JPH03280363A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JPH03280363A
JPH03280363A JP2118127A JP11812790A JPH03280363A JP H03280363 A JPH03280363 A JP H03280363A JP 2118127 A JP2118127 A JP 2118127A JP 11812790 A JP11812790 A JP 11812790A JP H03280363 A JPH03280363 A JP H03280363A
Authority
JP
Japan
Prior art keywords
electrode
lithium
battery
aluminum
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2118127A
Other languages
Japanese (ja)
Other versions
JP3211086B2 (en
Inventor
Hisashi Tsukamoto
寿 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP11812790A priority Critical patent/JP3211086B2/en
Publication of JPH03280363A publication Critical patent/JPH03280363A/en
Application granted granted Critical
Publication of JP3211086B2 publication Critical patent/JP3211086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance the cyclic lifetime by using an Al-base alloy to a neg. electrode plate, wherein the alloy is made by adding lithium, boron, silicon, bithmuth, garium, gelmanium either solely or in combination to the Al. CONSTITUTION:An Al-based alloy formed by adding lithium, boron, silicon, bismuth, garium, gelmanium either solely or in combination to aluminum is used as a neg. electrode plate. An addition of a small amount of Li will suppress abrupt lattice expansion in a battery with Al electrode, that should hinder collapse of the electrode. An addition of boron will suppress fine pulverization of Al-Li inter-metal compound. Silicon and bismuth enhance the dispersing speed of Li ions, that should suppress existence of the Li occluded in the Al electrode locally on the surface of electrode. Gelmanium and garium unstabilize a passive state film on the Al surface to cause drop of the overvoltage in charg ing and discharging, and thereby the current density is made uniform to achieve prolongation of the electrode life.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、リチウム電池に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to lithium batteries.

従来の技術 リチウム電池は、通常負極板に金属リチウム電極を用い
ている。金属リチウムは、きわめて卑な電位を有するの
で電解液や電解質を容易に還元分解する。リチウム−次
電池では、リチウム極の表面に安定な不動態皮膜を形成
して電解液の分解反応が停止するが、二次電池では、充
放電にともない不動態皮膜が生成分解を繰り返すので電
解tαの分解が常におこる。このような電解液の分解反
応がリチウム二次電池のサイクル寿命性能を低下させる
重大な原因になっている。
Prior art lithium batteries typically use a metallic lithium electrode for the negative plate. Metallic lithium has an extremely base potential and therefore easily reductively decomposes electrolytes and electrolytes. In rechargeable lithium batteries, a stable passive film is formed on the surface of the lithium electrode to stop the decomposition reaction of the electrolyte, but in secondary batteries, the passive film repeatedly forms and decomposes as it charges and discharges, so the electrolytic tα decomposition always occurs. Such a decomposition reaction of the electrolyte is a major cause of deterioration of the cycle life performance of a lithium secondary battery.

現在のところ金属リチウムに対して完全に安定な電解液
または電解質は見いだされていない。このためリチウム
電池の負極板に金属リチウムの代わりにリチウムインサ
ージョン電極を用いることが検討されている。リチウム
インサージョン電極は、通常金属リチウムよりも責な電
位を有するので、電池の電圧が低下してエネルギー密度
も低下する。しかし、前記の電解液の分解が抑制される
ので、−次電池では高温下での貯蔵性能など電池特性が
安定し、また二次電池では開発にともなう技術的課題が
少なくなる。
At present, no electrolyte or electrolyte has been found that is completely stable for metallic lithium. For this reason, consideration is being given to using a lithium insertion electrode instead of metallic lithium for the negative electrode plate of a lithium battery. Lithium insertion electrodes typically have a higher potential than metallic lithium, which lowers the voltage of the battery and lowers its energy density. However, since the decomposition of the electrolytic solution is suppressed, battery characteristics such as storage performance at high temperatures are stabilized in secondary batteries, and technical problems associated with development of secondary batteries are reduced.

アルミニウムは、リチウムイオンの優れた導伝体として
よく知られている。このためアルミニウムをリチウムイ
ンサージョン電極として負極板に用いたリチウム電池が
すでに多く検討されている。
Aluminum is well known as an excellent conductor of lithium ions. For this reason, many lithium batteries using aluminum as a lithium insertion electrode for the negative electrode plate have already been studied.

しかし、アルミニウム電極は、リチウムの吸蔵放出を繰
り返すと電極が微粉化して崩壊する。このため電池容量
が低下したり、ショートが起きたりする問題があった。
However, when aluminum electrodes repeatedly absorb and release lithium, they become pulverized and disintegrate. This has led to problems such as a decrease in battery capacity and short circuits.

これは、リチウムイオンのインサージョンにともないア
ルミニウムの金属結晶の格子定数が著しく増大すること
に起因している。
This is due to the fact that the lattice constant of the aluminum metal crystal increases significantly with the insertion of lithium ions.

このようなアルミニウム電極の崩壊を抑制するために、
従来は、アルミニウムにマンガンを添加する方法が用い
られてきた。
In order to suppress the collapse of such aluminum electrodes,
Conventionally, a method of adding manganese to aluminum has been used.

しかし、発明者は、マンガン添加の効果について詳しく
検討した結果、0.1mA/cm2以下の低電流密度の
充放電サイクル試験では、負極板の崩壊を抑制する優れ
た効果があるが、電流密度が増大するとその効果が著し
く低下することを見いだした。
However, as a result of detailed study on the effect of manganese addition, the inventor found that in a charge/discharge cycle test at a low current density of 0.1 mA/cm2 or less, it has an excellent effect of suppressing the collapse of the negative electrode plate, but when the current density It was found that the effect decreases significantly as the amount increases.

そして、このような高電流密度での電極崩壊がアルミニ
ウム電極の表面近傍におけるリチウム濃度の増大に起因
することを見いだした。
They also found that electrode collapse at such high current densities is due to an increase in lithium concentration near the surface of the aluminum electrode.

発明が解決しようとする課題 上記のように従来のアルミニウム電極は、充放電サイク
ルの進行にともなって、特にl mA/ cm2以上の
大電流密度の場合に負極板が崩壊するという課題があっ
た。
Problems to be Solved by the Invention As mentioned above, the conventional aluminum electrode has a problem in that the negative electrode plate collapses as the charge/discharge cycle progresses, especially at a large current density of 1 mA/cm2 or more.

課題を解決すための手段 本発明は、アルミニウムにリチウム、ボロン、シリコン
、ビスマス、ガリウムもしくはゲルマニウムを単独でま
たは複合して添加した合金を用いた負極板を備えたこと
を特徴とするリチウム電池を用いて前記課題を解決する
ものである。また、前記合金にマンガンを添加した合金
を用いた負極板を備えたことを特徴とするリチウム電池
を用いて前記課題の解決をさらに容易にするものである
Means for Solving the Problems The present invention provides a lithium battery characterized by having a negative electrode plate using an alloy in which lithium, boron, silicon, bismuth, gallium, or germanium is added alone or in combination to aluminum. The above-mentioned problem is solved by using the following method. Further, the above-mentioned problem can be more easily solved by using a lithium battery characterized by having a negative electrode plate using an alloy in which manganese is added to the above-mentioned alloy.

作用 アルミニウム電極は、リチウムイオンを吸蔵する場合、
吸蔵の初回に著しく格子定数が増加する。
When the working aluminum electrode occludes lithium ions,
The lattice constant increases significantly during the first occlusion.

したがって、リチウムをアルミニウムにあらかじめ少量
添加して結晶格子を膨張させておくと、アルミニウム電
極の電池内での急激な格子膨張を抑ルノすることができ
る。この結果、電極の崩壊が抑制される。
Therefore, if a small amount of lithium is added to aluminum in advance to expand the crystal lattice, rapid lattice expansion of the aluminum electrode within the battery can be suppressed. As a result, collapse of the electrode is suppressed.

ボロンは金属間化合物に靭性な付与する作用がある。し
たがって、ボロンの添加によってアルミニウムーリチウ
ム金属間化合物の微粉化を抑制することができる。
Boron has the effect of imparting toughness to intermetallic compounds. Therefore, the addition of boron can suppress the pulverization of the aluminum-lithium intermetallic compound.

シリコンおよびビスマスは、リチウムイオンの拡散速度
を向上させる作用がある。したがって、これらの添加に
よってアルミニウム電極に吸蔵されたリチウムが電極表
面に局在することを抑制することができる。すなオつち
、リチウムの局在に起因する電極の崩壊を抑制すること
ができる。
Silicon and bismuth have the effect of improving the diffusion rate of lithium ions. Therefore, these additions can prevent lithium occluded in the aluminum electrode from localizing on the electrode surface. In other words, collapse of the electrode due to localization of lithium can be suppressed.

ゲルマニウムおよびガリウムの作用は、充分明確でない
が、これらの添加によってアルミニウム表面の不動態皮
膜が不安定化して充放電の過電圧が低下することにより
電流密度が均一になって電極寿命が長期化するものと考
えられる。
The effects of germanium and gallium are not fully clear, but their addition destabilizes the passive film on the aluminum surface, lowering the charging/discharging overvoltage, making the current density uniform, and extending the electrode life. it is conceivable that.

マンガンは、従来からよく知られているようにアルミニ
ウムの強度を向上させる作用がある。したがって、アル
ミニウムにリチウム、ボロン、シリコン、ビスマス、ゲ
ルマニウム、およびガリウムと共にマンガンを添加する
とアルミニウム電極の崩壊を抑制し、電極寿命を長期化
することができる。
As is well known, manganese has the effect of improving the strength of aluminum. Therefore, adding manganese to aluminum together with lithium, boron, silicon, bismuth, germanium, and gallium can suppress the collapse of the aluminum electrode and extend the life of the electrode.

実施例 以下では、本発明をり1通な実施例を用いて説明する。Example In the following, the present invention will be explained using a single embodiment.

[実施例の11 平均粒径80ミクロンのα−リチウム・アルミニウム合
金(リチウム濃度が2wt%のもの)粉末を0.35g
採集して325メツシユのステンレス金網に包み込んで
、加圧成形し、径が10mmで、厚さが2.5mmのポ
ケット式リチウム・アルミニウム粉末負極板(a)を試
作した。
[Example 11 0.35 g of α-lithium aluminum alloy (with a lithium concentration of 2 wt%) powder with an average particle size of 80 microns
The samples were collected, wrapped in a 325-mesh stainless wire mesh, and pressure-molded to fabricate a pocket-type lithium-aluminum powder negative electrode plate (a) with a diameter of 10 mm and a thickness of 2.5 mm.

リチウム・コバルト複合酸化物(LiCo02)に導電
材として電気化学工業製の易分散性アセチレンブラック
H5−100を5wt%加え、さらに結着材としてPT
FE粉末を2 w t%添加混合した後、325メツシ
ユのステンレス金網に0.8g包み込んで加圧成形して
、径が12mmで厚さが2゜4mmのポケット式リチウ
ム・コバルト複合酸化物正極板(1))を試作した。こ
の正極板の理論容量は、リチウム・コバルト複合酸化物
1モル当り0.5モルのリチウムイオンを吸蔵放出する
ものと考えると104mAhである。
5 wt% of easily dispersible acetylene black H5-100 manufactured by Denki Kagaku Kogyo was added as a conductive material to lithium-cobalt composite oxide (LiCo02), and PT was added as a binder.
After adding and mixing 2 wt% of FE powder, 0.8 g of it was wrapped in a 325 mesh stainless wire mesh and pressure molded to form a pocket type lithium-cobalt composite oxide positive electrode plate with a diameter of 12 mm and a thickness of 2°4 mm. (1)) was prototyped. The theoretical capacity of this positive electrode plate is 104 mAh, assuming that 0.5 mole of lithium ions are intercalated and released per mole of lithium-cobalt composite oxide.

これらの極板を用いて第一図のボタン型有機電解tα電
池を試作した。この電池は、セパレーターとして、径が
13mmで厚さが0.2mtnのポリプロピレン製不織
布セパレーター(C)と、径が14ITI Inで厚さ
が0.02mtnのポリエチレン製微孔膜セパレーター
(d)を用いている。また、電解液には、団LiC10
,/PC−ECを用いている。
Using these electrode plates, a button-type organic electrolytic tα battery as shown in FIG. 1 was fabricated. This battery uses a polypropylene nonwoven fabric separator (C) with a diameter of 13 mm and a thickness of 0.2 mtn, and a polyethylene microporous membrane separator (d) with a diameter of 14 ITI In and a thickness of 0.02 mtn as separators. ing. In addition, the electrolyte contains group LiC10
,/PC-EC is used.

この電池は、正極にリチウムが吸蔵された状態で組み立
てられる。そして、第一回目の充電時に正極からリチウ
ムイオンが放出されて、負極のα−リチウム・アルミニ
ウム合金に吸蔵されるものである。
This battery is assembled with lithium occluded in the positive electrode. During the first charging, lithium ions are released from the positive electrode and inserted into the α-lithium aluminum alloy of the negative electrode.

リチウム・アルミニウム合金のリチウム濃度を3 w 
t%以以上すると、いわゆるα+β−リチウム・アルミ
ニウム合金となる。このα+β−リチウム・アルミニウ
ム合金は、空気中の水分と容易に反応するので、取り扱
いが難しい。したがって、空気中で安定なα−リチウム
・アルミニウム合金を用いることが望ましい。
The lithium concentration of lithium-aluminum alloy is 3w
When the content is t% or more, a so-called α+β-lithium-aluminum alloy is formed. This α+β-lithium aluminum alloy is difficult to handle because it easily reacts with moisture in the air. Therefore, it is desirable to use an α-lithium aluminum alloy that is stable in air.

[実施例の2コ アルミニウム・ボロン合金粉末を負極原料に用いた以外
は、実施例の1のボタン電池と同様の有機電解液電池を
実施例の2の電池とする。
[The battery of Example 2 is an organic electrolyte battery similar to the button battery of Example 1 except that the 2-coaluminum-boron alloy powder of Example was used as the negative electrode raw material.

[実施例の3および4] アルミニウム・シリコン合金粉末またはアルミニウム・
ビスマス合金粉末を負極原料に用いたV′外は、実施例
の1のボタン電池と同様の有機電解tα電池を実施例の
3または4の電池とする。
[Example 3 and 4] Aluminum-silicon alloy powder or aluminum-silicon alloy powder
The battery of Example 3 or 4 is an organic electrolytic tα battery similar to the button battery of Example 1 except for V' in which bismuth alloy powder was used as the negative electrode raw material.

[実施例の5および6] アルミニウム・ゲルマニウム合金粉末またはアルミニウ
ム・ガリウム合金粉末を負極原料に用いた以外は、実施
例の1のボタン電池と同様の有機電解液電池をそれぞれ
実施例の5および6の電池とする。
[Example 5 and 6] Organic electrolyte batteries similar to the button battery of Example 1 were prepared in Examples 5 and 6, respectively, except that aluminum-germanium alloy powder or aluminum-gallium alloy powder was used as the negative electrode raw material. battery.

[実施例の7] アルミニウム(84w t%)・リチウム(2wt%)
・ボロン(l w t%)・シリコン(5w t%)・
ビスマス(5w t%)・ゲルマニウム(1wt%)・
カリウム(l W t%)・マンガン(1w t%)合
金粉末を負極原料に用いた以外は、実施例の1のボタン
電池と同様の有機電解液電池を実施例の7の電池とする
[Example 7] Aluminum (84wt%)/Lithium (2wt%)
・Boron (l w t%) ・Silicon (5 w t%) ・
Bismuth (5wt%), germanium (1wt%),
The battery of Example 7 is the same organic electrolyte battery as the button battery of Example 1, except that potassium (l W t%)/manganese (1 wt%) alloy powder is used as the negative electrode raw material.

この負極原料を用いた場合には、後述のように、リチウ
ムの吸蔵・放出にともなうアルミニウム電極の崩壊が少
なく、リチウムイオンの固体的拡散速度が速く、またリ
チウムイオンがアルミニウム合金に吸蔵・放出されると
きの過電圧が低いので、電池のサイクル寿命がもっとも
長いリチウム二次電池を得ることができた。
When this negative electrode raw material is used, as will be described later, the collapse of the aluminum electrode due to intercalation and desorption of lithium is small, the solid-state diffusion rate of lithium ions is fast, and lithium ions are absorbed and desorbed into the aluminum alloy. Since the overvoltage during charging is low, we were able to obtain a lithium secondary battery with the longest battery cycle life.

以上の実施例では、負極板に粉末原料からなるポケット
式電極を用いている。これらの粉末は、ガスアトマイズ
法により製造するのが好適である。
In the above embodiments, a pocket electrode made of powder raw material is used for the negative electrode plate. These powders are preferably manufactured by a gas atomization method.

また、粉末電極を用いずにそれぞれの合金薄板を打ち抜
いてなる円板状電極を用いてもよい。また、正極活物質
としてLiCoO2の代わりにMnO2やリチウムマン
ガン複合酸化物を用いてもよい。さらに、電池形式もボ
タン型電池に限らず角形電池または円筒型電池でもよい
Alternatively, instead of using a powder electrode, a disk-shaped electrode formed by punching out each alloy thin plate may be used. Furthermore, MnO2 or lithium manganese composite oxide may be used instead of LiCoO2 as the positive electrode active material. Furthermore, the battery type is not limited to a button type battery, but may also be a prismatic battery or a cylindrical battery.

本発明の効果を検証するために、負極板にアルミニウム
粉末を用いた以外は、実施例の1の電池と同様なボタン
型電池を比較のための従来の電池8として試作した。
In order to verify the effects of the present invention, a button-type battery similar to the battery of Example 1 was prototyped as a conventional battery 8 for comparison, except that aluminum powder was used for the negative electrode plate.

本発明の実施例の電池1〜7および比較のための電池8
を1mAの電流で端子電圧が4.OVになるまで充電し
た後、同じ<1mAの電流で端子電圧が2.IVに降下
するまで放電するサイクル充放電試験をおこなった。こ
のときのサイクル寿命特性を第二図に示す。図から、本
発明の電池1〜7は、従来の電池8に比較して優れたサ
イクル寿命性能を有することがわかる。
Batteries 1 to 7 of Examples of the present invention and Battery 8 for comparison
With a current of 1mA, the terminal voltage is 4. After charging until OV, the terminal voltage becomes 2.0 mA with the same current <1 mA. A cycle charge/discharge test was conducted in which the battery was discharged until it dropped to IV. The cycle life characteristics at this time are shown in Figure 2. From the figure, it can be seen that batteries 1 to 7 of the present invention have superior cycle life performance compared to conventional battery 8.

発明の効果 上記のように、本発明の電池は、長期のサイクル寿命性
能を可能にするというに優れた効果を有している。
Effects of the Invention As described above, the battery of the present invention has an excellent effect of enabling long-term cycle life performance.

なお以上の効果とは別に、本発明のリチウム電池は、次
のような優れた特徴を持っている。すなわち、本発明の
リチウム電池は、金属リチウムを製造中に取り扱わずま
た電池内にも保有していないので、製造および使用時の
安全性がきわめて高い。安全性は、あらゆる電池性能の
中でもっとも重要な性能である。したがって、本発明の
リチウム電池は、二次電池のサイクル寿命を向上させる
だけでなく、−次電池に適用した場合にも安全性を向上
させる点で優れた効果を有している。
In addition to the above effects, the lithium battery of the present invention has the following excellent features. That is, the lithium battery of the present invention has extremely high safety during manufacture and use because metallic lithium is not handled during manufacture and is not contained within the battery. Safety is the most important performance of all battery performance. Therefore, the lithium battery of the present invention not only improves the cycle life of a secondary battery, but also has excellent effects in improving safety when applied to a secondary battery.

【図面の簡単な説明】[Brief explanation of drawings]

第一図は、本発明の実施例の1のボタン型有機電解液電
池の概略図を示す。図中の記号(e)、(f)。 (g)は、それぞれ、正極缶、負極缶、バッキングを示
す、また、第二図は、本発明の有機電解液電池と従来の
有機電解液電池とのサイクル寿命性能の比較を示す。第
二図中の記号は、それぞれ下記の内容を示す。 (1)・・・実施例1の有機電解液電池の特性(2)・
・・実施例2の有機電解液電池の特性(3)・・・実施
例3の有機電解液電池の特性(4)・・・実施例4の有
機電解液電池の特性(5)・・・実施例5の有機電解液
電池の特性(6)・・・実施例6の有機電解液電池の特
性(7)・・・実施例7の有機電解液電池の特性(8)
・・・比較のための有機電解液電池8の特性率 図 斉 図 Nurnber of cyctes (cyde)
FIG. 1 shows a schematic diagram of a button-type organic electrolyte battery according to Example 1 of the present invention. Symbols (e) and (f) in the figure. (g) shows a positive electrode can, a negative electrode can, and a backing, respectively, and FIG. 2 shows a comparison of cycle life performance between the organic electrolyte battery of the present invention and a conventional organic electrolyte battery. The symbols in Figure 2 indicate the following contents. (1) Characteristics of the organic electrolyte battery of Example 1 (2)
Characteristics of the organic electrolyte battery of Example 2 (3) Characteristics of the organic electrolyte battery of Example 3 (4) Characteristics of the organic electrolyte battery of Example 4 (5) Characteristics of the organic electrolyte battery of Example 5 (6) Characteristics of the organic electrolyte battery of Example 6 (7) Characteristics of the organic electrolyte battery of Example 7 (8)
...Characteristics diagram of organic electrolyte battery 8 for comparison Nurnber of cyctes (cyde)

Claims (1)

【特許請求の範囲】 1、アルミニウムにリチウム、ボロン、シリコン、ビス
マス、ガリウムもしくはゲルマニウムを単独でまたは複
合して添加した合金を用いた負極板を備えたことを特徴
とするリチウム電池。 2、請求項1記載の合金にマンガンを添加した合金を用
いた負極板を備えたことを特徴とするリチウム電池。
[Claims] 1. A lithium battery comprising a negative electrode plate using an alloy in which lithium, boron, silicon, bismuth, gallium, or germanium is added singly or in combination to aluminum. 2. A lithium battery comprising a negative electrode plate made of an alloy obtained by adding manganese to the alloy according to claim 1.
JP11812790A 1990-03-02 1990-05-07 Lithium battery Expired - Fee Related JP3211086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11812790A JP3211086B2 (en) 1990-03-02 1990-05-07 Lithium battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-52340 1990-03-02
JP5234090 1990-03-02
JP11812790A JP3211086B2 (en) 1990-03-02 1990-05-07 Lithium battery

Publications (2)

Publication Number Publication Date
JPH03280363A true JPH03280363A (en) 1991-12-11
JP3211086B2 JP3211086B2 (en) 2001-09-25

Family

ID=26392949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11812790A Expired - Fee Related JP3211086B2 (en) 1990-03-02 1990-05-07 Lithium battery

Country Status (1)

Country Link
JP (1) JP3211086B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835496B1 (en) 1998-09-08 2004-12-28 Sumitomo Metal Industries, Ltd. Negative electrode material for a non-aqueous electrolyte secondary battery and processes for its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835496B1 (en) 1998-09-08 2004-12-28 Sumitomo Metal Industries, Ltd. Negative electrode material for a non-aqueous electrolyte secondary battery and processes for its manufacture
US6881518B2 (en) 1998-09-08 2005-04-19 Sumitomo Metal Industries, Ltd. Process for manufacture of negative electrode material for a non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3211086B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
JP3600051B2 (en) Lithium secondary battery
EP0477461B2 (en) Nickel/hydrogen storage battery and method of manufacturing the same
JPH11176436A (en) Alkaline storage battery
US20130323578A1 (en) Alkaline rechargeable battery
JPH1186854A (en) Lithium secondary battery
JP2003100284A (en) Lithium secondary battery
JPH06302320A (en) Nonaqueous electrolyte secondary battery
JPH11273674A (en) Organic electrolyte secondary battery
US6492063B1 (en) Lithium secondary battery
JPH1140152A (en) Nonaqueous electrolyte battery
JPS6119063A (en) Hydrogen occlusion electrode
JPH03280363A (en) Lithium battery
JP4110562B2 (en) battery
JP3321541B2 (en) Lithium secondary battery
JP2823301B2 (en) Hydrogen storage alloy electrode
JP3167518B2 (en) Non-aqueous electrolyte secondary battery
JP2002501665A (en) Hydrogen storage alloy
JPH09245799A (en) Lithium secondary battery
JP2000012011A (en) Manufacture of nickel-hydrogen storage battery
JP3143109B2 (en) Cylindrical sealed nickel storage battery
JP2000133315A (en) Lithium secondary battery
JPH10223220A (en) Non-aqueous electrolyte cell
JP2000138062A (en) Nonaqueous electrolyte secondary battery
JPH07142057A (en) Nonaqueous electrolyte battery
JP2929716B2 (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees