in view of these disadvantages, and has a high current density and energy density, an excellent charge / discharge cycle characteristic, and a relatively easy production negative electrode for a lithium secondary battery and lithium using the same The purpose is to provide a secondary battery.
[0007]
[Means for Solving the Problems]
The invention relating to the negative electrode for a lithium secondary battery made in order to solve the above problems comprises a current collector and a tin-bismuth alloy film laminated on the surface of the current collector by an electroplating method. The bismuth content of the tin-bismuth alloy film is 30% by weight or less (claim 1).
[0008]
According to the lithium secondary battery using the negative electrode for a lithium secondary battery of this means (Claim 3), the tin-bismuth alloy film laminated on the surface of the current collector can occlude lithium. Thus, although the charge / discharge capacity is slightly reduced, it is possible to suppress the generation of lithium dendrite during charge / discharge and improve the safety of the battery. Further, since lithium is also occluded in bismuth, a current value due to lithium deposition is increased and charge / discharge characteristics are improved as compared with the case of a film of tin alone. Furthermore, when a film of tin alone is laminated on the current collector surface, whiskers may occur from the tin film, and there is a risk of short-circuiting between the electrodes, but bismuth is alloyed with the tin film as in the case of the lithium secondary battery. By making it, the generation of whiskers can be prevented. Further, as described above, when the tin film is used as the negative electrode, the charge / discharge cycle efficiency decreases at a high current density when the electrolyte is lithium hexafluorophosphate and the solvent is propylene carbonate. If the tin-bismuth alloy film is used as the negative electrode, a decrease in charge / discharge cycle efficiency can be prevented even if the above electrolyte is used.
[0009]
In addition, as a method for laminating the tin-bismuth alloy film on the current collector surface, an electroplating method is suitable. According to the electroplating method, the adhesion between the tin-bismuth alloy film and the current collector is good, and a large area can be easily and inexpensively stacked.
[0010]
The bismuth content of the tin-bismuth alloy film is preferably 30% by weight or less . This is because if the bismuth content is larger than the above range, the potential also shifts in a noble direction and the capacity decreases.
[0011]
As the solute of the electrolytic solution in the lithium secondary battery, one or more selected from the group consisting of lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate and lithium trifluoromethanesulfonate are used. (Claim 3 ). Since these substances have high electronegative properties and are easily ionized, they have excellent charge / discharge cycle characteristics and can improve the charge / discharge capacity of the secondary battery.
[0012]
Moreover, it is good to use the 1 or 2 or more thing selected from the group which consists of propylene carbonate, ethylene carbonate, and (gamma) -butyrolactone as a solvent of the electrolyte solution in the said lithium secondary battery (Claim 4 ). According to this means, it is suitable as a solvent for the above-described lithium salts, that is, lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate and lithium trifluoromethanesulfonate, and can stably dissociate them. it can.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. The lithium secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution as main components.
[0014]
As the positive electrode of the lithium secondary battery, lithium cobaltate, lithium nickelate, lithium manganate, or the like is used.
[0015]
The negative electrode of the lithium secondary battery has a current collector made of a copper plate or the like and a tin-bismuth alloy film laminated on the surface of the current collector. Since tin and bismuth can occlude lithium, it can be used as a negative electrode of a lithium secondary battery, and can prevent the disadvantage that lithium dendrite is generated during charging and discharging as in the case of using metallic lithium as a negative electrode.
[0016]
As a method for laminating the tin-bismuth alloy film on the surface of the current collector, an electroplating method is suitable. According to the electroplating method, the adhesion of the tin-bismuth alloy film is good, the smoothness of the surface of the tin-bismuth alloy film can be improved, and the lamination of a larger area becomes easy and inexpensive.
[0017]
Since the electrolytic solution of the lithium secondary battery needs to contain lithium ions, a lithium salt is preferable as the solute. Specifically, as the lithium salt, one or more selected from the group consisting of lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate and lithium trifluoromethanesulfonate may be used. it can. Since the above lithium salt has high electronegativity and is easily ionized, it has excellent charge / discharge cycle characteristics and can improve charge / discharge capacity.
[0018]
Further, as the solvent of the electrolytic solution, one or two or more selected from the group consisting of propylene carbonate, ethylene carbonate and γ-butyrolactone can be used, particularly propylene carbonate alone, a mixture of propylene carbonate and ethylene carbonate. Alternatively, γ-butyrolactone alone is preferred. The mixing ratio of the mixture of propylene carbonate and ethylene carbonate can be arbitrarily adjusted in the range of 10% to 90%.
[0019]
According to the lithium secondary battery having the above-described structure, it functions as a secondary battery by a charge / discharge reaction represented by the following chemical formula.
[0020]
[Chemical 1]
Figure 0003738293
[0021]
Formulas (1), (2), and (3) in the above chemical formulas indicate charge / discharge reactions at the positive electrode when lithium cobaltate, lithium nickelate, and lithium manganate are used as the positive electrode, respectively. The lithium secondary battery has a charge / discharge capacity of 450 mAh / g or more, and is larger than the charge / discharge capacity of a carbon secondary lithium secondary battery in practical use.
[0022]
【Example】
EXAMPLES Hereinafter, although this invention is explained in full detail based on an Example, of course, this invention should not be interpreted limitedly based on description of this Example.
[0023]
(Experiment 1)
[Example 1]
As shown in FIG. 1, Example 1 equipped with a negative electrode 1 in which a tin-11% bismuth alloy film having a thickness of about 1 μm was formed on a copper plate surface by an electroplating method, a positive electrode 2 made of metallic lithium, and an electrolytic solution 3. An experimental lithium secondary battery was obtained. This electrolytic solution 3 is obtained by dissolving a solute of 1M lithium hexafluorophosphate in a solvent of propylene carbonate. As the electroplating method, stannous sulfate: 0.09M, bismuth sulfate; appropriate amount, sodium gluconate; 0.3M, disodium ethylenediaminetetraacetate; appropriate amount, polyethylene glycol (average molecular weight 7500); 1 g / L, formalin The bath composition was 0.6 mL / L, and the bath pH was 8, the bath temperature was 35 ° C., and the current density was 10 mA / cm 2 . In the electroplating method, the mixing ratio of bismuth sulfate and disodium ethylenediaminetetraacetic acid to stannous sulfate is adjusted to deposit a tin-11% bismuth alloy film.
[0024]
[Comparative Example 1]
A lithium secondary battery of Comparative Example 1 was obtained in the same manner as in Example 1 except that a negative electrode in which a tin film having a thickness of about 1 μm was formed on the copper plate surface by electroplating was used. As the electroplating method, stannous sulfate; 0.2 M, sodium gluconate; 0.6 M, p-anisaldehyde; 0.1 g / L, polyethylene glycol (average molecular weight 7500); 1 g / L, formalin; 0 The bath composition was 6 mL / L, and the bath pH was 6, the bath temperature was 35 ° C., and the current density was 20 mA / cm 2 .
[0025]
[Characteristic evaluation]
In the lithium secondary batteries of Example 1 and Comparative Example 1, the relationship between current and potential was measured by cyclic voltammetry, and the results are shown in the voltammogram of FIG. The potential was scanned at a speed of 1 mV / s.
[0026]
As shown in the voltammogram of FIG. 2, the lithium secondary battery of Example 1 using the negative electrode of the tin-bismuth alloy film is more current in lithium deposition than the lithium secondary battery of Comparative Example 1 using the tin film negative electrode. The value increases, and the charge / discharge cycle characteristics are improved. This is considered to be because lithium is occluded in bismuth in addition to tin. As described above, the use of large-area metal lithium instead of lithium oxide as the positive electrode for evaluating the negative electrode is not affected by the deterioration of the positive electrode, and the performance of the negative electrode alone is strictly evaluated. Because it can be done.
[0027]
(Experiment 2)
A charge / discharge test was conducted using the lithium secondary batteries of Example 1 and Comparative Example 1 to determine the cycle efficiency with respect to the number of charge / discharge cycles, and the results are shown in FIG. The charge / discharge conditions of the charge / discharge test are as follows: charge (1 mA / cm 2 , 10 minutes), rest (10 minutes), discharge (1 mA / cm 2 , cutoff voltage + 1 V vs. Li + / Li), rest (10 minutes) Was one cycle. Here, the “cycle efficiency” was obtained by dividing the charging time by the discharging time.
[0028]
As shown in the graph of FIG. 3, the lithium secondary battery of Comparative Example 1 using a simple tin film as the negative electrode has a cycle efficiency when an electrolyte solution of lithium hexafluorophosphate and propylene carbonate as a solvent is used. Declined. On the other hand, in the lithium secondary battery of Example 1 using the tin-bismuth alloy film as the negative electrode, the cycle efficiency did not decrease much even when the number of cycles increased.
[0029]
(Experiment 3)
[Example 2]
Example 1 was used except that a negative electrode in which a tin-21% bismuth alloy film having a thickness of about 1 μm was formed on the copper plate surface by electroplating and a mixture of propylene carbonate and ethylene carbonate was used as a solvent for the electrolytic solution. A lithium secondary battery of Example 2 was obtained. The electroplating method includes tin methanesulfonate: 18 g / L, bismuth methanesulfonate; appropriate amount, methanesulfonic acid; 200 g / L, additive; bath composition consisting of appropriate amount, bath temperature of 20 ° C., current density The test was performed at 20 mA / cm 2 . The mixing ratio of bismuth methanesulfonate to tin methanesulfonate is adjusted to deposit a tin-21% bismuth alloy coating.
[0030]
[Example 3]
Example 1 except that a negative electrode similar to Example 2 in which a tin-21% bismuth alloy film having a thickness of about 1 μm was formed on the copper plate surface by electroplating was used, and 1M lithium perchlorate was used as the solute of the electrolytic solution. In the same manner, a lithium secondary battery of Example 3 was obtained.
[0031]
[Characteristic evaluation]
A charge / discharge test was conducted using the lithium secondary batteries of Example 2 and Example 3 to determine the cycle efficiency with respect to the number of charge / discharge cycles, and the results are shown in FIG. The charge / discharge conditions of the charge / discharge test are as follows: charge (0.2 mA / cm 2 , 30 minutes), rest (10 minutes), discharge (0.2 mA / cm 2 , cutoff voltage + 1 V vs. Li + / Li), rest (10 minutes) was defined as one cycle.
[0032]
As shown in the graph of FIG. 4, the lithium secondary of Example 2 using a tin-21% bismuth alloy film as the negative electrode, lithium hexafluorophosphate as the solute of the electrolyte, and a mixture of propylene carbonate and ethylene carbonate as the solvent. Both the battery and the lithium secondary battery of Example 3 using tin-21% bismuth alloy film as the negative electrode, lithium perchlorate as the electrolyte solute, and propylene carbonate as the solvent showed good charge / discharge cycle characteristics.
[0033]
(Experiment 4)
[Example 4]
Example 1 The same as Example 1 except that a negative electrode in which a tin-11% bismuth alloy film having a thickness of about 1 μm was formed on the copper plate surface by electroplating and 1M lithium trifluoromethanesulfonate was used as the solute of the electrolyte solution No. 4 lithium secondary battery was obtained. The electroplating method is the same as in Example 2. Specifically, tin methanesulfonate: 18 g / L, bismuth methanesulfonate; appropriate amount, methanesulfonic acid: 200 g / L, additive; appropriate amount The bath composition is 20 ° C. and the current density is 20 mA / cm 2. The tin-11% bismuth alloy coating is electrodeposited by adjusting the mixing ratio of bismuth methanesulfonate to tin methanesulfonate. Let
[0034]
[Comparative Example 2]
Comparison was made in the same manner as in Example 1 except that a negative electrode similar to Comparative Example 1 in which a tin film having a thickness of about 1 μm was formed on the copper plate surface by electroplating and 1M lithium trifluoromethanesulfonate was used as the solute of the electrolytic solution. The lithium secondary battery of Example 2 was obtained.
[0035]
[Comparative Example 3]
A lithium secondary battery of Comparative Example 3 was obtained in the same manner as in Example 1 except that a copper plate was used as the negative electrode and 1M lithium trifluoromethanesulfonate was used as the solute of the electrolytic solution.
[0036]
[Characteristic evaluation]
A charge / discharge test was performed using the lithium secondary batteries of Example 4, Comparative Example 2, and Comparative Example 3 to determine the cycle efficiency with respect to the number of charge / discharge cycles, and the results are shown in FIG. The charge / discharge conditions of the charge / discharge test were as follows: charge (1 mA / cm 2 , 10 minutes), rest (10 minutes), discharge (1 mA / cm 2 , cut-off voltage + 1 V vs. Li + for Example 4 and Comparative Example 2. / Li), pause (10 minutes) is one cycle, and for Comparative Example 3, charge (0.5 mA / cm 2 , 10 minutes), pause (10 minutes), discharge (0.5 mA / cm 2 , cut-off voltage) +1 V vs. Li + / Li) and rest (10 minutes) were taken as one cycle.
[0037]
As shown in the graph of FIG. 5, in the lithium secondary battery of Comparative Example 3 using a copper plate as the negative electrode, the cycle efficiency was drastically decreased at 40 to 50 cycles. On the other hand, the lithium secondary battery of Example 4 using a tin-bismuth alloy film as a negative electrode and the lithium secondary battery of Comparative Example 2 using a tin film as a negative electrode had a reduced cycle efficiency even when the number of cycles increased. And showed good charge / discharge cycle characteristics. However, the lithium secondary battery of Comparative Example 2 requires attention to its use because whiskers are generated from the tin film and the electrodes may be short-circuited.
[0038]
(Experiment 5)
[Example 5]
The same procedure as in Example 1 was conducted except that a negative electrode similar to Example 4 in which a tin-11% bismuth alloy film having a thickness of about 1 μm was formed on the surface of the copper plate by electroplating and γ-butyrolactone was used as the solvent of the electrolytic solution. Thus, a lithium secondary battery of Example 5 was obtained.
[0039]
[Example 6]
A negative electrode similar to Example 4 in which a tin-11% bismuth alloy film having a thickness of about 1 μm was formed on the copper plate surface by electroplating, 1M lithium perchlorate was used as the solute of the electrolytic solution, and γ-butyrolactone was used as the solvent. Otherwise, the lithium secondary battery of Example 6 was obtained in the same manner as Example 1.
[0040]
[Comparative Example 4]
Comparative Example 4 was the same as Example 1 except that a negative electrode similar to Comparative Example 1 in which a tin film having a thickness of about 1 μm was formed on the surface of the copper plate by electroplating, and γ-butyrolactone was used as the solvent of the electrolytic solution. A lithium secondary battery was obtained.
[0041]
[Comparative Example 5]
A lithium secondary battery of Comparative Example 5 was obtained in the same manner as in Example 1 except that a copper plate was used as the negative electrode and γ-butyrolactone was used as the solvent for the electrolytic solution.
[0042]
[Characteristic evaluation]
A charge / discharge test was performed using the lithium secondary batteries of Example 5, Example 6, Comparative Example 4 and Comparative Example 5, and the cycle efficiency with respect to the number of charge / discharge cycles was determined. The result is shown in FIG. The charge / discharge conditions of the charge / discharge test were as follows: charge (1 mA / cm 2 , 10 minutes), rest (10 minutes), discharge (1 mA / cm 2 , cut-off) for Example 5, Example 6 and Comparative Example 4 Voltage + 1 V vs. Li + / Li), pause (10 minutes) is one cycle, and Comparative Example 5 is charged (0.5 mA / cm 2 , 10 minutes), paused (10 minutes), discharged (0.5 mA / cm) 2 , cut-off voltage + 1 V vs. Li + / Li), and rest (10 minutes) were defined as one cycle.
[0043]
As shown in the graph of FIG. 6, the lithium secondary battery of Comparative Example 4 using a tin film as a negative electrode and the lithium secondary batteries of Example 5 and Example 6 using a tin-bismuth alloy film were good. The charge / discharge cycle characteristics are shown. On the other hand, in the case of the lithium secondary battery of Comparative Example 5 using a copper plate as the negative electrode, the charge / discharge cycle characteristics were reduced as compared with the lithium secondary battery of Example 5 and the like.
[0044]
The lithium secondary battery used in the above-described experiment has a simple structure as shown in FIG. 1 in consideration of the ease of experimentation and manufacturing, but the lithium secondary battery of the present invention is limited to such a structure. For example, a coin shape, a cylindrical shape, a square shape, a flat shape, and the like are possible, and the same effect as described above can be obtained. In each experiment shown above, metallic lithium was used for the positive electrode in order to evaluate the performance of the negative electrode. However, it is also possible to use lithium oxide as the positive electrode. When lithium oxide is used instead of metallic lithium, Thus, it is possible to obtain a lithium secondary battery having a longer life than conventional ones.
[0045]
【The invention's effect】
As described above, according to the negative electrode for a lithium secondary battery of the present invention and the lithium secondary battery using the same, the current density and the energy density can be improved, and the charge / discharge cycle characteristics are also excellent. be able to. Furthermore, it is possible to prevent whisker from being generated from the negative electrode and improve safety.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a lithium secondary battery according to an embodiment of the present invention.
FIG. 2 is a voltammogram showing the relationship between potential and current, which is the result of cyclic voltammetry in Experiment 1.
FIG. 3 is a graph showing the relationship between the number of cycles and cycle efficiency, which is the experimental result of the charge / discharge test of Experiment 2.
4 is a graph showing a relationship between the number of cycles and cycle efficiency, which is an experimental result of a charge / discharge test of Experiment 3. FIG.
5 is a graph showing the relationship between the number of cycles and cycle efficiency, which is the experimental result of the charge / discharge test of Experiment 4. FIG.
6 is a graph showing the relationship between the number of cycles and cycle efficiency, which is the experimental result of the charge / discharge test of Experiment 5. FIG.
[Explanation of symbols]
1 Negative electrode 2 Positive electrode 3 Electrolyte

Claims (4)

集電体と、この集電体の表面に電気メッキ法により積層されたスズ−ビスマス合金皮膜とを有するものであり、
上記スズ−ビスマス合金皮膜のビスマス含有量が、30重量%以下であるリチウム二次電池用負極。
Having a current collector and a tin-bismuth alloy film laminated on the surface of the current collector by electroplating;
The negative electrode for lithium secondary batteries whose bismuth content of the said tin-bismuth alloy membrane | film | coat is 30 weight% or less.
請求項1に記載のリチウム二次電池用負極が用いられているリチウム二次電池。  A lithium secondary battery in which the negative electrode for a lithium secondary battery according to claim 1 is used. 電解液の溶質として、ヘキサフルオロリン酸リチウム、過塩素酸リチウム、テトラフルオロホウ酸リチウム及びトリフルオロメタンスルホン酸リチウムからなる群より選択された1又は2以上のものが用いられている請求項2に記載のリチウム二次電池。 The solute of the electrolytic solution is one or more selected from the group consisting of lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate and lithium trifluoromethanesulfonate. The lithium secondary battery as described. 電解液の溶媒として、プロピレンカーボネート、エチレンカーボネート及びγ−ブチロラクトンからなる群より選択された1又は2以上のものが用いられている請求項3に記載のリチウム二次電池。 The lithium secondary battery according to claim 3, wherein one or more selected from the group consisting of propylene carbonate, ethylene carbonate, and γ-butyrolactone is used as a solvent for the electrolytic solution.
JP23815199A 1999-08-25 1999-08-25 Negative electrode for lithium secondary battery and lithium secondary battery using the same Expired - Lifetime JP3738293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23815199A JP3738293B2 (en) 1999-08-25 1999-08-25 Negative electrode for lithium secondary battery and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23815199A JP3738293B2 (en) 1999-08-25 1999-08-25 Negative electrode for lithium secondary battery and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2001068095A JP2001068095A (en) 2001-03-16
JP3738293B2 true JP3738293B2 (en) 2006-01-25

Family

ID=17025961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23815199A Expired - Lifetime JP3738293B2 (en) 1999-08-25 1999-08-25 Negative electrode for lithium secondary battery and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3738293B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4206441B2 (en) * 2000-12-27 2009-01-14 兵庫県 Negative electrode for lithium secondary battery and lithium secondary battery using the same
EP1501136A4 (en) 2002-04-26 2009-12-30 Mitsui Mining & Smelting Co Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
EP4287318A1 (en) * 2021-01-26 2023-12-06 Panasonic Intellectual Property Management Co., Ltd. Battery
EP4287319A1 (en) * 2021-01-26 2023-12-06 Panasonic Intellectual Property Management Co., Ltd. Battery
EP4287307A1 (en) * 2021-01-26 2023-12-06 Panasonic Intellectual Property Management Co., Ltd. Battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163755A (en) * 1983-03-07 1984-09-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP3619000B2 (en) * 1997-01-28 2005-02-09 キヤノン株式会社 Electrode structure, secondary battery, and manufacturing method thereof
JP4227581B2 (en) * 1997-01-28 2009-02-18 キヤノン株式会社 Electrode structure and secondary battery
JPH10241670A (en) * 1997-02-25 1998-09-11 Sanyo Electric Co Ltd Electrode for nonaqueous electrolytic secondary battery and manufacture thereof
JPH11242953A (en) * 1997-12-24 1999-09-07 Asahi Chem Ind Co Ltd Battery having roughened electrode terminal
JPH11233116A (en) * 1998-02-16 1999-08-27 Canon Inc Electrode structural body for lithium secondary battery, its manufacture and lithium secondary battery
JP3620703B2 (en) * 1998-09-18 2005-02-16 キヤノン株式会社 Negative electrode material for secondary battery, electrode structure, secondary battery, and production method thereof
JP3403090B2 (en) * 1998-09-18 2003-05-06 キヤノン株式会社 Metal oxide having a porous structure, electrode structure, secondary battery, and method for producing these
JP2000100429A (en) * 1998-09-18 2000-04-07 Canon Inc Electrode structure and secondary battery
JP2001068094A (en) * 1999-08-25 2001-03-16 Hyogo Prefecture Negative electrode for lithium secondary battery and lithium secondary battery using the same

Also Published As

Publication number Publication date
JP2001068095A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
US6699619B2 (en) Negative electrode of a lithium secondary battery with a two-layered inorganic solid electrolytic material
US9225037B2 (en) Lithium secondary battery using ionic liquid
US20080070123A1 (en) Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery
JP3535454B2 (en) Non-aqueous electrolyte secondary battery
JP2007042601A (en) Carbon electrode, production method therefor and nonaqueous electrolyte secondary battery
JP2003242964A (en) Non-aqueous electrolyte secondary battery
JP3477981B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US20020034687A1 (en) Rechargeable lithium battery
JP2001068094A (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2002231224A (en) Lithium secondary battery electrode, its manufacturing method, and lithium secondary battery
JP2005235397A (en) Electrode for lithium battery, lithium battery using it, and lithium secondary battery
JPH06196169A (en) Nonaqueous electrolyte secondary battery
JP4206441B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP3738293B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP4162457B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
KR100359605B1 (en) Lithium secondary battery cathode composition, lithium secondary battery cathode and lithium secondary battery employing the same, and method for preparing the same
JP3223051B2 (en) Lithium secondary battery
US6617077B1 (en) Polymer electrolyte battery and method of fabricating the same
JP4382319B2 (en) Lithium secondary battery
JP2003162997A (en) Negative electrode for secondary battery and secondary battery using the same
JP2014197511A (en) Nonaqueous electrolyte secondary battery
JP2007026910A (en) Metal alloy foil negative electrode for lithium secondary battery, and lithium secondary battery using this
CN110993929B (en) Polymer protective film, metal negative electrode material, lithium ion battery and preparation method
JP3785242B2 (en) Anode material for lithium secondary battery
KR100566592B1 (en) Anode foil for lithium ion polymer battery and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050930

R150 Certificate of patent or registration of utility model

Ref document number: 3738293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term