JP3306906B2 - Manufacturing method of non-aqueous electrolyte secondary battery - Google Patents

Manufacturing method of non-aqueous electrolyte secondary battery

Info

Publication number
JP3306906B2
JP3306906B2 JP15097992A JP15097992A JP3306906B2 JP 3306906 B2 JP3306906 B2 JP 3306906B2 JP 15097992 A JP15097992 A JP 15097992A JP 15097992 A JP15097992 A JP 15097992A JP 3306906 B2 JP3306906 B2 JP 3306906B2
Authority
JP
Japan
Prior art keywords
battery
voltage
aqueous electrolyte
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15097992A
Other languages
Japanese (ja)
Other versions
JPH05343101A (en
Inventor
隆幸 山平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP15097992A priority Critical patent/JP3306906B2/en
Publication of JPH05343101A publication Critical patent/JPH05343101A/en
Application granted granted Critical
Publication of JP3306906B2 publication Critical patent/JP3306906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、負極活物質として炭素
質材料、リチウム、リチウム合金を用いた非水電解質二
次電池の製造方法に関するものであり、特に、電圧不良
品を排除する工程を有することを特徴とする非水電解質
二次電池の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery using a carbonaceous material, lithium, or a lithium alloy as a negative electrode active material. The present invention relates to a method for producing a non-aqueous electrolyte secondary battery characterized by having

【0002】[0002]

【従来の技術】近年、ビデオカメラやラジカセ等のポー
タブル機器の普及に伴い、使い捨てである一次電池に代
わって、繰り返し使用できる二次電池に対する需要が高
まっている。
2. Description of the Related Art In recent years, with the spread of portable devices such as video cameras and boomboxes, demand for secondary batteries that can be used repeatedly instead of disposable primary batteries has been increasing.

【0003】現在使用されている二次電池のほとんど
は、アルカリ電解液を用いたニッケルカドミウム電池で
ある。しかし、この電池の電圧は約1.2Vであるの
で、電池エネルギー密度を向上させることが困難であ
る。また、常温での自己放電率が1カ月で20%以上と
高いという欠点もある。
Most of the secondary batteries currently used are nickel cadmium batteries using an alkaline electrolyte. However, since the voltage of this battery is about 1.2 V, it is difficult to improve the battery energy density. Another drawback is that the self-discharge rate at room temperature is as high as 20% or more in one month.

【0004】そこで、電解液に非水溶媒を使用し、ま
た、負極にリチウム等の軽金属を使用する非水電解質二
次電池の検討がなされている。この非水電解質二次電池
は、電圧が3V以上と高エネルギー密度を有し、しか
も、自己放電率が低いものである。しかし、このような
非水電解質二次電池は、負極に対する金属リチウム等が
充放電の繰り返しにより、デンドライト状に成長して正
極と接触し、この結果、電池内部において短絡が生じや
すいという欠点のために、やはり実用化が困難である。
[0004] Therefore, a non-aqueous electrolyte secondary battery using a non-aqueous solvent for the electrolyte and a light metal such as lithium for the negative electrode has been studied. This non-aqueous electrolyte secondary battery has a high energy density of 3 V or more and a low self-discharge rate. However, such a non-aqueous electrolyte secondary battery is disadvantageous in that metal lithium or the like for the negative electrode grows in a dendrite shape by repeated charge and discharge and comes into contact with the positive electrode, and as a result, a short circuit easily occurs inside the battery. However, practical application is also difficult.

【0005】このため、リチウム等を他の金属と合金化
し、この合金を負極に使用するようにした非水電解質二
次電池が検討された。しかし、この場合は、この合金が
充放電を繰り返すことにより粒子化しやすいという欠点
のために、やはり実用化が困難である。
For this reason, a non-aqueous electrolyte secondary battery in which lithium or the like is alloyed with another metal and this alloy is used for a negative electrode has been studied. However, in this case, practical use is also difficult because of the drawback that the alloy is liable to become particles due to repeated charging and discharging.

【0006】そこで、例えば、特開昭62─90863
号公報に開示されているように、コークス等の炭素質材
料を負極活物質として使用する非水電解質二次電池が提
案された。この非水電解質二次電池は負極における上述
のような欠点を有していないので、サイクル寿命特性に
優れている。そして、正極活物質として、本願の発明者
が先に特願昭63─135099号において提案したよ
うなLi MO (Mは1種類または1種類より多い
遷移金属を表し、0.05<x<1.10である。)を
用いると、電池容量が向上して、高エネルギー密度の非
水電解質二次電池を得ることができる。
Accordingly, for example, Japanese Patent Application Laid-Open No. 62-90863
As disclosed in Japanese Unexamined Patent Publication, a non-aqueous electrolyte secondary battery using a carbonaceous material such as coke as a negative electrode active material has been proposed. Since this nonaqueous electrolyte secondary battery does not have the above-described disadvantages of the negative electrode, it has excellent cycle life characteristics. As the positive electrode active material, Li X MO 2 (M represents one or more transition metals, as proposed by the present inventors in Japanese Patent Application No. 63-135099, and 0.05 <x <1.10), the battery capacity is improved, and a non-aqueous electrolyte secondary battery with high energy density can be obtained.

【0007】[0007]

【発明が解決しようとする課題】ところで、非水電解質
二次電池は、負極活物質として炭素質材料、リチウム、
リチウム合金を用いるため、従来電池に比べて放電容量
が2〜3倍と極めて高く電圧不良が発生した場合の影響
も深刻である。このため、出荷に際して、予め規定充電
最大電圧で使用した場合に電圧不良が発生する可能性の
ある不良電池を、予め漏れなく排除しておき、信頼性の
高い製品のみをユーザーに供給する必要がある。
By the way, a non-aqueous electrolyte secondary battery uses a carbonaceous material, lithium,
Since a lithium alloy is used, the discharge capacity is extremely high, that is, two to three times that of a conventional battery, and the effect of a voltage failure is serious. For this reason, when shipping, it is necessary to eliminate in advance without fail any defective batteries that may cause voltage failure when used at the specified maximum charging voltage, and supply only highly reliable products to users. is there.

【0008】そこで、本発明はこのような従来の実情に
鑑みて提案されたものであり、電圧不良品が漏れなく、
且つ効率良く排除され、ユーザーに信頼性の高い製品の
みが供給できる非水電解質二次電池の製造方法を提供す
ることを目的とする。
Therefore, the present invention has been proposed in view of such a conventional situation, and a defective voltage is not leaked.
It is another object of the present invention to provide a method for manufacturing a non-aqueous electrolyte secondary battery that can be efficiently removed and supply only a highly reliable product to a user.

【0009】[0009]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明の製造方法は、負極と正極と非水電解質と
を備えた非水電解質二次電池の製造方法において、電池
組立後規定充電最大電圧をVとしたときに、V≦V
≦V+0.15Vなる関係を満たす終止電圧Vで充電
を行い、その後放置中における電池電圧の径時変化から
電池の良・不良を選別することを特徴とするものであ
る。
In order to achieve the above object, the present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery comprising a negative electrode, a positive electrode, and a non-aqueous electrolyte. provisions charging maximum voltage when the V M, V MV
Was charged with final voltage V C which satisfies the C ≦ V M + 0.15V the relationship, is characterized in that selecting a good or bad of the battery from径時change of battery voltage in the subsequent in standing.

【0010】また、本発明の非水電解質二次電池の製造
方法は、負極と正極と非水電解質とを備えた非水電解質
二次電池の製造方法において、電池組立後規定充電最大
電圧をVとしたときに、V+0.05V≦V≦V
+0.15Vなる関係を満たす終止電圧Vで充電を
行い、その後放置中における電池電圧の径時変化から電
池の良・不良を選別することを特徴とするものである。
[0010] The method of manufacturing a non-aqueous electrolyte secondary battery according to the present invention is a method of manufacturing a non-aqueous electrolyte secondary battery including a negative electrode, a positive electrode, and a non-aqueous electrolyte. M , then V M +0.05 V ≦ V C ≦ V
Was charged with final voltage V C which satisfies the M + 0.15V the relationship, is characterized in that selecting a good or bad of the battery from径時change of battery voltage in the subsequent in standing.

【0011】さらに本発明の非水電解質二次電池の製造
方法は、正極および負極にリチウムをドープ・脱ドープ
し得る材料を用いることを特徴とするものであり、さら
に、また、本発明の非水電解質二次電池の製造方法は負
極としてリチウムをドープ・脱ドープし得る炭素材質料
を用い、正極活物質としてLiMO2(ただしMはC
O,Ni,Mn,Feから選ばれる1種または1種以上
であり、0.05<<1.10 である)を用いること
を特徴とするものである。
Further, the method for producing a non-aqueous electrolyte secondary battery of the present invention is characterized in that a material capable of doping and undoping lithium is used for the positive electrode and the negative electrode. The manufacturing method of the water electrolyte secondary battery uses a carbon material capable of doping / dedoping lithium as a negative electrode and Li X MO2 (where M is C
O, Ni, Mn, or one or more selected from Fe, and 0.05 < X <1.10.

【0012】本発明の非水電解質二次電池の製造方法
は、規定充電最大電圧V で使用した場合に電圧不良
が発生する虞れのある製品を出荷前に予め排除しておく
ために、電池組立後、V ≦V ≦V +0.15
Vなる関係を満たす終止電圧V で充電を行い、その
後放置中における電池電圧の経時変化から電池の良,不
良を評価し、良と評価されたもののみを製品として出荷
する。
[0012] Non-manufacturing method of aqueous electrolyte secondary battery of the present invention, since the voltage failure advance eliminated before shipping products with a possibility to occur when used in defining maximum charging voltage V M, after assembly of the battery, V M ≦ V C ≦ V M +0.15
It was charged with final voltage V C which satisfies the V the relationship, then left good battery from aging of the battery voltage during evaluates the failure, to ship only as a product that is evaluated as valid.

【0013】ここで、たとえば充電の際の終止電圧V
をV 未満とした場合には、充電条件が緩和過ぎ、電
圧不良品を完全に排除することができない。一方、終止
電圧V をV +0.15Vを越えて設定した場合に
は、充電条件が厳し過ぎて電池に障害が生じ(おそらく
負極上にリチウムの析出が発生するためと考えられ
る)、規定充電最大電圧範囲内においては何ら問題が生
じないものまで排除される虞れがある。したがって、本
発明では、充電の際に終止電圧V を上記範囲に設定
する。なお、電圧不良品をより確実に排除するには、上
記終止電圧V はV +0.05V≦V ≦V
0.15Vなる関係を満たすように設定することが好ま
しい。
Here, for example, the final voltage V C at the time of charging
To the case of a less than V M is, too charging condition is relaxed, it is not possible to completely eliminate the voltage defective products. On the other hand, if the cut-off voltage V C is set to exceed V M +0.15 V, the charging conditions are too severe, causing a failure in the battery (probably due to the deposition of lithium on the negative electrode). In the maximum charging voltage range, there is a possibility that even a case where no problem occurs is excluded. Accordingly, the present invention is set to the range end voltage V C during the charge. Note that to more reliably eliminate the voltage defective, the final voltage V C is V M + 0.05V ≦ V C ≦ V M +
It is preferable to set so as to satisfy the relationship of 0.15V.

【0014】なお、本発明において使用する負極活物質
としては、炭素質材料、リチウム、リチウム合金が使用
されるが、上記炭素質材料としては、リチウムをドープ
・脱ドープできるものであって、熱分解炭素類、コーク
ス類(ピッチコークス、ニードルコークス、石油コーク
ス等)、グラファイト類、ガラス状炭素類、有機高分子
化合物の焼成体(フェノール樹脂、フラン樹脂等を適当
な温度で焼成したもの)、炭素繊維、活性炭素等を用い
ることができる。
As the negative electrode active material used in the present invention, a carbonaceous material, lithium, and a lithium alloy are used. As the carbonaceous material, a material capable of doping and undoping lithium is used. Decomposed carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, fired bodies of organic polymer compounds (phenol resins, furan resins, etc. fired at appropriate temperatures), Carbon fiber, activated carbon and the like can be used.

【0015】リチウム合金としては、Li−Al,Li
−Sn,Li−Pb等の合金類が挙げられる。
As the lithium alloy, Li-Al, Li
Alloys such as -Sn and Li-Pb;

【0016】電解液も有機溶剤に電解質を溶解したもの
であれば、従来から知られたものがいずれも使用でき
る。したがって、有機溶剤としては、プロピレンカーボ
ネート、エチレンカーボネート、γ−ブチロラクトン等
のエステル類や、ジエチルエーテル、テトラヒドロフラ
ン、置換テトラヒドロフラン、ジオキソラン、ピランお
よびその誘導体、ジメトキシエタン、ジエトキシエタン
等のエーテル類や、3−メチル−2−オキサゾリジノン
等の3置換−2−オキサゾリジノン類や、スルホラン、
メチルスルホラン、アセトニトリル、プロピオニトリル
等が挙げられ、これらを単独もしくは2種類以上混合し
て使用される。また、電解質としては、過塩素酸リチウ
ム、ホウフッ化リチウム、リンフッ化リチウム、塩化ア
ルミン酸リチウム、ハロゲン化リチウム、トリフルオロ
メタンスルホン酸リチウム等が使用できる。
As the electrolytic solution, any conventionally known one can be used as long as the electrolyte is dissolved in an organic solvent. Accordingly, examples of the organic solvent include esters such as propylene carbonate, ethylene carbonate, and γ-butyrolactone, ethers such as diethyl ether, tetrahydrofuran, substituted tetrahydrofuran, dioxolan, pyran and derivatives thereof, dimethoxyethane, and diethoxyethane; 3-substituted-2-oxazolidinones such as -methyl-2-oxazolidinone, sulfolane,
Methyl sulfolane, acetonitrile, propionitrile and the like can be mentioned, and these are used alone or in combination of two or more. Further, as the electrolyte, lithium perchlorate, lithium borofluoride, lithium phosphofluoride, lithium aluminate, lithium halide, lithium trifluoromethanesulfonate and the like can be used.

【0017】[0017]

【作用】規定充電最大電圧がV である非水電解質二
次電池において、電池組立後、V ≦V ≦V
0.15Vなる関係を満たす終止電圧V で充電を行
い、その後放置中における電池電圧の経時変化から電池
の良,不良を評価し、良と評価されたもののみを製品と
して出荷すると、規定充電最大電圧範囲内において電圧
不良が発生せず、信頼性の高い製品のみがユーザーに供
給される。
[Action] In defining maximum charging voltage is V M non-aqueous electrolyte secondary battery, after assembly of the battery, V M ≦ V C ≦ V M +
Was charged with final voltage V C which satisfies the 0.15V the relationship, then good battery from aging of the battery voltage during the standing, to evaluate the failure and to ship only as a product that is evaluated as valid, defined charge Voltage failure does not occur within the maximum voltage range, and only highly reliable products are supplied to users.

【0018】[0018]

【実施例】以下、本発明を具体的な実験結果に基づいて
説明する。実施例1 図1に本実施例の非水電解質二次電池を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on specific experimental results. Embodiment 1 FIG. 1 shows a nonaqueous electrolyte secondary battery of this embodiment.

【0019】この非水電解質二次電池は以下のようにし
て作成した。
This non-aqueous electrolyte secondary battery was prepared as follows.

【0020】まず、正極板1は次のようにして作製し
た。
First, the positive electrode plate 1 was manufactured as follows.

【0021】炭酸リチウム1モルと炭酸コバルト1モル
とを混合し、空気中、温度900℃で5時間焼成するこ
とによりLiCoO を得た。このLiCoO をボ
ウルミルで粉砕することによって正極化合物粉末とし
た。この正極化合物粉末91重量部、導電剤としてグラ
ファイト6重量部、結着剤としてポリフッ化ビニリデン
3重量部とを混合し、これにN−メチルピロリドンを分
散剤として加えて、正極合剤ペーストをつくった。そし
て、この正極合剤ペーストを厚さ30μmのアルミニウ
ム箔製の集電体の両面に均一に塗布して乾燥させた後、
ローラープレスを行うことによって、正極板1を得た。
なお、この正極板1は、幅35mm、長さ300mm、
厚さ0.18mmの板状体であった。また、この正極板
1の端部には、アルミニウムのリード線7を溶接によっ
て取り付けた。
One mole of lithium carbonate and one mole of cobalt carbonate were mixed and calcined in air at 900 ° C. for 5 hours to obtain LiCoO 2 . This LiCoO 2 was pulverized with a bowl mill to obtain a positive electrode compound powder. 91 parts by weight of the positive electrode compound powder, 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed, and N-methylpyrrolidone was added as a dispersant to prepare a positive electrode mixture paste. Was. Then, the positive electrode mixture paste is uniformly applied to both sides of a 30 μm-thick aluminum foil current collector and dried,
The positive electrode plate 1 was obtained by performing a roller press.
The positive electrode plate 1 has a width of 35 mm, a length of 300 mm,
It was a plate having a thickness of 0.18 mm. An aluminum lead wire 7 was attached to an end of the positive electrode plate 1 by welding.

【0022】負極板2は次のようにして作製した。The negative electrode plate 2 was manufactured as follows.

【0023】負極活物質は、ピッチコークスを振動ミル
中で直径12.7mmのステンレス鋼製の球と共に、2
分間粉砕することによって得た。このピッチコークスの
真密度は2.03g/cm 、X線回折測定により日
本学術振興会法に準じて求めた(002)面の面間隔は
3.64Å、C軸方向の結晶厚みLcは40Åであっ
た。次に、この粒状のピッチコークス90重量部と、結
着剤としてポリフッ化ビニリデン10重量部とを混合
し、これにN−メチルピロリドンを分散剤として加え
て、負極合剤ペーストをつくった。そして、図2に示す
ように、この負極合剤ペーストを厚さ10μmの銅製箔
の集電体5の両面に均一に塗布して活物質層6a、6b
を形成し、乾燥させた後、ローラープレスを行うことに
よって、負極板2を得た。なお、この負極板2は、幅3
5mm、長さ300mm、厚さ0.2mmの板状体であ
った。また、この負極板2の端部には、ニッケルのリー
ド線(図示せず)を溶接で取り付けた。
The negative electrode active material was prepared by mixing pitch coke in a vibrating mill together with stainless steel balls having a diameter of 12.7 mm.
Obtained by milling for minutes. The true density of this pitch coke is 2.03 g / cm 3 , the (002) plane spacing determined by X-ray diffraction measurement according to the Japan Society for the Promotion of Science is 3.64 °, and the crystal thickness Lc in the C-axis direction is 40 °. Met. Next, 90 parts by weight of the granular pitch coke and 10 parts by weight of polyvinylidene fluoride as a binder were mixed, and N-methylpyrrolidone was added as a dispersant to prepare a negative electrode mixture paste. Then, as shown in FIG. 2, the negative electrode mixture paste is uniformly applied to both surfaces of a copper foil current collector 5 having a thickness of 10 μm to form active material layers 6a and 6b.
Was formed and dried, and then a roller press was performed to obtain a negative electrode plate 2. The negative electrode plate 2 has a width 3
It was a plate having a size of 5 mm, a length of 300 mm, and a thickness of 0.2 mm. A nickel lead wire (not shown) was attached to an end of the negative electrode plate 2 by welding.

【0024】上記正極板1と上記負極板2とポリプロピ
レン製の一対の薄板状セパレーター3a、3bとを用い
て、負極板2、セパレーター3a、正極板1、セパレー
ター3bの順で積層してから、これらを渦巻型に巻回し
た。そして、この巻回体をニッケルメッキを施した鉄製
の電池缶4内に収納した。この場合、上述のリード線を
電池缶4及び電池蓋9に溶接した。電解液としては、六
フッ化リン酸リチウムを1mol/l溶解した炭酸プロ
ピレンと、ジエチルカーボネートの混合液を用いた。そ
して、この混合液を上記電池缶4内に注入してから、ポ
リプロピレン製のガスケット8と電池蓋9とを電池缶4
内の上部に挿入し、この電池缶4の上部をかしめること
によって電池を密封して、図1に示すような外径13.
8mm、高さ45mmの円筒状の未評価電池を800セ
ル作製した。なお、この電池の規定充電最大電圧(推奨
電圧)は4.1Vである。
Using the positive electrode plate 1, the negative electrode plate 2, and a pair of thin plate separators 3a and 3b made of polypropylene, the negative electrode plate 2, the separator 3a, the positive electrode plate 1, and the separator 3b are laminated in this order. These were spirally wound. The wound body was housed in a nickel-plated iron battery can 4. In this case, the above-mentioned lead wire was welded to the battery can 4 and the battery lid 9. As the electrolytic solution, a mixed solution of propylene carbonate in which lithium hexafluorophosphate was dissolved at 1 mol / l and diethyl carbonate was used. Then, after injecting this mixed solution into the battery can 4, the polypropylene gasket 8 and the battery lid 9 are attached to the battery can 4
The battery is sealed by inserting the battery can 4 into the upper portion and crimping the upper portion of the battery can 4, as shown in FIG.
800 cells of a cylindrical unestimated battery having a size of 8 mm and a height of 45 mm were produced. The specified maximum charging voltage (recommended voltage) of this battery is 4.1 V.

【0025】上述の未評価電池100個について、一次
評価を行って良品を選別し、良品と選別された製品につ
いて電圧不良品の有無を調べた。
Primary evaluation was performed on 100 of the above-not-evaluated batteries to select non-defective products, and the products selected as non-defective products were examined for the presence of defective voltage.

【0026】まず、一次評価を行うには、充電電流10
0mA、終止電圧4.10Vの条件で定電流定電圧充電
を行い、電圧を測定した。そして、さらに室温にて28
日間放置し再び電圧を測定した。この時、電圧が4.0
0Vを下回る電池を電圧不良品(一次不良品)として評
価し、個数を調べた。
First, in order to perform a primary evaluation, the charging current 10
Constant current and constant voltage charging was performed under the conditions of 0 mA and a final voltage of 4.10 V, and the voltage was measured. And then at room temperature 28
It was left for a day and the voltage was measured again. At this time, the voltage is 4.0
Batteries having a voltage lower than 0 V were evaluated as defective voltage products (primary defective products), and the number of batteries was examined.

【0027】次に、良品として評価した電池(電圧不良
を起こさなかった電池)全部を、この電池の推奨電圧で
ある4.1Vを終止電圧とし、充電電流100mAにて
充電を行い、さらに放電電流100mA、終止電圧2.
5Vの条件で定電流放電を行うといった充放電を100
回繰り返し行った。そして、4.10Vにて充電した
後、28日間保存したものについて電圧を測定し、電圧
が4.00Vを下回る電池を電圧不良品(二次不良品)
として評価し、個数を調べた。
Next, all the batteries evaluated as non-defective products (batteries that did not cause a voltage defect) were charged at a charge current of 100 mA, with a cut-off voltage of 4.1 V, which is the recommended voltage of the battery, and a discharge current of 100 mA. 100 mA, end voltage 2.
Charge / discharge, such as performing constant current discharge under the condition of 5V, is 100
Repeated times. Then, after charging at 4.10 V, the voltage of the battery stored for 28 days is measured, and a battery having a voltage lower than 4.00 V is a defective battery (secondary defective).
And the number was examined.

【0028】表1に一次不良品,二次不良品の個数を表
1に示す。実施例2〜実施例6 実施例1と同様にして未評価電池を作製した。そして、
この未評価電池について、一次不良品を選別する際の充
電終止電圧を表1に示すように設定したこと以外は実施
例1と同様にして一次不良品,二次不良品の数を調べ
た。その結果を表1に併せて示す。比較例1〜比較例3 実施例1と同様にして未評価電池を作製した。そして、
この未評価電池について、一次不良品を選別する際の充
電終止電圧を表1に示すように設定したこと以外は実施
例1と同様にして一次不良品,二次不良品の数を調べ
た。その結果を表1に併せて示す。
Table 1 shows the numbers of primary defective products and secondary defective products. Examples 2 to 6 An unevaluated battery was manufactured in the same manner as in Example 1. And
With respect to this unevaluated battery, the number of primary defectives and secondary defectives was examined in the same manner as in Example 1 except that the end-of-charge voltage for selecting the primary defectives was set as shown in Table 1. The results are shown in Table 1. Comparative Examples 1 to 3 An unevaluated battery was produced in the same manner as in Example 1. And
With respect to this unevaluated battery, the number of primary defectives and secondary defectives was examined in the same manner as in Example 1 except that the end-of-charge voltage for selecting the primary defectives was set as shown in Table 1. The results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1からわかるように、実施例1〜実施例
6においては、二次不良品の数が少なく、一次評価によ
って不良品が確実に排除されていることがわかる。これ
に対して、比較例1および比較例2では、二次不良品の
数が多く一次評価の際に不良品が完全に排除されていな
い。また比較例3では、一次評価によって規定充電最大
電圧において何ら問題が生じない電池までもが排除さ
れ、製品供給率が低下する。
As can be seen from Table 1, in Examples 1 to 6, the number of secondary defective products is small, and it can be seen that defective products are surely excluded by the primary evaluation. On the other hand, in Comparative Example 1 and Comparative Example 2, the number of secondary defective products was large, and defective products were not completely eliminated during the primary evaluation. In Comparative Example 3, even batteries that do not cause any problem at the specified maximum charging voltage are excluded by the primary evaluation, and the product supply rate is reduced.

【0031】したがって、このことから、規定充電最大
電圧がV である非水電解質二次電池において、V
≦V ≦V +0.15Vなる関係を満たす終止電圧
で充電を行って良品,不良品を判定することは信
頼性の高い非水電解質二次電池を効率良く供給する上で
有効であることがわかった。
[0031] Therefore, from this fact, in a non-aqueous electrolyte secondary battery defined maximum charging voltage is V M, V M
≦ V C ≦ V M + 0.15V made to satisfy the relationship end voltage V C at good performing charging, determining defective effective in efficiently supplying the non-aqueous electrolyte secondary battery having high reliability I found it.

【0032】なお、本実施例では、負極活物質として炭
素質材料を用いたが、他の材料であってもよいことは勿
論である。また、正極活物質としては、上述したような
Li MO (Mは1種又は1種よりも多い遷移金
属)を用いることができる。
In this embodiment, a carbonaceous material is used as the negative electrode active material, but it is a matter of course that other materials may be used. In addition, as the positive electrode active material, Li x MO 2 (M is one or more transition metals) as described above can be used.

【0033】また、電池の形状も本実施例の円筒形の
他、角形,コイン形,ボタン形などであってもよい。ま
た、非水電解質は固体であってもよく、この場合従来か
ら公知の固体電解質を用いることができる。
The shape of the battery may be rectangular, coin-shaped, button-shaped or the like in addition to the cylindrical shape in the present embodiment. The non-aqueous electrolyte may be a solid, and in this case, a conventionally known solid electrolyte can be used.

【0034】[0034]

【発明の効果】以上の説明からも明らかなように、本発
明では、電池組立後、該電池の規定充電最大電圧をV
としたときに、V ≦V ≦V +0.15Vなる
関係を満たす終止電圧V で充電を行い、その後放置
中における電池電圧の経時変化から電池の良,不良を評
価するので、規定充電最大電圧範囲内において使用した
場合に電圧不良が発生する虞れのある製品が漏れなく排
除でき、良品のみを効率よく出荷できる。したがって、
本発明によれば、信頼性の高い非水電解質二次電池をユ
ーザーに提供することが可能である。
As is clear from the above description, the present invention, after assembly of the battery, the provision charge maximum voltage of the battery V M
And when, was charged with V M ≦ V C ≦ V M + 0.15V made to satisfy the relationship end voltage V C, good battery from aging of the battery voltage in a subsequent in standing, so to assess the defect, defined Products that may cause voltage failure when used within the maximum charging voltage range can be eliminated without omission, and only good products can be shipped efficiently. Therefore,
According to the present invention, it is possible to provide a user with a highly reliable non-aqueous electrolyte secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した非水電解質二次電池の一例を
一部破断して示す概略側面図である。
FIG. 1 is a schematic side view showing an example of a non-aqueous electrolyte secondary battery to which the present invention is applied, partially cut away.

【図2】負極板を部分的に切り欠いた状態を示す要部概
略斜視図である。
FIG. 2 is a schematic perspective view of a main part showing a state in which a negative electrode plate is partially cut away.

【符号の説明】[Explanation of symbols]

1・・・・・・・正極板 2・・・・・・・負極板 3a,3b・・・セパレータ 4・・・・・・・電池缶 7・・・・・・・正極リード 8・・・・・・・ガスケット 9・・・・・・・電池蓋 1 ... Positive electrode plate 2 ... Negative electrode plate 3a, 3b ... Separator 4 ... Battery can 7 ... Positive electrode lead 8 ... ..... Gasket 9 ... Battery cover

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】負極と正極と非水電解質とを備えた非水電
解質二次電池の製造方法において、 電池組立後規定充電最大電圧をV としたときに、V
≦V ≦V +0.15Vなる関係を満たす終止電圧V
充電を行い、その後放置中における電池電圧の経時変化
から電池の良・不良を選別することを特徴とする非水電
解質二次電池の製造法。
1. A non-aqueous electrolyte comprising a negative electrode, a positive electrode, and a non-aqueous electrolyte.
In the method of solution electrolyte secondary battery, the after battery assembly defining maximum charging voltage when the V M, V M
In V C V M + 0.15V made to satisfy the relationship end voltage V C
Changes in battery voltage over time during charging and after standing
Non-aqueous battery characterized by selecting good or bad battery
Manufacturing method of degraded secondary batteries.
【請求項2】負極と正極と非水電解質とを備えた非水電
解質二次電池の製造方法において、 電池組立後規定充電最大電圧をV としたときに、V
+0.05≦V ≦V +0.15Vなる関係を満たす
終止電圧V で充電を行い、その後放置中における電池
電圧の経径時変化から電池の良・不良を選別することを
特徴とする非水電解質二次電池の製造方法。
2. A non-aqueous electrolyte comprising a negative electrode, a positive electrode, and a non-aqueous electrolyte.
In the method of solution electrolyte secondary battery, the after battery assembly defining maximum charging voltage when the V M, V M
Satisfy + 0.05 ≦ V C ≦ V M + 0.15V the relationship
Was charged at the stop voltage V C, the battery in a subsequent in standing
How to distinguish good / bad batteries from changes in voltage
A method for producing a non-aqueous electrolyte secondary battery, characterized by:
【請求項3】正極及び負極にリチウムをドープ・脱ドー
プし得る材料を用いることを特徴とする第1項記載の非
水電解質二次電池の製造方法。
3. Doping and dedoping lithium into a positive electrode and a negative electrode
2. The non-volatile memory device according to claim 1, wherein
A method for producing a water electrolyte secondary battery.
【請求項4】負極としてリチウムをドープ・脱ドープし
得る炭素材質料を用い、正極活物質としてLi MO2
(ただしMはCO,Ni,Mn,Feから選ばれる1種
または1種以上であり、0.05< <1.10 であ
る)を用いることを特徴とする第1項記載の非水電解質
二次電池の製造方法。
4. Doping and undoping of lithium as a negative electrode
Li X MO2 as the positive electrode active material using the obtained carbon material
(However, M is one selected from CO, Ni, Mn, and Fe
Or at least one kind, and 0.05 < X <1.10.
2. The non-aqueous electrolyte according to claim 1, wherein
A method for manufacturing a secondary battery.
JP15097992A 1992-06-10 1992-06-10 Manufacturing method of non-aqueous electrolyte secondary battery Expired - Lifetime JP3306906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15097992A JP3306906B2 (en) 1992-06-10 1992-06-10 Manufacturing method of non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15097992A JP3306906B2 (en) 1992-06-10 1992-06-10 Manufacturing method of non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH05343101A JPH05343101A (en) 1993-12-24
JP3306906B2 true JP3306906B2 (en) 2002-07-24

Family

ID=15508638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15097992A Expired - Lifetime JP3306906B2 (en) 1992-06-10 1992-06-10 Manufacturing method of non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3306906B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4942249B2 (en) * 2001-01-15 2012-05-30 トータル ワイヤレス ソリューショオンズ リミテッド Method for producing lithium ion secondary battery
JP2002280077A (en) * 2001-03-15 2002-09-27 Mitsubishi Cable Ind Ltd Method of producing sheet lithium secondary battery and sheet lithium secondary battery obtained by using the same
JP4179528B2 (en) * 2001-05-23 2008-11-12 株式会社デンソー Secondary battery inspection method
CN101388477B (en) * 2008-09-28 2010-12-29 广州丰江电池新技术有限公司 Fast charging method
JP6555212B2 (en) * 2016-08-15 2019-08-07 トヨタ自動車株式会社 Battery pack manufacturing method

Also Published As

Publication number Publication date
JPH05343101A (en) 1993-12-24

Similar Documents

Publication Publication Date Title
JP5303822B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JPH02265167A (en) Nonaqueous electrolyte secondary battery
JPH097638A (en) Nonaqueous electrolytic secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP4882220B2 (en) Secondary battery
JP3282189B2 (en) Non-aqueous electrolyte secondary battery
JP3143951B2 (en) Non-aqueous electrolyte secondary battery
JPH10208777A (en) Non-aqueous electrolyte secondary battery
JP2010009898A (en) Nonaqueous secondary battery and nonaqueous secondary battery system
JP3336672B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3306906B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2001023685A (en) Electrolyte and secondary battery using it
JP2000012029A (en) Nonaqueous electrolyte secondary battery
US6451482B1 (en) Non-aqueous electrolyte secondary batteries
JP3211259B2 (en) Non-aqueous electrolyte secondary battery
JP3309449B2 (en) Non-aqueous electrolyte secondary battery
JP2006134760A (en) Secondary battery
JPH11214042A (en) Nonaqueous electrolyte secondary battery
JPH11185822A (en) Nonaqueous electrolyte secondary battery
JPH07183047A (en) Nonaqueous electrolyte secondary battery
JP2961745B2 (en) Non-aqueous electrolyte secondary battery
JP3508151B2 (en) Battery
JP2006134763A (en) Secondary battery
JP3179459B2 (en) Non-aqueous electrolyte secondary battery
JPH07130396A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120517

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130517

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130517

Year of fee payment: 11