JP2001196053A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2001196053A
JP2001196053A JP2000006342A JP2000006342A JP2001196053A JP 2001196053 A JP2001196053 A JP 2001196053A JP 2000006342 A JP2000006342 A JP 2000006342A JP 2000006342 A JP2000006342 A JP 2000006342A JP 2001196053 A JP2001196053 A JP 2001196053A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
aqueous electrolyte
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000006342A
Other languages
Japanese (ja)
Other versions
JP4747392B2 (en
Inventor
Takayuki Yamahira
隆幸 山平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2000006342A priority Critical patent/JP4747392B2/en
Publication of JP2001196053A publication Critical patent/JP2001196053A/en
Application granted granted Critical
Publication of JP4747392B2 publication Critical patent/JP4747392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having a high energy density and a long life. SOLUTION: This battery comprises a negative electrode 2 containing a sintered body formed by sintering a carbonaceous material and a metal compound and having a carbon content of 70% by weight or more and 100% by weight or less, a positive electrode 4 and a nonaqueous electrolyte.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素質材料を含有
する負極と、正極と、非水電解質とを有する非水電解質
二次電池に関する。
[0001] The present invention relates to a non-aqueous electrolyte secondary battery having a negative electrode containing a carbonaceous material, a positive electrode, and a non-aqueous electrolyte.

【0002】[0002]

【従来の技術】近年、ビデオカメラやラジオカセット等
のポータブル機器の普及に伴い、一度放電したら再び充
電することのできない一次電池に代わって、繰り返し充
放電可能な二次電池に対する需要が高まっている。
2. Description of the Related Art In recent years, with the spread of portable devices such as video cameras and radio cassettes, there has been an increasing demand for secondary batteries which can be repeatedly charged and discharged instead of primary batteries which cannot be charged once discharged. .

【0003】現在使用されている二次電池は、アルカリ
電解液を用いたニッケル・カドミウム電池が主流となっ
ている。しかし、このニッケル・カドミウム電池は、電
圧が約1.2Vであり、エネルギー密度を向上させるこ
とが困難である。また、常温での自己放電率が高く、1
ケ月で20%以上であるという欠点もある。
As a secondary battery currently used, a nickel cadmium battery using an alkaline electrolyte is mainly used. However, the voltage of this nickel-cadmium battery is about 1.2 V, and it is difficult to improve the energy density. Also, the self-discharge rate at room temperature is high,
There is also a disadvantage that it is more than 20% in one month.

【0004】このため、電解質として非水溶媒である電
解液を使用し、負極としてリチウム等の軽金属を用いる
非水電解質二次電池の検討がなされている。リチウム等
の金属を負極に用いる非水電解質二次電池は、電圧が3
V以上と高いので高エネルギー密度を有し、更に自己放
電率が低いという長所を有しているが、充放電を繰り返
されると負極から金属リチウム等がデンドライト状に結
晶成長して正極に接触し、電池内部で短絡が生じるとい
う欠点もある。
For this reason, non-aqueous electrolyte secondary batteries using an electrolyte which is a non-aqueous solvent as an electrolyte and using a light metal such as lithium as a negative electrode have been studied. A non-aqueous electrolyte secondary battery using a metal such as lithium for the negative electrode has a voltage of 3
It has the advantage of high energy density and high self-discharge rate because it is higher than V, but when charge and discharge are repeated, metal lithium etc. grows in dendrite form from the negative electrode and contacts the positive electrode. There is also a disadvantage that a short circuit occurs inside the battery.

【0005】また、リチウム等の軽金属を他の金属と合
金化し、この合金を負極として用いる非水電解質二次電
池の検討がなされている。しかし、合金を負極として用
いる非水電解質二次電池は、充放電を繰り返されると負
極を構成する合金が微粒子化するため電池寿命が短い。
Further, a non-aqueous electrolyte secondary battery in which a light metal such as lithium is alloyed with another metal and this alloy is used as a negative electrode has been studied. However, a non-aqueous electrolyte secondary battery using an alloy as a negative electrode has a short battery life because the alloy constituting the negative electrode becomes finer when charging and discharging are repeated.

【0006】更に、例えば、特開昭62−90863号
公報に開示されるように、負極活物質としてコークス等
の炭素質材料を用いる非水電解質二次電池が提案されて
いる。負極活物質として炭素質材料を用いる非水電解質
二次電池は、リチウムイオンの炭素層間へのドープ・脱
ドープを負極反応に利用した電池である。また、負極活
物質として炭素質材料を用いる非水電解質二次電池は、
充放電が繰り返された場合、負極活物質として金属リチ
ウム又はリチウム合金を使用した非水電解質二次電池で
は生じていた金属リチウムの析出による短絡や負極活物
質である合金の微粒子化といった問題が発生しないので
実用化されており、広く用いられている。
Further, for example, as disclosed in Japanese Patent Application Laid-Open No. 62-90863, a non-aqueous electrolyte secondary battery using a carbonaceous material such as coke as a negative electrode active material has been proposed. A non-aqueous electrolyte secondary battery using a carbonaceous material as a negative electrode active material is a battery in which doping / dedoping of lithium ions between carbon layers is used for a negative electrode reaction. Further, a non-aqueous electrolyte secondary battery using a carbonaceous material as a negative electrode active material,
When charging and discharging are repeated, non-aqueous electrolyte secondary batteries using metal lithium or lithium alloy as the negative electrode active material have problems such as short-circuiting due to the deposition of metal lithium and the formation of fine particles of the alloy as the negative electrode active material. It has been put to practical use and widely used.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、負極活
物質として炭素質材料を用いる非水電解質二次電池は、
負極活物質として金属リチウム又は合金等を用いる非水
電解質二次電池と比較すると、サイクル特性や安全性に
優れ、且つ電池寿命が長いが、エネルギー密度において
は劣っている。
However, a non-aqueous electrolyte secondary battery using a carbonaceous material as a negative electrode active material has a problem.
Compared with a non-aqueous electrolyte secondary battery using metal lithium or an alloy as a negative electrode active material, it has excellent cycle characteristics and safety, and has a long battery life, but is inferior in energy density.

【0008】負極活物質として炭素質材料を用いる非水
電解質二次電池の負極は、粉末状の炭素質材料と結合剤
とを混練して負極合剤を調製し、これを所望の電極形状
に形成するか、あるいは集電体に保持させたものであ
る。しかし、このような負極では、一般に、負極質量の
うち10〜20%が電池容量に関与しない結合剤で占め
られてしまう。このため、炭素質材料と結合剤とを含有
する負極を備える非水電解質二次電池では、エネルギー
密度の向上を実現することが困難であるという問題があ
った。
The negative electrode of a non-aqueous electrolyte secondary battery using a carbonaceous material as a negative electrode active material is prepared by kneading a powdery carbonaceous material and a binder to prepare a negative electrode mixture, and forming the mixture into a desired electrode shape. It is formed or held on a current collector. However, in such a negative electrode, generally, 10 to 20% of the mass of the negative electrode is occupied by a binder that does not contribute to the battery capacity. For this reason, in a nonaqueous electrolyte secondary battery including a negative electrode containing a carbonaceous material and a binder, there is a problem that it is difficult to achieve an improvement in energy density.

【0009】この問題を改善するために、炭素質材料の
充填密度を向上させる等の対策が考えられるが、それに
も限界があり、エネルギー密度のさらなる向上が阻まれ
ているのが実情である。
In order to improve this problem, measures such as increasing the packing density of the carbonaceous material can be considered. However, there is a limit to this, and the fact is that further improvement in energy density is prevented.

【0010】そこで、エネルギー密度を高めるために、
電極上での活物質の充填密度を向上させる、あるいはよ
り多くの電極材料を電池缶内に詰め込む等の対策が考え
られているが、何れの対策にも限界がある。
Therefore, in order to increase the energy density,
Measures have been considered to improve the packing density of the active material on the electrode, or to pack more electrode material into the battery can, but there are limitations to any of the measures.

【0011】本発明は、このような従来の実情に鑑みて
提案されたものであり、エネルギー密度がより高く、電
池寿命が長い非水電解質二次電池を提供することを目的
とする。
The present invention has been proposed in view of such conventional circumstances, and has as its object to provide a non-aqueous electrolyte secondary battery having a higher energy density and a longer battery life.

【0012】[0012]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明に係る非水電解質二次電池は、炭素質材料
と金属化合物とが焼結されてなり、炭素含有率が70重
量%以上、100重量%未満である焼結体を含有する負
極と、正極と、非水電解質とを備えることを特徴とす
る。
In order to achieve the above object, a nonaqueous electrolyte secondary battery according to the present invention comprises a carbonaceous material and a metal compound sintered, and has a carbon content of 70% by weight. % And less than 100% by weight, comprising a negative electrode containing a sintered body, a positive electrode, and a non-aqueous electrolyte.

【0013】以上のように構成された本発明に係る非水
電解質二次電池では、負極において、炭素質材料と金属
化合物とが焼結されてなり、炭素含有率が70重量%以
上、100重量%未満である焼結体を活物質として用い
る。この負極は、結合剤等の合剤を用いることなく形成
されている。これにより、負極における活物質の充填密
度が向上する。また、この負極は、金属化合物を含有し
ているので導電性が高い。従って、この負極を備える非
水電解質二次電池は、エネルギー密度の向上が実現さ
れ、充放電時において電池内部抵抗が低減し、電極にお
ける分極が防止されるのでサイクル特性の向上が実現さ
れる。
In the non-aqueous electrolyte secondary battery according to the present invention, the carbonaceous material and the metal compound are sintered at the negative electrode, and the carbon content is 70% by weight or more and 100% by weight. % Is used as an active material. This negative electrode is formed without using a mixture such as a binder. Thereby, the packing density of the active material in the negative electrode is improved. The negative electrode has high conductivity because it contains a metal compound. Therefore, in the non-aqueous electrolyte secondary battery including the negative electrode, an improvement in energy density is achieved, the internal resistance of the battery is reduced during charge and discharge, and polarization in the electrode is prevented, thereby improving cycle characteristics.

【0014】[0014]

【発明の実施の形態】以下、本発明に係る非水電解質二
次電池について、図面を参照しながら詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a non-aqueous electrolyte secondary battery according to the present invention will be described in detail with reference to the drawings.

【0015】本発明を適用したコイン型の非水電解質二
次電池1はリチウム等のドープ・脱ドープを利用した電
池であり、図1に示すように、負極2と、負極2を収容
する負極カップ3と、正極4と、正極4を収容する正極
缶5と、負極2と正極4との間に配されたセパレータ6
と、ガスケット7とを備え、電解質として電解液を用い
る場合には、負極カップ3及び正極缶5内に非水電解液
が充填されてなる。固体電解質やゲル電解質を用いる場
合には、固体電解質層、ゲル電解質層を負極2、正極4
の活物質上に形成する。
A coin-type non-aqueous electrolyte secondary battery 1 to which the present invention is applied is a battery utilizing doping and undoping of lithium or the like. As shown in FIG. Cup 3, positive electrode 4, positive electrode can 5 containing positive electrode 4, separator 6 disposed between negative electrode 2 and positive electrode 4
And a gasket 7, when the electrolyte is used as the electrolyte, the negative electrode cup 3 and the positive electrode can 5 are filled with a non-aqueous electrolyte. When a solid electrolyte or a gel electrolyte is used, the solid electrolyte layer and the gel electrolyte layer
Formed on the active material.

【0016】負極2は、炭素質材料と金属化合物とが焼
結されてなり、炭素含有率が70重量%以上、100重
量%未満である焼結体を含有する。この焼結体は、負極
2において活物質となる。
The negative electrode 2 is formed by sintering a carbonaceous material and a metal compound, and contains a sintered body having a carbon content of 70% by weight or more and less than 100% by weight. This sintered body becomes an active material in the negative electrode 2.

【0017】上記炭素質材料としては、石油ピッチ、バ
インダーピッチ、高分子樹脂、グリーンコークス等の樹
脂分をある程度含んだものが挙げられる。また、完全に
炭素化した黒鉛、熱分解炭素類、コークス類(石油コー
クス、ピッチコークス、石炭コークス等)、カーボンブ
ラック(アセチレンブラック等)、ガラス状炭素、有機
高分子材料焼成体(有機高分子材料を不活性ガス気流
中、あるいは真空中で500℃以上の適当な温度で焼成
したもの。)及び炭素繊維等と、前述の樹脂分を含んだ
ピッチ類や焼結性の高い樹脂、例えば、フラン樹脂、ジ
ビニルベンゼン、ポリフッ化ビニデリン等とを混合した
メソフェーズカーボン化するものを使用することもでき
る。
Examples of the carbonaceous material include those containing a certain amount of resin such as petroleum pitch, binder pitch, polymer resin, green coke and the like. In addition, completely carbonized graphite, pyrolytic carbons, cokes (petroleum coke, pitch coke, coal coke, etc.), carbon black (acetylene black, etc.), glassy carbon, calcined organic polymer materials (organic polymer materials) The material is fired at an appropriate temperature of 500 ° C. or more in an inert gas stream or vacuum.) And carbon fibers and the like and pitches and sinterable resins containing the above resin components, for example, It is also possible to use a mixture obtained by mixing a furan resin, divinylbenzene, polyvinylidene fluoride or the like to form a mesophase carbon.

【0018】上記金属化合物としては、Siを含有する
ことが好ましく、具体的には、SiC、SiO2等が挙
げられる。また、金属化合物として、金属Si単体を用
いることが最も好ましい。
The metal compound preferably contains Si, and specifically includes SiC, SiO 2 and the like. It is most preferable to use metal Si alone as the metal compound.

【0019】この焼結体は、結合剤等の合剤を用いるこ
となく形成されているので、負極2としては活物質の充
填密度が高いものとなる。また、この焼結体は、焼結後
の炭素含有率が70重量%以上、100重量%未満とな
るように炭素質材料と金属化合物とが焼結されたもので
あるので、導電性が高い。焼結体の炭素含有率が70重
量%より少ない場合、即ち、金属化合物の含有率が30
重量%より多い場合、電池の充放電に伴う負極体積の膨
張が非常に大きくなる虞がある。
Since this sintered body is formed without using a mixture such as a binder, the negative electrode 2 has a high filling density of the active material. In addition, the sintered body has a high conductivity since the carbonaceous material and the metal compound are sintered such that the carbon content after sintering is 70% by weight or more and less than 100% by weight. . When the carbon content of the sintered body is less than 70% by weight, that is, when the content of the metal compound is 30% by weight.
If the amount is more than the percentage by weight, the expansion of the negative electrode volume accompanying the charge and discharge of the battery may be extremely large.

【0020】従って、負極2としてこの焼結体を用いる
非水電解質二次電池1はエネルギー密度の向上が実現さ
る。また、この非水電解質二次電池1は、充放電時にお
いて電池内部抵抗が低減し、電極における分極が防止さ
れるので、サイクル特性の向上が実現される。
Therefore, the non-aqueous electrolyte secondary battery 1 using this sintered body as the negative electrode 2 achieves an improvement in energy density. Further, in the non-aqueous electrolyte secondary battery 1, the internal resistance of the battery is reduced during charging and discharging, and polarization at the electrodes is prevented, so that the cycle characteristics are improved.

【0021】なお、負極2は、この焼結体をそのまま電
極として使用してもよく、必要に応じて負極集電体と焼
結体とを一体とする構造であってもよい。負極集電体と
焼結体とを一体とした負極2は、負極集電体材料を炭素
質材料と金属化合物との混合物中に添加し、これを加圧
して成形した後に焼結することで得られる。
The negative electrode 2 may use this sintered body as it is as an electrode, or may have a structure in which the negative electrode current collector and the sintered body are integrated as required. The negative electrode 2 in which the negative electrode current collector and the sintered body are integrated is obtained by adding a negative electrode current collector material to a mixture of a carbonaceous material and a metal compound, pressing the mixture, and then sintering. can get.

【0022】負極集電体の材料としては、例えば温度1
000℃に至る焼結雰囲気下に置かれる都合上、そのよ
うな温度でも溶融することがないように、1000℃以
上に融点を有し、且つリチウムと合金化し難いものであ
ることが好ましい。そのような材料としては、銅、ニッ
ケル、コバルト、鉄、クロム、モリブデン、タンタル、
タングステン、ステンレス、チタンの単体あるいはこれ
らの合金が挙げられる。
As the material of the negative electrode current collector, for example,
For the purpose of being placed in a sintering atmosphere up to 000 ° C., it is preferable that it has a melting point of 1000 ° C. or more and is hardly alloyed with lithium so that it is not melted even at such a temperature. Such materials include copper, nickel, cobalt, iron, chromium, molybdenum, tantalum,
A simple substance of tungsten, stainless steel, titanium or an alloy thereof may be used.

【0023】また、集電体の形態は、占有面積が小さく
て済むことから、箔やメッシュ、エキスパンドメタル、
パンチングメタルのようなイオンを通過させる開口部を
有するものが好ましい。
Further, the form of the current collector requires a small occupied area, so that the foil, mesh, expanded metal,
It is preferable to use a material such as a punching metal having an opening through which ions pass.

【0024】負極カップ3は、負極2を収容するもので
あり、また、非水電解質二次電池1の外部端子(負極)
となる。
The negative electrode cup 3 houses the negative electrode 2, and is connected to an external terminal (negative electrode) of the nonaqueous electrolyte secondary battery 1.
Becomes

【0025】正極4は、正極活物質を含有する。The positive electrode 4 contains a positive electrode active material.

【0026】上記正極活物質としては、この種の非水電
解質二次電池の正極活物質として通常用いられている公
知の材料、例えばリチウム等をドープ・脱ドープ可能な
遷移金属酸化物等を用いることができる。具体的には、
特開昭63−135099号公報に開示されているよう
に、一般式LiX MO2 (但し、Mは1種以上の遷移金
属、好ましくはCoまたはNi、Feのうち少なくとも
1種を表し、0.05≦x≦1.10である。)で表さ
れる化合物が挙げられる。具体的には、LiCoO2
LiNiO2 、LiNiy Co(1-y)2 (但し、xは
0.05≦x≦1.10、yは0<y<1である。)で
表される複合酸化物や、LiMn24等のリチウム遷移
金属複合酸化物が挙げられる。
As the positive electrode active material, a known material usually used as a positive electrode active material of this type of nonaqueous electrolyte secondary battery, for example, a transition metal oxide capable of doping / dedoping lithium or the like is used. be able to. In particular,
As disclosed in JP-A-63-135099, a general formula Li X MO 2 (where M represents one or more transition metals, preferably at least one of Co or Ni or Fe, 0.05 ≦ x ≦ 1.10.). Specifically, LiCoO 2 ,
A composite oxide represented by LiNiO 2 or LiNi y Co (1-y) O 2 (where x is 0.05 ≦ x ≦ 1.10 and y is 0 <y <1), or LiMn 2 Lithium transition metal composite oxides such as O 4 may be mentioned.

【0027】これらのリチウム遷移金属複合酸化物は、
例えば、リチウム、コバルト、ニッケル等の炭酸塩を組
成に応じて混合し、酸素存在雰囲気下、600℃〜10
00℃の温度範囲で焼成することによって得られる。な
お、出発原料は炭酸塩に限定されず、水酸化物、酸化物
からも同様に合成可能である。
These lithium transition metal composite oxides are:
For example, carbonates such as lithium, cobalt, and nickel are mixed according to the composition, and the mixture is mixed at 600 ° C. to 10
It is obtained by firing in a temperature range of 00 ° C. The starting materials are not limited to carbonates, and can be synthesized from hydroxides and oxides.

【0028】正極缶5は、正極4を収容するものであ
り、また、非水電解質二次電池1の外部端子(正極)と
なる。
The positive electrode can 5 houses the positive electrode 4 and serves as an external terminal (positive electrode) of the nonaqueous electrolyte secondary battery 1.

【0029】電解質は、液状のいわゆる電解液であって
もよいし、固体電解質やゲル電解質であってもよい。
The electrolyte may be a so-called liquid electrolyte, a solid electrolyte or a gel electrolyte.

【0030】電解質を電解液とする場合、非水溶媒に電
解質を溶解したものであれば、従来から知られたものが
いずれも使用することができる。
In the case where the electrolyte is used as the electrolyte, any conventionally known electrolyte can be used as long as the electrolyte is dissolved in a non-aqueous solvent.

【0031】上記非水溶媒としては、例えばプロピレン
カーボネート、エチレンカーボネート、γ−ブチロラク
トン等のエステル類や、ジエチルエーテル、テトラヒド
ロフラン、置換テトラヒドロフラン、ジオキソラン、ピ
ラン及びその誘導体、ジメトキシエタン、ジエトキシエ
タン等のエーテル類や、3−メチル−2−オキサゾリジ
ノン等の3置換−2−オキサゾリジノン類や、スルホラ
ン、メチルスホラン、アセトニトリル、プロピオニトル
等が挙げられ、これらが単独もしくは2種類以上が混合
されて使用される。
Examples of the non-aqueous solvent include esters such as propylene carbonate, ethylene carbonate and γ-butyrolactone, and ethers such as diethyl ether, tetrahydrofuran, substituted tetrahydrofuran, dioxolan, pyran and derivatives thereof, dimethoxyethane, diethoxyethane and the like. And 3-substituted-2-oxazolidinones such as 3-methyl-2-oxazolidinone, sulfolane, methylsphorane, acetonitrile, propionitrile, and the like. These may be used alone or as a mixture of two or more.

【0032】固体電解質(溶媒を全く含まない完全固体
電解質を含む。)やゲル電解質とする場合には、使用す
る高分子材料としては、シリコンゲル、アクリルゲル、
アクリロニトリルゲル、ポリフォスファゼン変性ポリマ
ー、ポリエチレンオキサイド、ポリプロピレンオキサイ
ド、及びこれらの複合ポリマーや架橋ポリマー、変性ポ
リマー等、若しくはフッ素系ポリマーとして、例えばポ
リ(ビニリデンフルオロライド)やポリ(ビニリデンフ
ルオロライド−co−ヘキサフルオロプロピレン)、ポ
リ(ビニリデンフルオロライド−co−テトラフルオロ
エチレン)、ポリ(ビニリデンフルオロライド−co−
トリフルオロエチレン)等、及びこれらの混合物が各種
使用できるが、勿論、これらに限定されるものではな
い。
When a solid electrolyte (including a completely solid electrolyte containing no solvent at all) or a gel electrolyte is used, the polymer material used may be silicon gel, acrylic gel,
Acrylonitrile gel, polyphosphazene-modified polymer, polyethylene oxide, polypropylene oxide, and their composite polymers, crosslinked polymers, modified polymers, and the like, or fluorine-based polymers such as poly (vinylidene fluoride) and poly (vinylidene fluoride-co- Hexafluoropropylene), poly (vinylidenefluoride-co-tetrafluoroethylene), poly (vinylidenefluoride-co-
Although various types of trifluoroethylene) and the like and mixtures thereof can be used, of course, the present invention is not limited to these.

【0033】電解質に溶解(相溶)させる軽金属塩に
は、リチウム、ナトリウム、アルミニウム等の軽金属の
塩を使用することができ、電池の種類に応じて適宜定め
ることができる。例えば、リチウムイオン二次電池を構
成する場合には、過塩素酸リチウム、ホウフッ化リチウ
ム、リンフッ化リチウム、塩化アルミン酸リチウム、ハ
ロゲン化リチウム、トリフルオロメタンスルホン酸リチ
ウム等が使用できる。
As the light metal salt to be dissolved (compatible) with the electrolyte, a salt of a light metal such as lithium, sodium, aluminum or the like can be used and can be appropriately determined according to the type of battery. For example, in the case of forming a lithium ion secondary battery, lithium perchlorate, lithium borofluoride, lithium phosphofluoride, lithium chloride aluminate, lithium halide, lithium trifluoromethanesulfonate and the like can be used.

【0034】セパレータ6は、正極4と、負極2とを離
間させるものであり、この種の非水電解質二次電池のセ
パレータとして通常用いられている公知の材料を用いる
ことができ、例えばポリプロピレンなどの高分子フィル
ムが用いられる。なお、電解質として固体電解質、ゲル
電解質を用いた場合には、このセパレータ6は必ずしも
設けなくともよい。
The separator 6 separates the positive electrode 4 and the negative electrode 2 from each other, and may be formed of a known material which is generally used as a separator for a non-aqueous electrolyte secondary battery of this type. Polymer film is used. When a solid electrolyte or a gel electrolyte is used as the electrolyte, the separator 6 is not necessarily provided.

【0035】ガスケット7は、負極カップ3に組み込ま
れ一体化されている。このガスケット7は、正極缶5及
び負極カップ3内に充填された非水電解液の漏出を防止
するためのものである。
The gasket 7 is incorporated into the negative electrode cup 3 and is integrated. The gasket 7 is for preventing the nonaqueous electrolyte filled in the positive electrode can 5 and the negative electrode cup 3 from leaking.

【0036】以上のように構成された非水電解質二次電
池1は、例えば電解質として電解液を用いる場合、以下
のようにして作製する。
The non-aqueous electrolyte secondary battery 1 configured as described above is manufactured as follows, for example, when an electrolytic solution is used as the electrolyte.

【0037】まず、負極2として焼結体を以下のように
して作製する。焼結後において炭素含有率が70重量%
以上、100重量%未満となるように炭素質材料と金属
化合物とを混合して造粒し、加圧して成形体とした後
に、不活性ガス又は真空中において、所定の温度で焼結
することにより、焼結体を得る。
First, a sintered body is prepared as the negative electrode 2 as follows. 70% by weight carbon content after sintering
As described above, after mixing and granulating a carbonaceous material and a metal compound so as to be less than 100% by weight, forming a compact by pressing, and sintering at a predetermined temperature in an inert gas or vacuum. As a result, a sintered body is obtained.

【0038】次に、正極4を作製する。上述した正極活
物質と結着剤とを溶剤中に分散させてスラリーの正極合
剤を調製する。そして、正極合剤を乾燥させて所望の形
状に成形することで、正極4を得る。
Next, the positive electrode 4 is manufactured. The positive electrode active material and the binder described above are dispersed in a solvent to prepare a positive electrode mixture of a slurry. Then, the positive electrode mixture is dried and formed into a desired shape to obtain the positive electrode 4.

【0039】更に、電解液を、電解質塩を非水溶媒中に
溶解することにより調製する。
Further, an electrolytic solution is prepared by dissolving an electrolyte salt in a non-aqueous solvent.

【0040】そして、正極4を例えばアルミニウム製の
正極缶5に収容し、負極2を例えばステンレス製の負極
カップ3に収容し、正極4と負極2との間に例えばポリ
プロピレン製のセパレータ6を配する。正極缶5及び負
極カップ3内に非水電解液を注入し、ガスケット7を介
して正極缶5と負極カップ3とをかしめて固定すること
により、非水電解質二次電池1が完成する。
The positive electrode 4 is housed in a positive electrode can 5 made of, for example, aluminum, the negative electrode 2 is housed in a negative electrode cup 3 made of, for example, stainless steel, and a separator 6 made of, for example, polypropylene is arranged between the positive electrode 4 and the negative electrode 2. I do. The non-aqueous electrolyte is injected into the positive electrode can 5 and the negative electrode cup 3, and the positive electrode can 5 and the negative electrode cup 3 are caulked and fixed via the gasket 7, whereby the non-aqueous electrolyte secondary battery 1 is completed.

【0041】上述のようにして作製された非水電解質二
次電池1は、炭素質材料と金属化合物とが焼結されてな
り、炭素含有率が70重量%以上、100重量%未満で
ある焼結体を活物質とする負極2を有する。従って、非
水電解質二次電池1は、負極2における活物質の充填密
度が高いので、エネルギー密度が高い。また、この非水
電解質二次電池は、充放電時において電池内部抵抗が低
減し、電極における分極が防止されて、サイクル特性に
優れるので電池寿命が長い。
The non-aqueous electrolyte secondary battery 1 manufactured as described above is obtained by sintering a carbonaceous material and a metal compound, and has a carbon content of 70% by weight or more and less than 100% by weight. It has a negative electrode 2 using the aggregate as an active material. Therefore, the nonaqueous electrolyte secondary battery 1 has a high energy density because the active material filling density in the negative electrode 2 is high. In addition, this non-aqueous electrolyte secondary battery has a low battery internal resistance during charge and discharge, prevents polarization in the electrodes, and has excellent cycle characteristics, so that the battery life is long.

【0042】特に、非水電解質二次電池1は、金属化合
物としてSiを含有する物質と炭素質材料とが焼結され
てなる焼結体を含有する負極2を備えることにより、電
池内部抵抗がより低減するので、充放電効率がより一層
改善される。
In particular, the non-aqueous electrolyte secondary battery 1 is provided with the negative electrode 2 containing a sintered body obtained by sintering a substance containing Si as a metal compound and a carbonaceous material. Since the charge / discharge efficiency is further reduced, the charge / discharge efficiency is further improved.

【0043】なお、上述した非水電解質二次電池1の形
状はコイン型であるが、本発明に係る非水電解質二次電
池の形状はこれに限定されず、正極と負極とをセパレー
タを介して積層させた積層電極を用いる角型電池、カー
ド型電池等、何れの形状であっても良い。
The shape of the non-aqueous electrolyte secondary battery 1 described above is a coin shape, but the shape of the non-aqueous electrolyte secondary battery according to the present invention is not limited to this. Any shape, such as a square battery or a card-type battery using the laminated electrodes laminated by the above method, may be used.

【0044】[0044]

【実施例】以下、本発明に係る非水電解質電池につい
て、具体的な実験結果に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The nonaqueous electrolyte battery according to the present invention will be described below based on specific experimental results.

【0045】ここでは、負極活物質材料の相違による非
水電解質二次電池の容量の違い等を評価するため、負極
の構成が異なるコイン型の非水電解質二次電池を複数作
製した。
Here, in order to evaluate the difference in capacity of the non-aqueous electrolyte secondary battery due to the difference in the negative electrode active material, a plurality of coin-type non-aqueous electrolyte secondary batteries having different negative electrode configurations were manufactured.

【0046】実施例1 先ず、正極を以下のようにして作製した。 Example 1 First, a positive electrode was produced as follows.

【0047】正極活物質としては、炭酸リチウム0.5
モルと炭酸コバルト1モルとを混合し、空気中、温度9
00℃で5時間焼成することでLiCoO2 を合成し
た。なお、このようにして得られたLiCoO2 は、ボ
ウルミルを用いて粉砕された後にふるい分けされること
により、平均粒径が10μmとされている。
As the positive electrode active material, lithium carbonate 0.5
Mol and 1 mol of cobalt carbonate in air at a temperature of 9
By baking at 00 ° C. for 5 hours, LiCoO 2 was synthesized. The LiCoO 2 thus obtained is pulverized using a bowl mill and then sieved to have an average particle size of 10 μm.

【0048】このLiCoO291重量部と、導電剤で
あるグラファイト6重量部と、結合剤であるポリフッ化
ビニリデン3重量部とを混合し、さらにN−メチル−ピ
ロリドンを分散剤として加えて、スラリー状の正極合剤
を調製した。そして、この正極合剤を乾燥させて、直径
が15.5mmである円盤状に成形することで、ペレッ
ト状の正極を得た。
This LiCoO 2 ( 91 parts by weight), 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed, and N-methyl-pyrrolidone was added as a dispersing agent. A positive electrode mixture was prepared. Then, this positive electrode mixture was dried and formed into a disk shape having a diameter of 15.5 mm, thereby obtaining a pellet-shaped positive electrode.

【0049】次に、負極として焼結体を以下のように作
製した。
Next, a sintered body was prepared as a negative electrode as follows.

【0050】炭素質材料としてメソフェーズピッチから
なる特殊炭素前駆体(三菱化学(株)製 商品名:MB
C−SS)と、金属化合物として粉末X線回折標準試料
用である金属シリコンとを、74.5:25.5の比率
で混合した後に1トンにて圧縮成形し、直径が16.5
mmである円盤状の成形体を得た。この成形体を不活性
ガス中、温度1000℃で3時間焼結することで、直径
が16.0mmであるペレット状の焼結体を得た。
A special carbon precursor made of mesophase pitch as a carbonaceous material (trade name: MB, manufactured by Mitsubishi Chemical Corporation)
C-SS) and metal silicon as a metal compound for a powder X-ray diffraction standard sample were mixed at a ratio of 74.5: 25.5, and then compression-molded at 1 ton to have a diameter of 16.5.
mm was obtained. This compact was sintered in an inert gas at a temperature of 1000 ° C. for 3 hours to obtain a pellet-like sintered body having a diameter of 16.0 mm.

【0051】また、電解質として、炭酸エチレンとジエ
チルカーボネートとの混合液にLiPF6 を1モル/リ
ットルなる濃度で溶解した電解液を作製した。
As an electrolyte, an electrolyte was prepared by dissolving LiPF 6 at a concentration of 1 mol / liter in a mixture of ethylene carbonate and diethyl carbonate.

【0052】そして、ペレット状の正極を正極缶に、ペ
レット状の焼結体を負極カップに収容し、ポリプロピレ
ン製のセパレータを介して積層した。次いで、電解液を
注入し、ガスケットを介してかしめることで直径が2
0.0mm、厚さが2.5mmであるコイン型の非水電
解質二次電池を作製した。
Then, the pellet-shaped positive electrode was accommodated in a positive electrode can, and the pellet-shaped sintered body was accommodated in a negative electrode cup, and laminated with a polypropylene separator interposed therebetween. Next, the electrolyte was injected, and caulked through a gasket to reduce the diameter to 2 μm.
A coin-type non-aqueous electrolyte secondary battery having a thickness of 0.0 mm and a thickness of 2.5 mm was produced.

【0053】実施例2〜実施例6 負極として焼結体を作製する際に特殊炭素前駆体と金属
シリコンとの混合比率を表1に示すように変化させ、焼
結後の炭素含有率が表1に示す値である焼結体を負極と
したこと以外は、実施例1と同様にしてコイン型の非水
電解質二次電池を作製した。なお、表1は後に示す。
Examples 2 to 6 When a sintered body was prepared as a negative electrode, the mixing ratio of the special carbon precursor and metallic silicon was changed as shown in Table 1, and the carbon content after sintering was changed. A coin-type non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the sintered body having the value shown in No. 1 was used as a negative electrode. Table 1 will be described later.

【0054】比較例1 負極を以下のようにして作製したこと以外は、実施例1
と同様にしてコイン型の非水電解質二次電池を作製し
た。
Comparative Example 1 Example 1 was repeated except that the negative electrode was produced as follows.
In the same manner as in the above, a coin-type non-aqueous electrolyte secondary battery was produced.

【0055】まず、負極活物質としてピッチコークス
を、直径が12.7mmであるステンレス鋼製の球と共
に振動ミルを用いて15分間粉砕した。なお、このピッ
チコークスの真密度は2.03g/cm3であり、日本
学術振興会法に準じてX線回折により求めた(002)
面の面間隔は3.46Åであり、C軸方向の結晶厚みL
cは40Åであり、平均粒径は33μmであった。
First, pitch coke as a negative electrode active material was ground for 15 minutes using a vibration mill together with stainless steel balls having a diameter of 12.7 mm. The true density of this pitch coke was 2.03 g / cm 3 , which was determined by X-ray diffraction according to the method of the Japan Society for the Promotion of Science (002).
The plane spacing is 3.46 °, and the crystal thickness L in the C-axis direction is
c was 40 ° and the average particle size was 33 μm.

【0056】次に、ピッチコークスを90重量部と、結
合剤としてポリフッ化ビニリデン10重量部とを混合
し、さらにN−メチル−ピロリドンを分散剤として加え
てスラリー状の負極合剤を調製した。そして、この負極
合剤を乾燥させて、直径が16.0mmである円盤状に
成形することで、負極ペレットを得た。
Next, 90 parts by weight of pitch coke and 10 parts by weight of polyvinylidene fluoride as a binder were mixed, and N-methyl-pyrrolidone was added as a dispersant to prepare a slurry negative electrode mixture. Then, the negative electrode mixture was dried and formed into a disk having a diameter of 16.0 mm to obtain negative electrode pellets.

【0057】比較例2 負極として、金属シリコンを添加せずに特殊炭素前駆体
のみを焼結してなる炭素焼結体を用いること以外は、実
施例1と同様にしてコイン型の非水電解質二次電池を作
製した。
Comparative Example 2 A coin-shaped non-aqueous electrolyte was produced in the same manner as in Example 1 except that a carbon sintered body obtained by sintering only a special carbon precursor without adding metallic silicon was used as a negative electrode. A secondary battery was manufactured.

【0058】なお、この炭素焼結体は、炭素質材料とし
てメソフェーズピッチからなる特殊炭素前駆体(三菱化
学(株)製 商品名:MBC−SS)を、直径が16.
5mmである円盤状のペレットとした後に、20トンに
て圧縮成形し、この成形体を不活性ガス中、温度100
0℃で3時間焼結することで、直径が16.0mmであ
る円盤状の炭素焼結体を得た。また、炭素焼結体(負極
活物質)の充填密度はd=1.20g/cm3であっ
た。
This carbon sintered body was prepared by using a special carbon precursor (trade name: MBC-SS, manufactured by Mitsubishi Chemical Corporation) made of mesophase pitch as a carbonaceous material.
After being formed into a disk-shaped pellet of 5 mm, it is compression-molded at 20 tons.
By sintering at 0 ° C. for 3 hours, a disc-shaped carbon sintered body having a diameter of 16.0 mm was obtained. The packing density of the carbon sintered body (negative electrode active material) was d = 1.20 g / cm 3 .

【0059】比較例3 負極として焼結体を作製する際に、特殊炭素前駆体と金
属シリコンとを、69.9:30.1の比率で混合して
焼結し、炭素含有率が65重量%である焼結体を得たこ
と以外は、実施例1と同様にしてコイン型の非水電解質
二次電池を作製した。
COMPARATIVE EXAMPLE 3 When producing a sintered body as a negative electrode, a special carbon precursor and metallic silicon were mixed at a ratio of 69.9: 30.1 and sintered, and the carbon content was 65% by weight. %, And a coin-type non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 except that a sintered body having a% content was obtained.

【0060】ここで、実施例1〜実施例6の電池の負極
として焼結体を作製する際の炭素質材料と金属シリコン
との混合比率、焼結後の炭素含有率、負極密度、及び負
極の真比重を表1に示す。また、比較例1〜比較例3の
電池の負極に関しても、同様に表1に示す。
Here, the mixing ratio of the carbonaceous material and metallic silicon, the carbon content after sintering, the negative electrode density, and the negative electrode for producing the sintered body as the negative electrode of the batteries of Examples 1 to 6 Is shown in Table 1. Table 1 also shows the negative electrodes of the batteries of Comparative Examples 1 to 3.

【0061】[0061]

【表1】 [Table 1]

【0062】以上のようにして作製された実施例1〜実
施例6及び比較例1〜3の電池について、電池内部抵
抗、充電容量、放電容量を測定した。
The internal resistance, charge capacity, and discharge capacity of the batteries of Examples 1 to 6 and Comparative Examples 1 to 3 manufactured as described above were measured.

【0063】なお、これらの電池における充電容量及び
放電容量は、充電電流を1mAとして終止電圧が4.2
Vまで定電流充電を行った後、放電電流を1mAとして
終止電圧が3.0Vまでの定電流放電を行うことで測定
した。そして、放電容量と充電容量とを比較した充放電
効率を求めた。
The charge capacity and the discharge capacity of these batteries were set at a charge current of 1 mA and a final voltage of 4.2.
After performing a constant current charge to V, the discharge current was set to 1 mA, and the measurement was performed by performing a constant current discharge until the final voltage was 3.0 V. Then, the charge / discharge efficiency was calculated by comparing the discharge capacity and the charge capacity.

【0064】また、この条件で充放電を100回繰り返
し、100サイクル後の放電容量と1サイクル後の放電
容量との比率であるサイクル維持率を求めた。更に、充
電後の負極体積と充電前の負極体積との比率である負極
体積膨張率を求めた。
The charge / discharge was repeated 100 times under these conditions, and the cycle retention ratio, which is the ratio between the discharge capacity after 100 cycles and the discharge capacity after 1 cycle, was determined. Furthermore, the negative electrode volume expansion rate, which is the ratio of the negative electrode volume after charging to the negative electrode volume before charging, was determined.

【0065】以上の測定結果を表2に示す。Table 2 shows the above measurement results.

【0066】[0066]

【表2】 [Table 2]

【0067】表2により明らかなように、炭素質材料と
して特殊炭素前駆体と金属化合物として金属シリコンと
が焼結されてなり、炭素含有率が70重量%以上、10
0重量%未満である焼結体を含有する負極を有する実施
例1〜実施例6の非水電解質二次電池は、電池内部抵抗
が低減し、充電容量及び放電容量が大きく、サイクル維
持率に優れていることがわかった。
As is clear from Table 2, a special carbon precursor as a carbonaceous material and metallic silicon as a metal compound were sintered, and the carbon content was 70% by weight or more.
The non-aqueous electrolyte secondary batteries of Examples 1 to 6 each having a negative electrode containing a sintered body that is less than 0% by weight have a reduced battery internal resistance, a large charge capacity and a large discharge capacity, and a high cycle maintenance rate. It turned out to be excellent.

【0068】これに対して、負極活物質としてピッチコ
ークスと結合剤とからなる負極を有する比較例1の電池
は、負極が結合剤を含有する分、負極活物質の充填密度
が低くなるので、充電容量及び放電容量が小さく、サイ
クル維持率が悪いことがわかった。
On the other hand, in the battery of Comparative Example 1 having the negative electrode composed of pitch coke and the binder as the negative electrode active material, the packing density of the negative electrode active material is reduced by the amount of the negative electrode containing the binder. It was found that the charge capacity and the discharge capacity were small, and the cycle retention was poor.

【0069】また、金属化合物が添加されていない炭素
焼結体を含有する負極を有する比較例2の電池は、電池
内部抵抗が低減されず、充電容量及び放電容量が小さい
ことがわかった。さらに、焼結後の炭素含有率が70重
量%より小さい焼結体を含有する負極を有する比較例3
の電池は、電池総高を考慮すると、負極体積膨張率が大
きすぎることがわかった。
Further, it was found that the battery of Comparative Example 2 having the negative electrode containing the carbon sintered body to which the metal compound was not added did not decrease the internal resistance of the battery and had a small charge capacity and a small discharge capacity. Comparative Example 3 having a negative electrode containing a sintered body having a carbon content of less than 70% by weight after sintering
It was found that the battery of this item had an excessively large negative electrode volume expansion coefficient in consideration of the total battery height.

【0070】従って、非水電解質二次電池は、炭素質材
料と金属化合物とが焼結されてなり、炭素含有率が70
重量%以上、100重量%未満である焼結体を含有する
負極を用いることで、エネルギー密度が高く、更に、サ
イクル特性に優れて電池寿命が長いことがわかった。
Therefore, the non-aqueous electrolyte secondary battery is formed by sintering a carbonaceous material and a metal compound, and has a carbon content of 70%.
It was found that the use of the negative electrode containing the sintered body of not less than 100% by weight and not more than 100% by weight has high energy density, excellent cycle characteristics, and long battery life.

【0071】なお、上述した実施例では、炭素質材料と
してメソフェーズピッチからなる特殊炭素前駆体を用い
た場合について説明したが、本発明はこれに限定される
ものではなく、他の炭素質材料を用いても良い。
In the above-described embodiment, the case where a special carbon precursor made of mesophase pitch is used as the carbonaceous material has been described. However, the present invention is not limited to this, and other carbonaceous materials may be used. May be used.

【0072】[0072]

【発明の効果】以上の説明からも明らかなように、本発
明に係る非水電解液二次電池は、炭素質材料と金属化合
物とが焼結されてなり、炭素含有率が70重量%以上、
100重量%未満である焼結体を含有する負極を用いて
いるので、エネルギー密度が高く、サイクル特性に優れ
て電池寿命が長いことがわかった。
As is apparent from the above description, the non-aqueous electrolyte secondary battery according to the present invention is formed by sintering a carbonaceous material and a metal compound, and has a carbon content of 70% by weight or more. ,
Since the negative electrode containing the sintered body less than 100% by weight was used, it was found that the energy density was high, the cycle characteristics were excellent, and the battery life was long.

【0073】特に、非水電解質二次電池が、炭素質材料
とSiを含有する金属化合物とが焼結されてなる焼結体
を含有する負極を有する場合、負極の導電性が向上し、
電池内部抵抗がより低減するので、充放電効率がより一
層改善される。
In particular, when the non-aqueous electrolyte secondary battery has a negative electrode containing a sintered body obtained by sintering a carbonaceous material and a metal compound containing Si, the conductivity of the negative electrode is improved,
Since the battery internal resistance is further reduced, the charge / discharge efficiency is further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用したコイン型の電池構成例を示す
概略断面図である。
FIG. 1 is a schematic cross-sectional view showing a configuration example of a coin-type battery to which the present invention is applied.

【符号の説明】[Explanation of symbols]

0 非水電解質二次電池、2 負極、3 負極カップ、
4 正極、5 正極缶、6 セパレータ、7 ガスケッ
0 Non-aqueous electrolyte secondary battery, 2 negative electrode, 3 negative electrode cup,
4 positive electrode, 5 positive electrode can, 6 separator, 7 gasket

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G046 CA00 CA07 CB09 CC01 5H003 AA04 BA01 BB04 BD04 5H014 AA01 BB01 EE08 EE10 HH01 5H029 AJ05 AK03 AL01 AL06 AM03 AM04 AM05 AM07 BJ03 BJ16 CJ02 HJ01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G046 CA00 CA07 CB09 CC01 5H003 AA04 BA01 BB04 BD04 5H014 AA01 BB01 EE08 EE10 HH01 5H029 AJ05 AK03 AL01 AL06 AM03 AM04 AM05 AM07 BJ03 BJ16 CJ02 HJ01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素質材料と金属化合物とが焼結されて
なり、炭素含有率が70重量%以上、100重量%未満
である焼結体を含有する負極と、 正極と、 非水電解質とを備えることを特徴とする非水電解質二次
電池。
1. A negative electrode comprising a sintered body obtained by sintering a carbonaceous material and a metal compound and having a carbon content of 70% by weight or more and less than 100% by weight, a positive electrode, and a non-aqueous electrolyte. A non-aqueous electrolyte secondary battery comprising:
【請求項2】 上記金属化合物は、Siを含有すること
を特徴とする請求項1記載の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the metal compound contains Si.
JP2000006342A 2000-01-12 2000-01-12 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4747392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000006342A JP4747392B2 (en) 2000-01-12 2000-01-12 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000006342A JP4747392B2 (en) 2000-01-12 2000-01-12 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2001196053A true JP2001196053A (en) 2001-07-19
JP4747392B2 JP4747392B2 (en) 2011-08-17

Family

ID=18534885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000006342A Expired - Fee Related JP4747392B2 (en) 2000-01-12 2000-01-12 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4747392B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146292A (en) * 2002-10-28 2004-05-20 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2007265831A (en) * 2006-03-29 2007-10-11 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
US8092940B2 (en) 2002-05-08 2012-01-10 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213012A (en) * 1995-02-03 1996-08-20 Mitsui Toatsu Chem Inc Electrode material and manufacture thereof
JPH08231273A (en) * 1995-02-24 1996-09-10 Asahi Organic Chem Ind Co Ltd Production of carbide and negative electrode containing particles of the same
JPH08236104A (en) * 1995-02-24 1996-09-13 Asahi Organic Chem Ind Co Ltd Manufacture of silicon-containing carbon particle and negative electrode containing the carbon particle
WO1998024135A1 (en) * 1996-11-26 1998-06-04 Kao Corporation Negative electrode material for nonaqueous secondary battery and nonaqueous secondary battery
WO1998028804A1 (en) * 1996-12-24 1998-07-02 Kao Corporation Nonaqueous electrolyte secondary battery
JPH11260369A (en) * 1998-03-13 1999-09-24 Mitsubishi Chemical Corp Active material for secondary battery negative electrode and manufacture thereof
WO1999062131A1 (en) * 1998-05-25 1999-12-02 Kao Corporation Method of manufacturing secondary battery negative electrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213012A (en) * 1995-02-03 1996-08-20 Mitsui Toatsu Chem Inc Electrode material and manufacture thereof
JPH08231273A (en) * 1995-02-24 1996-09-10 Asahi Organic Chem Ind Co Ltd Production of carbide and negative electrode containing particles of the same
JPH08236104A (en) * 1995-02-24 1996-09-13 Asahi Organic Chem Ind Co Ltd Manufacture of silicon-containing carbon particle and negative electrode containing the carbon particle
WO1998024135A1 (en) * 1996-11-26 1998-06-04 Kao Corporation Negative electrode material for nonaqueous secondary battery and nonaqueous secondary battery
WO1998028804A1 (en) * 1996-12-24 1998-07-02 Kao Corporation Nonaqueous electrolyte secondary battery
JPH11260369A (en) * 1998-03-13 1999-09-24 Mitsubishi Chemical Corp Active material for secondary battery negative electrode and manufacture thereof
WO1999062131A1 (en) * 1998-05-25 1999-12-02 Kao Corporation Method of manufacturing secondary battery negative electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8092940B2 (en) 2002-05-08 2012-01-10 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery
US10038186B2 (en) 2002-05-08 2018-07-31 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery
JP2004146292A (en) * 2002-10-28 2004-05-20 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2007265831A (en) * 2006-03-29 2007-10-11 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4747392B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP3427570B2 (en) Non-aqueous electrolyte secondary battery
JP4524881B2 (en) Nonaqueous electrolyte secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JPH11102705A (en) Negative electrode material, and nonaqueous electrolyte secondary battery using the same
JPH1083817A (en) Anode material and non-aqueous electrolytic secondary battery using the material
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JP3282189B2 (en) Non-aqueous electrolyte secondary battery
KR100364069B1 (en) Non-aqueous Electrolyte Secondary Battery
JP2001076727A (en) Positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JPH08153513A (en) Manufacture of positive electrode active material
JP4016438B2 (en) Nonaqueous electrolyte secondary battery
JP2004111202A (en) Anode material and battery using the same
JP2004063270A (en) Manufacturing method of positive electrode active material, and manufacturing method of nonaqueous electrolyte battery
JP4747392B2 (en) Nonaqueous electrolyte secondary battery
JP2002151065A (en) Negative electrode active material and non-aqueous electrolyte battery
JPH07272765A (en) Nonaqueous electrolytic secondary battery and its manufacture
JPH07183047A (en) Nonaqueous electrolyte secondary battery
JP3427577B2 (en) Non-aqueous electrolyte secondary battery
JP3163642B2 (en) Non-aqueous electrolyte secondary battery
JPH1197015A (en) Nonaqueous electrolyte secondary cell
JP3428034B2 (en) Non-aqueous electrolyte secondary battery
JP2961745B2 (en) Non-aqueous electrolyte secondary battery
JP3728773B2 (en) Non-aqueous electrolyte secondary battery
JP3837726B2 (en) battery
JP3644128B2 (en) Negative electrode active material, production method thereof, and nonaqueous electrolyte secondary battery using the negative electrode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees