JP2961745B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2961745B2
JP2961745B2 JP1105195A JP10519589A JP2961745B2 JP 2961745 B2 JP2961745 B2 JP 2961745B2 JP 1105195 A JP1105195 A JP 1105195A JP 10519589 A JP10519589 A JP 10519589A JP 2961745 B2 JP2961745 B2 JP 2961745B2
Authority
JP
Japan
Prior art keywords
particle size
carbonaceous material
secondary battery
electrolyte secondary
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1105195A
Other languages
Japanese (ja)
Other versions
JPH02284354A (en
Inventor
晋 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1105195A priority Critical patent/JP2961745B2/en
Publication of JPH02284354A publication Critical patent/JPH02284354A/en
Application granted granted Critical
Publication of JP2961745B2 publication Critical patent/JP2961745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、負極活物質として炭素質材料を用いた非水
電解質二次電池に関し、特に、電池の自己放電特性及び
充填率の改良に関するものである。
Description: TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery using a carbonaceous material as a negative electrode active material, and more particularly to an improvement in self-discharge characteristics and a filling factor of the battery. It is.

〔発明の概要〕[Summary of the Invention]

本発明は、負極活物質として炭素質材料を用いた非水
電解質二次電池において、粒径5μm以下の炭素質材料
が前記炭素質材料全体に対して体積率で3%以下とし、
上記炭素質材料の平均粒径を25〜50μm、好ましくは30
〜50μmとすることによって、電池の自己放電特性及び
充填率を改善するようにしたものである。
The present invention provides a nonaqueous electrolyte secondary battery using a carbonaceous material as a negative electrode active material, wherein the carbonaceous material having a particle size of 5 μm or less is 3% or less by volume relative to the entire carbonaceous material,
The average particle size of the carbonaceous material is 25-50 μm, preferably 30
By setting the thickness to μ50 μm, the self-discharge characteristics and the filling rate of the battery are improved.

〔従来の技術〕[Conventional technology]

近年、ビデオカメラやラジカセ等のポータブル機器の
普及に伴い、使い捨てである一次電池に代わって、繰り
返し使用できる二次電池に対する需要が高まっている。
2. Description of the Related Art In recent years, with the spread of portable devices such as video cameras and boomboxes, demand for secondary batteries that can be used repeatedly instead of disposable primary batteries has been increasing.

現在使用されている二次電池の殆どは、アルカリ電解
液を用いたニッケルカドミウム電池である。しかし、こ
の電池の電圧は約1.2Vであるので、電池のエネルギー密
度を向上させることが困難である。また、常温での自己
放電率が1カ月で20%以上となって高いという欠点もあ
る。
Most of the secondary batteries currently used are nickel cadmium batteries using an alkaline electrolyte. However, since the voltage of this battery is about 1.2 V, it is difficult to improve the energy density of the battery. Another drawback is that the self-discharge rate at room temperature is as high as 20% or more in one month.

そこで、電解液に非水溶媒を使用し、また、負極にリ
チウム等の軽金属を使用することによって、電圧が3V以
上という高エネルギー密度を有し、しかも、自己放電率
も低い非水電解質二次電池が、検討されてきた。しか
し、このような二次電池では、負極に使用する金属リチ
ウム等が充放電の繰り返しによりデンドライト状に成長
して正極と接触し、この結果、電池内部において短絡が
生じ易いという欠点がある。
Therefore, by using a non-aqueous solvent for the electrolyte and using a light metal such as lithium for the negative electrode, the secondary battery has a high energy density of 3 V or more and a low self-discharge rate. Batteries have been considered. However, such a secondary battery has a disadvantage that lithium metal or the like used for the negative electrode grows in a dendrite shape by repeated charge and discharge and comes into contact with the positive electrode, and as a result, a short circuit easily occurs inside the battery.

このため、リチウム等を他の金属と合金化し、この合
金を負極に使用するようにした非水電解質二次電池が検
討された。しかし、この場合は、この合金が充放電を繰
り返すことにより粒子化し易いという欠点のために、や
はり実用化が困難である。
Therefore, a non-aqueous electrolyte secondary battery in which lithium or the like is alloyed with another metal and this alloy is used for the negative electrode has been studied. However, in this case, it is also difficult to put the alloy into practical use because of the disadvantage that the alloy is liable to become particles due to repeated charging and discharging.

そこで、例えば特開昭62−90863号公報に開示されて
いるように、コークス等の炭素質材料を負極活物質とし
て使用する非水電解質二次電池が提案された。この二次
電池は負極における上述のような欠点を有していないの
で、サイクル寿命特性に優れている。そして、正極活物
質として、本願の発明者が先に特願昭63−135099号にお
いて提案したようなLixMO2(Mは1種又は1種よりも多
い遷移金属を表わし、0.05<x<1.10である)を用いる
と、電池容量が向上して、高エネルギー密度の非水電解
質二次電池を得ることができる。
Then, as disclosed in, for example, JP-A-62-90863, a non-aqueous electrolyte secondary battery using a carbonaceous material such as coke as a negative electrode active material has been proposed. Since this secondary battery does not have the above-described disadvantages of the negative electrode, it has excellent cycle life characteristics. As the positive electrode active material, Li x MO 2 (M represents one or more transition metals, as proposed by the inventor of the present application in Japanese Patent Application No. 63-135099, and 0.05 <x < Using 1.10) improves the battery capacity, and can provide a high-energy-density nonaqueous electrolyte secondary battery.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、炭素質材料を負極活物質として用いた非水電
解質二次電池は、金属リチウム等を負極活物質として用
いた電池に比べて、自己放電率が極めて高く、その保存
性が悪いという欠点を有している。かかる欠点を改善す
るために、例えば特開昭63−121248号公報において、0.
1〜50μmの範囲に体積換算で90%以上の粒度分布を有
する炭素質材料を用いることが開示されている。
However, non-aqueous electrolyte secondary batteries using a carbonaceous material as the negative electrode active material have the disadvantage that the self-discharge rate is extremely high and their storage stability is poor compared to batteries using lithium metal or the like as the negative electrode active material. Have. In order to improve such disadvantages, for example, in Japanese Patent Application Laid-Open No.
It is disclosed that a carbonaceous material having a particle size distribution of 90% or more by volume in the range of 1 to 50 μm is used.

ところが、本願の発明者は、上述のような炭素質材料
を用いても、自己放電特性が必ずしも改善されないこと
を見い出した。
However, the inventor of the present application has found that the use of the carbonaceous material as described above does not necessarily improve the self-discharge characteristics.

本発明は、負極活物質として炭素質材料を用いても、
自己放電特性及び充填率に優れた非水電解質二次電池を
提供することを目的とする。
The present invention uses a carbonaceous material as the negative electrode active material,
An object of the present invention is to provide a non-aqueous electrolyte secondary battery having excellent self-discharge characteristics and a filling factor.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明は、負極活物質と
して炭素質材料を用いた非水電解質二次電池において、
粒径5μm以下の炭素質材料が前記炭素質材料全体に対
して体積率で3%以下であり、上記炭素質材料の平均粒
径が25〜50μm、好ましくは30〜50μmの範囲にあるよ
うにしたものである。
In order to achieve the above object, the present invention provides a non-aqueous electrolyte secondary battery using a carbonaceous material as a negative electrode active material,
The carbonaceous material having a particle size of 5 μm or less is 3% by volume or less based on the entire carbonaceous material, and the average particle size of the carbonaceous material is in the range of 25 to 50 μm, preferably 30 to 50 μm. It was done.

上記炭素質材料としては、リチウムをドープ、脱ドー
プできるものであって、熱分解炭素類、コークス類(ピ
ッチコークス、ニードルコークス、石油コークス等)、
グラファイト類、ガラス状炭素類、有機高分子化合物の
焼成体(フェノール樹脂、フラン樹脂等を適当な温度で
焼成したもの)、炭素繊維、活性炭等を用いることがで
きる。
As the carbonaceous material, lithium can be doped and dedoped, and pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.),
Graphites, glassy carbons, fired bodies of organic polymer compounds (fired phenol resin, furan resin, etc. at an appropriate temperature), carbon fibers, activated carbon, and the like can be used.

電解液も、有機溶剤に電解質を溶解したものであれ
ば、従来から知られたものがいずれも使用できる。した
がって、有機溶剤としては、プロピレンカーボネート、
エチレンカーボネート、γ−ブチロラクトン等のエステ
ル類や、ジエチルエーテル、テトラヒドロフラン、置換
テトラヒドロフラン、ジオキソラン、ピラン及びその誘
導体、ジメトキシエタン、ジエトキシエタン等のエーテ
ル類や、3−メチル−2−オキサゾリジノン等の3置換
−2−オキサゾリジノン類や、スルホラン、メチルスル
ホラン、アセトニトリル、プロピオニトリル等が挙げら
れ、これらを単独若しくは2種以上混合して使用され
る。また、電解質としては、過塩素酸リチウム、ホウフ
ッ化リチウム、リンフッ化リチウム、塩化アルミン酸リ
チウム、ハロゲン化リチウム、トリフルオロメタンスル
ホン酸リチウム等が使用できる。
As the electrolytic solution, any conventionally known one can be used as long as the electrolyte is dissolved in an organic solvent. Therefore, as the organic solvent, propylene carbonate,
Esters such as ethylene carbonate and γ-butyrolactone, ethers such as diethyl ether, tetrahydrofuran, substituted tetrahydrofuran, dioxolan, pyran and derivatives thereof, dimethoxyethane and diethoxyethane, and trisubstituted such as 3-methyl-2-oxazolidinone Examples thereof include -2-oxazolidinones, sulfolane, methylsulfolane, acetonitrile, propionitrile, and the like, and these are used alone or in combination of two or more. Further, as the electrolyte, lithium perchlorate, lithium borofluoride, lithium phosphofluoride, lithium aluminate, lithium halide, lithium trifluoromethanesulfonate and the like can be used.

なお、本発明において、平均粒径とは、平均体積径
(体積加重平均粒径とも言う。)のことで、次式: (Σnd3/Σn)1/3 ……(I) (式中、nは粒子個数を表し、dは粒径を表す。)によ
って求められるものである。したがって、例えばマイク
ロトラック粒度分析計を用い、レーザー光の散乱により
粒子個数n並びに粒子1個の直径dを測定することで、
上式にしたがって平均体積径を算出することができる。
In the present invention, the average particle diameter is an average volume diameter (also referred to as a volume-weighted average particle diameter), and is represented by the following formula: (Σnd 3 / Σn) 1/3 (I) n represents the number of particles, and d represents the particle size). Therefore, for example, by using a Microtrac particle size analyzer and measuring the number n of particles and the diameter d of one particle by scattering of laser light,
The average volume diameter can be calculated according to the above equation.

〔作用〕[Action]

粒径5μm以下の炭素質材料が体積率で3%以上でか
つ炭素質材料の平均粒径が25μm以上であると、粒子の
比表面積が不必要に大きくならず、必要以上に活性な炭
素質材料が少ないために、自己放電が抑制される。ま
た、上記平均粒径が50μm以下であると、上記炭素質材
料の嵩密度が小さくなり過ぎてその活物質としての充填
率が低くなることもない。
When the volume ratio of the carbonaceous material having a particle diameter of 5 μm or less is 3% or more and the average particle diameter of the carbonaceous material is 25 μm or more, the specific surface area of the particles does not unnecessarily increase, and the carbonaceous material that is more active than necessary is required. Since there are few materials, self-discharge is suppressed. Further, when the average particle size is 50 μm or less, the bulk density of the carbonaceous material does not become too small, and the filling rate as an active material does not decrease.

〔実施例〕〔Example〕

以下、本発明を適用した実施例について、第1図〜第
3図及び第1表〜第4表を参照しながら、説明する。
Hereinafter, an embodiment to which the present invention is applied will be described with reference to FIGS. 1 to 3 and Tables 1 to 4.

最初に、正極板1を次のようにしてつくった。正極化
合物は、炭酸リチウム1モルと炭酸コバルト1モルとを
混合し900℃の空気中で5時間焼成することによりLiCoO
2を得、このLiCoO2をボウルミルで粉砕することによっ
て得た。次に、このLiCoO291重量部と導電剤としてのグ
ラファイト6重量部と結着剤としてのポリフッ化ビニリ
デン3重量部とを混合し、これにN−メチルピロリドン
を分散剤として加えて、ペーストをつくった。そして、
このペーストを厚さ30μmのアルミニウム箔製の集電体
の両面に均一に塗布して乾燥させた後、ローラープレス
を行うことによって、正極板1を得た。なお、この正極
板1は、幅35mm、長さ300mm、厚さ0.18mmの板状体であ
った。また、この正極板1の端部には、アルミニウムの
リード線7を溶接によって取り付けた。
First, the positive electrode plate 1 was made as follows. The positive electrode compound is obtained by mixing 1 mol of lithium carbonate and 1 mol of cobalt carbonate and calcining the mixture in air at 900 ° C. for 5 hours.
2 was obtained by grinding this LiCoO 2 in a bowl mill. Next, 91 parts by weight of this LiCoO 2, 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed, and N-methylpyrrolidone was added as a dispersant, and the paste was added. I made it. And
This paste was uniformly applied to both sides of a 30 μm-thick aluminum foil current collector, dried, and then subjected to roller pressing, whereby positive electrode plate 1 was obtained. The positive electrode plate 1 was a plate having a width of 35 mm, a length of 300 mm, and a thickness of 0.18 mm. An aluminum lead wire 7 was attached to an end of the positive electrode plate 1 by welding.

次に、負極板2を次のようにしてつくった。負極活物
質は、ピッチコークスを振動ミル中で直径12.7mmのステ
ンレス鋼製の球と共に2分間粉砕することによって得
た。このピッチコークスの真密度は2.03g/cm3、X線回
折により日本学術振興会法に準じて求めた002面の面間
隔は3.46Å、C軸方向の結晶厚みは40Åであった。次
に、この粒状のピッチコークス90重量部と結着剤として
のポリフッ化ビニリデン10重量部とを混合し、これにN
−メチルピロリドンを分散剤として加えて、ペーストを
つくった。そして、第2図に示すように、このペースト
を厚さ10μmの銅箔製の集電体5の両面に均一に塗布し
活物質層6a、6bを形成し、乾燥させた後、ローラープレ
スを行うことによって、負極板2を得た。なお、この負
極板2は、幅35mm、長さ300mm、厚さ0.2mmの板状体であ
った。また、この負極板2の端部には、ニッケルのリー
ド線(図示せず)を溶接で取り付けた。
Next, the negative electrode plate 2 was produced as follows. The negative electrode active material was obtained by grinding pitch coke in a vibrating mill together with stainless steel balls having a diameter of 12.7 mm for 2 minutes. The true density of this pitch coke was 2.03 g / cm 3 , the spacing between 002 planes determined by X-ray diffraction according to the Japan Society for the Promotion of Science was 3.46 °, and the crystal thickness in the C-axis direction was 40 °. Next, 90 parts by weight of the granular pitch coke and 10 parts by weight of polyvinylidene fluoride as a binder were mixed.
-Methylpyrrolidone was added as a dispersant to make a paste. Then, as shown in FIG. 2, this paste is uniformly applied to both surfaces of a current collector 5 made of copper foil having a thickness of 10 μm to form active material layers 6a and 6b. As a result, a negative electrode plate 2 was obtained. The negative electrode plate 2 was a plate having a width of 35 mm, a length of 300 mm, and a thickness of 0.2 mm. A nickel lead wire (not shown) was attached to an end of the negative electrode plate 2 by welding.

上記正極板1と上記負極板2とポリプロピレン製の一
対の薄板状セパレータ3a、3bとを用いて、負極板2、セ
パレータ3a、正極板1、セパレータ3bの順で積層してか
ら、これらを渦巻型に巻回した。そして、この巻回体
を、ニッケルめっきを施した鉄製の缶4内に収納した。
この場合、上述のリード線を缶4及び電池蓋9に溶接し
た。電解液としては、六フッ化リン酸リチウムを1モル
/溶解した炭酸プロピレンと、1.2−ジメトキシエタ
ンとの混合液を用いた。そして、この混合液を上記缶4
内に注入してから、ポリプロピレン製のガスケット8と
電池蓋9とを缶4内の上部に挿入し、この缶4の上部を
かしめることによって電池を密封して、第1図に示すよ
うな外径13.8mm、高さ45mmの円筒状の非水電解質二次電
池を作製した。この二次電池を実施例1とする。この場
合に使用した粒状のピッチコークスの粒度分布を第1表
に示す。
Using the positive electrode plate 1, the negative electrode plate 2, and a pair of thin plate separators 3a and 3b made of polypropylene, the negative electrode plate 2, the separator 3a, the positive electrode plate 1, and the separator 3b are laminated in this order, Wound around the mold. Then, the wound body was housed in a nickel-plated iron can 4.
In this case, the above-mentioned lead wire was welded to the can 4 and the battery lid 9. As an electrolytic solution, a mixed solution of propylene carbonate in which lithium hexafluorophosphate was dissolved at 1 mol / mol and 1.2-dimethoxyethane was used. Then, this mixed solution is added to the can 4
After that, the gasket 8 made of polypropylene and the battery lid 9 are inserted into the upper portion of the can 4, and the battery is sealed by caulking the upper portion of the can 4, as shown in FIG. A cylindrical non-aqueous electrolyte secondary battery having an outer diameter of 13.8 mm and a height of 45 mm was produced. This secondary battery is referred to as Example 1. Table 1 shows the particle size distribution of the granular pitch coke used in this case.

なお、本発明の効果を確認するために、実施例2及び
実施例3として、第1表に示すように鋼球の直径及び/
又は粉砕時間を変えることにより粒度分布を変えたピッ
チコークスを用いて、不水電解質二次電池を上述の場合
と同様に作製した。なお、同表には、実施例1〜実施例
3の場合と比較して粉砕時間を長くして、粒径が5μm
以下のピッチコークスを体積率で3%よりも多く含有し
ている比較例1〜比較例5の場合についても併載してあ
る。また、第1表における粒度分布は体積率(%)で表
している。
In order to confirm the effects of the present invention, as Example 2 and Example 3, as shown in Table 1, the diameter of steel balls and / or
Alternatively, a nonaqueous electrolyte secondary battery was produced in the same manner as described above using pitch coke whose particle size distribution was changed by changing the grinding time. In addition, in the same table, the pulverization time was made longer than that in the case of Examples 1 to 3 so that the particle size was 5 μm.
Comparative examples 1 to 5 containing the following pitch coke in a volume ratio of more than 3% are also shown. Further, the particle size distribution in Table 1 is represented by a volume ratio (%).

上述の実施例1〜実施例3及び比較例1〜比較例5の
非水電解質二次電池について、充電電流100mA、終止電
圧4Vまでの定電流充電を行い、次に、放電電流100mA、
終止電圧2.5Vまでの定電流放電を行うといった充放電を
20回繰り返して行い、20回目の放電時に放電容量(以
下、「保存前容量」という)を測定した。次に、再び上
述の場合と同じ条件で充填した後、これらの二次電池を
24℃の温度で30日間(720時間)放置した。この放置
後、上述の場合と同じ条件で1回だけ放電し、この放電
容量(以下、「保存後容量」という)を測定し、上述の
20回目の放電容量と比較して、自己放電率を算出した。
この結果を第2表に示す。
The non-aqueous electrolyte secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 5 were charged at a constant current of 100 mA and a final voltage of 4 V, and then discharged at a current of 100 mA.
Charge / discharge such as performing constant current discharge up to a final voltage of 2.5V
The discharge was repeated 20 times, and the discharge capacity (hereinafter, referred to as “capacity before storage”) was measured at the time of the 20th discharge. Next, after refilling under the same conditions as above, these secondary batteries are
It was left at a temperature of 24 ° C. for 30 days (720 hours). After this standing, the battery was discharged only once under the same conditions as described above, and the discharge capacity (hereinafter referred to as “capacity after storage”) was measured.
The self-discharge rate was calculated in comparison with the 20th discharge capacity.
Table 2 shows the results.

また、上述したピッチコークスの代りに、第3表のよ
うな粒度分布を有するニードルコークスを用いて、実施
例4〜実施例7及び比較例6〜比較例9として、同様の
非水電解質二次電池を作製し、上述の場合と同様な試験
を行った。
In addition, the same nonaqueous electrolyte secondary as Examples 4 to 7 and Comparative Examples 6 to 9 was obtained by using needle coke having a particle size distribution as shown in Table 3 instead of the pitch coke described above. A battery was prepared, and a test similar to that described above was performed.

なお、このニードルコークスの真密度は2.12g/cm3
X線回折で日本学術振興回法に準じて求めた002面の面
間隔は3.44Å、C軸方向の結晶厚みは65Åであった。
The true density of this needle coke is 2.12 g / cm 3 ,
The spacing between the 002 planes determined by X-ray diffraction according to the Japan Society for the Promotion of Science was 3.44Å, and the crystal thickness in the C-axis direction was 65Å.

この結果を第4表に示す。 Table 4 shows the results.

第1表〜第4表から、自己放電に悪影響を与えるの
は、粒径が5μm以下の比較的細かいコークスであると
いえる。これは、以下に述べる点からも明らかなよう
に、粒径の細いコークスが必要以上に活性で自己放電し
易いためであると考えられる。即ち、実施例1〜実施例
7に示すように、粒径が5μm以下であるコークスの存
在比率が体積率で3%以下と低い場合は、いずれも自己
放電率が73%以下の好結果となっている。また比較例3
と比較例4とでは、粒径が30μm以下であるコークスの
存在比率が80%と同じであるにもかかわらず、後者の自
己放電率は前者に比べてかなり大きくなっている。さら
にまた、比較例2と比較例4とについても、粒径が50μ
m以下のものに関して同様のことが言える。
From Tables 1 to 4, it can be said that what has a bad influence on self-discharge is relatively fine coke having a particle size of 5 μm or less. This is considered to be because coke having a small particle diameter is more active than necessary and easily self-discharges, as is apparent from the following points. That is, as shown in Examples 1 to 7, when the abundance ratio of coke having a particle diameter of 5 μm or less is as low as 3% or less by volume, the self-discharge rate is 73% or less. Has become. Comparative Example 3
In Comparative Example 4 and Comparative Example 4, the self-discharge rate of the latter is considerably larger than that of the former, although the abundance ratio of coke having a particle size of 30 μm or less is the same as 80%. Furthermore, in Comparative Examples 2 and 4, the particle size was 50 μm.
The same is true for those below m.

第3図に、第1図に示す非水電解質二次電池において
ピッチコークスの平均粒径を種々に変えた場合の平均粒
径と粒度分布(全体に対する体積率)及び自己放電率と
の関係の一例を示す。この第3図に示す例の場合には、
粒径が5μm以下のものの存在比率が体積率で3%以下
であるようなコークスは、その平均粒径は約28.5μm以
上であることがわかる。また、第3図に示す例の場合に
は、平均粒径が30μm以上であるコークスを用いると、
自己放電率は非常に小さいことがわかる。なお、平均粒
径が50μmを越えると、自己放電率は良くても、コーク
スの嵩密度が小さくなって充填率が低くなってしまう。
したがって、このような観点から云って、平均粒径は50
μm以下である必要がある。
FIG. 3 shows the relationship between the average particle size, the particle size distribution (volume ratio to the whole), and the self-discharge rate when the average particle size of pitch coke is variously changed in the nonaqueous electrolyte secondary battery shown in FIG. An example is shown. In the case of the example shown in FIG. 3,
It can be seen that the average particle size of coke having a particle size of 5 μm or less and having an abundance ratio of 3% or less by volume is about 28.5 μm or more. Further, in the case of the example shown in FIG. 3, when coke having an average particle size of 30 μm or more is used,
It can be seen that the self-discharge rate is very small. If the average particle size exceeds 50 μm, the bulk density of coke becomes small and the filling rate becomes low even though the self-discharge rate is good.
Therefore, from this point of view, the average particle size is 50
It needs to be less than μm.

以上のように、粒径5μm以下のものが体積比率で3
%以下でありかつ平均粒径が25〜50μmの範囲にある炭
素質材料を用いることによって、上記自己放電率及び充
填率に優れた二次電池を得ることができる。
As described above, those having a particle size of 5 μm or less have a volume ratio of 3
% And an average particle diameter in the range of 25 to 50 μm, a secondary battery having excellent self-discharge rate and filling rate can be obtained.

なお、本実施例では、2種類の炭素質材料を用いた
が、他の炭素質材料であってもよいことは、勿論であ
る。また、正極活物質としては、上述したようなLixMO2
(Mは1種又は1種よりも多い遷移金属)を用いること
ができる。また、電池の形状も本実施例の円筒形の他、
角形、コイン形、ボタン形などであってよい。また、非
水電解質は固体であってもよく、この場合、従来から公
知の固体電解質を用いることができる。
In the present embodiment, two types of carbonaceous materials are used, but other types of carbonaceous materials may be used. Further, as the positive electrode active material, Li x MO 2 as described above
(M is one or more transition metals). The shape of the battery is also cylindrical in this embodiment,
It may be a square, coin, button or the like. The non-aqueous electrolyte may be a solid, and in this case, a conventionally known solid electrolyte can be used.

〔発明の効果〕〔The invention's effect〕

本発明は、上述のように、負極活物質として炭素質材
料を用いた非水電解質二次電池において、粒径5μm以
下の炭素質材料が炭素質材料全体に対して体積率で3%
以下でかつ炭素質材料の平均粒径が25μm以上であるよ
うにしたので、炭素質材料の粒子の比表面積が不必要に
大きくならなくて、必要以上に活性な炭素質材料粒子が
少なく、このために、自己放電特性が非常に優れてお
り、また、炭素質材料の平均粒径が50μm以下であるよ
うにしたので、炭素質材料の嵩密度が小さくなり過ぎ
て、その負極活物質としての充填率が低くなることはな
く、このために、充填率が非常に優れた非水電解質二次
電池を得ることができる。
As described above, the present invention relates to a nonaqueous electrolyte secondary battery using a carbonaceous material as a negative electrode active material, wherein the carbonaceous material having a particle size of 5 μm or less is 3% by volume in the entire carbonaceous material.
Since the average particle size of the carbonaceous material is 25 μm or more, the specific surface area of the carbonaceous material particles does not become unnecessarily large, and the number of unnecessarily active carbonaceous material particles is small. For this reason, the self-discharge characteristics are very excellent, and the average particle size of the carbonaceous material is set to 50 μm or less, so that the bulk density of the carbonaceous material becomes too small, and as a negative electrode active material, The filling rate does not decrease, and therefore, a nonaqueous electrolyte secondary battery having a very excellent filling rate can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を適用した一実施例の非水電解質二次電
池の一半部分を縦断した概略的な正面図、第2図は第1
図に示す負極板の部分的に切欠いた一部分の斜視図、第
3図は第1図に示す非水電解質二次電池においてコーク
スの平均粒径を種々に変えた場合の平均粒径と粒度分布
及び自己放電率との関係の一例を示す図である。 なお図面に用いた符号において、 1……正極板 2……負極板 3a、3b……セパレータ である。
FIG. 1 is a schematic front view of a half of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention, and FIG.
FIG. 3 is a perspective view of a partially cutaway portion of the negative electrode plate shown in FIG. 3, and FIG. 3 is an average particle size and particle size distribution when the average particle size of coke is variously changed in the nonaqueous electrolyte secondary battery shown in FIG. FIG. 5 is a diagram showing an example of a relationship between the discharge rate and the self-discharge rate. In addition, in the code | symbol used for drawing, 1 ... Positive electrode plate 2 ... Negative electrode plate 3a, 3b ... Separator.

フロントページの続き (56)参考文献 特開 平1−292753(JP,A) 特開 平1−204361(JP,A) 特開 平1−130470(JP,A) 特開 昭64−54722(JP,A) 特開 昭64−14881(JP,A) 特開 昭63−218159(JP,A) 特開 昭63−193463(JP,A) 特開 昭63−121248(JP,A) 特開 昭63−110622(JP,A) 特開 昭63−102166(JP,A) 特開 昭58−5967(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/58 H01M 4/02 H01M 10/40 Continuation of the front page (56) References JP-A-1-292753 (JP, A) JP-A-1-204361 (JP, A) JP-A-1-130470 (JP, A) JP-A-64-54722 (JP) JP-A-64-14881 (JP, A) JP-A-63-218159 (JP, A) JP-A-63-193463 (JP, A) JP-A-63-121248 (JP, A) 63-110622 (JP, A) JP-A-63-102166 (JP, A) JP-A-58-5967 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/58 H01M 4/02 H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】負極活物質として炭素質材料を用いた非水
電解質二次電池において、 粒径5μm以下の炭素質材料が上記炭素質材料全体に対
して体積率で3%以下であり、 上記炭素質材料の平均粒径が25〜50μmの範囲にあるこ
とを特徴とする非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery using a carbonaceous material as a negative electrode active material, wherein the volume ratio of the carbonaceous material having a particle size of 5 μm or less to the entire carbonaceous material is 3% or less. A non-aqueous electrolyte secondary battery, wherein the average particle size of the carbonaceous material is in the range of 25 to 50 μm.
JP1105195A 1989-04-25 1989-04-25 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2961745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1105195A JP2961745B2 (en) 1989-04-25 1989-04-25 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1105195A JP2961745B2 (en) 1989-04-25 1989-04-25 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH02284354A JPH02284354A (en) 1990-11-21
JP2961745B2 true JP2961745B2 (en) 1999-10-12

Family

ID=14400889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1105195A Expired - Lifetime JP2961745B2 (en) 1989-04-25 1989-04-25 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2961745B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69517572T2 (en) * 1994-04-08 2001-02-08 Sony Corp., Tokio/Tokyo SECONDARY CELL WITH NON-AQUEOUS ELECTROLYTE
JP2014160629A (en) * 2013-02-20 2014-09-04 Idemitsu Kosan Co Ltd Negative electrode material

Also Published As

Publication number Publication date
JPH02284354A (en) 1990-11-21

Similar Documents

Publication Publication Date Title
JP3077218B2 (en) Non-aqueous electrolyte secondary battery
JP4524881B2 (en) Nonaqueous electrolyte secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP3282189B2 (en) Non-aqueous electrolyte secondary battery
JP2001126733A (en) Nonaqueous electrolytic material
JPH07201316A (en) Nonaqueous electrolyte secondary battery
JP2621294B2 (en) Rechargeable battery
JP3393243B2 (en) Non-aqueous electrolyte secondary battery
JPH1131513A (en) Nonaqueous electrolyte secondary battery
JP3336672B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2961745B2 (en) Non-aqueous electrolyte secondary battery
US20020197531A1 (en) Negative electrode active material and nonaqueous electrolyte battery
JP3306906B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH10270079A (en) Nonaqueous electrolyte battery
JP3303320B2 (en) Non-aqueous electrolyte secondary battery
JP3163642B2 (en) Non-aqueous electrolyte secondary battery
JPH07183047A (en) Nonaqueous electrolyte secondary battery
JP3506386B2 (en) Non-aqueous electrolyte secondary battery
JPH05217582A (en) Nonaqueous electrolyte secondary battery
JP3428034B2 (en) Non-aqueous electrolyte secondary battery
JP4747392B2 (en) Nonaqueous electrolyte secondary battery
JP3179459B2 (en) Non-aqueous electrolyte secondary battery
JPH1197015A (en) Nonaqueous electrolyte secondary cell
JP3278837B2 (en) Non-aqueous electrolyte secondary battery
JP3837726B2 (en) battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10