JPS6231950A - Electrode for lithium secondary battery - Google Patents
Electrode for lithium secondary batteryInfo
- Publication number
- JPS6231950A JPS6231950A JP60169512A JP16951285A JPS6231950A JP S6231950 A JPS6231950 A JP S6231950A JP 60169512 A JP60169512 A JP 60169512A JP 16951285 A JP16951285 A JP 16951285A JP S6231950 A JPS6231950 A JP S6231950A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- aluminum
- less
- metal
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はリチウム2次電池用電極、更に詳細には、2次
電池として繰)返し使用した時に本経時劣化の少ないリ
チウム2次電池用電極に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an electrode for a lithium secondary battery, and more specifically, an electrode for a lithium secondary battery that exhibits little deterioration over time when used repeatedly as a secondary battery. Regarding.
電気エネルギー貯蔵素子としての電池に関する研究は古
くから行なわれている。電池の使用目的、特性等に応じ
て数多くの電極活物質、それらの組合せが研究され、実
際に商品として充分な性能を有する電池が開発されてき
ている。これまでに、マンガン電池、アルカリマンガン
電池、酸化銀電池、リチウムフッ化カーボン電池などの
一次電池に加えて、鉛蓄電池、ニッケルカドミウム蓄電
池といつ2次電池が開発され、それぞれの用途に応じた
携帯用の電源として使用されている。Research on batteries as electrical energy storage devices has been conducted for a long time. A large number of electrode active materials and combinations thereof have been studied depending on the purpose of use and characteristics of the battery, and batteries with sufficient performance as commercial products have actually been developed. So far, in addition to primary batteries such as manganese batteries, alkaline manganese batteries, silver oxide batteries, and lithium fluorocarbon batteries, lead-acid batteries, nickel-cadmium batteries, and secondary batteries have been developed, each of which has been developed to be a portable battery for different purposes. It is used as a power source for
現在、電池に関する要求特性が多様化してきており、電
池の研究も細分化される傾向にあるが、多くの労力が、
高い電池特性を持つリチウム電池の2次電池化の研究に
向けられている。しかし、リチウム金属を単独で電極と
して用いた場合には充放電の繰り返しにより、いわゆる
デンドライトが発生し、それが2次電池化の大きな障害
となっている。この点に関しては、既に多くの改良研究
が報告されており、溶媒、電解質、添加剤、電極基盤等
の様々な角度からアゾローチが行なわれている。この中
で、電極基盤に関する研究からは、アル1ニウムを電極
基盤として用いる事が、充放電サイクル効率、寿命の面
に於いて最も好ましいという結論が得られている。Currently, the required characteristics of batteries are diversifying, and battery research tends to be fragmented.
The project is aimed at research on converting lithium batteries, which have high battery characteristics, into secondary batteries. However, when lithium metal is used alone as an electrode, so-called dendrites are generated due to repeated charging and discharging, which is a major obstacle to the development of secondary batteries. Regarding this point, many improvement studies have already been reported, and azo roach has been carried out from various angles such as solvents, electrolytes, additives, and electrode substrates. Among these, research on electrode substrates has led to the conclusion that using aluminum as an electrode substrate is most preferable in terms of charge/discharge cycle efficiency and life.
しかしながら、アルミニウムを電極基盤に用い九場合に
も問題がある。すなわち、アルミニウム基盤は、充放電
の繰り返しにより表面に亀裂を生じ、電極の微粉化が起
こり劣化する。そして、斯かる劣化が起こると電極活物
質の脱落が生ずるため、アルミニウムを′a億基盤に用
いたリチウム2次電池は100〜2001g1程度のサ
イクル寿命しか得られ々い。However, there are also problems when aluminum is used for the electrode base. That is, the aluminum base plate cracks on the surface due to repeated charging and discharging, and the electrode becomes pulverized and deteriorates. When such deterioration occurs, the electrode active material falls off, so that a lithium secondary battery using aluminum as a substrate can only have a cycle life of about 100 to 2001 g1.
上記の問題点を解決するために、本発明者らは、アルミ
ニウム基盤の微粉化防止を目的として鉛量検討を重ねた
結果、アルミニウムと他の特定の金属とからなる′w/
L極基盤が微粉化を生じにくく耐久性に1誕れたもので
あることを見出し、本発明を完成した。In order to solve the above-mentioned problems, the present inventors repeatedly investigated the amount of lead for the purpose of preventing pulverization of the aluminum base.
The present invention was completed by discovering that the L-electrode substrate is less susceptible to pulverization and has improved durability.
すなわち本発明は、アルミ−ラムと、原子番号50番以
下でかつモース硬度2.0以下の金属とからなるリチウ
ム2次電池用゛ル極を提供するものである。That is, the present invention provides an electrode for a lithium secondary battery made of aluminum and a metal having an atomic number of 50 or less and a Mohs hardness of 2.0 or less.
本発明においてアルミニウムと共に使用される金属とし
ては、原子番号50番以下でかつモース硬度2.0以下
のものであればいずれ−4苧
のものでも良いが、就中特にインジウム、スズが好まし
い。モース硬度が2.0より大きい金属を用いるとアル
ミニウム基盤と同様:電極の微粉化が発生するため好ま
しくない。また、原子番号が50よりも大きい金属を用
いると、電池O1$f:itあた抄の出力密度が小さく
々るので好ましくない。The metal used together with aluminum in the present invention may be any metal having an atomic number of 50 or less and a Mohs hardness of 2.0 or less, but indium and tin are particularly preferred. If a metal with a Mohs hardness of more than 2.0 is used, it is undesirable because the electrode will become pulverized, similar to the case with an aluminum base. Furthermore, if a metal with an atomic number larger than 50 is used, the output density of the battery O1$f:it will be undesirably small.
本発明のリチウム2次電池用[極は、アルミニウムと原
子番号50以下でかつモース硬度2.0以下の金属とか
らなるものであって、例えばこれら2棟の金属の合金及
び原子番号50vr以下でかつモース硬度2.0以下の
金属の表面にアルミニウムを槓l−シたものが好適に使
用される。The electrode for the lithium secondary battery of the present invention is made of aluminum and a metal with an atomic number of 50 or less and a Mohs hardness of 2.0 or less, such as an alloy of these two metals and an atomic number of 50vr or less. In addition, a metal having a Mohs hardness of 2.0 or less and coated with aluminum on the surface is preferably used.
合金は、例えば、溶融状態にある二種の金属を混合する
方法、固体状態の二種の金属をたたき込んで均一に一体
化する方法、アルミニウムの微粉末を溶融状態の金属に
分散させた後固化させる方法、アルミニウムの微粉ヲ展
性のある金桐に練り込む方法、金桐の表面に他の金属を
蒸着によって析出合金化させる方法、二種以上の金属を
同時に蒸着により析出させる方法、溶液中から電気化学
的に析出合金化させる方法等積々の方法で製造すること
ができる。斯くして製造される合金のアルミニウムと原
子番号50番以下でかつ硬度2.0以下の金桐との組成
比は重量比にして1:9〜9:1、特に1:2〜2:1
となるようにするのが好ましい。Alloys can be produced by, for example, mixing two metals in a molten state, pounding two metals in a solid state to uniformly integrate them, or dispersing fine aluminum powder into a metal in a molten state and then solidifying it. A method of kneading fine aluminum powder into malleable metal paulownia, a method of depositing and alloying other metals on the surface of metal paulownia by vapor deposition, a method of precipitating two or more metals simultaneously by vapor deposition, and a method of precipitating aluminum paulownia in a solution. It can be produced by a variety of methods, including electrochemical precipitation alloying. The composition ratio of aluminum of the alloy produced in this manner to paulownia having an atomic number of 50 or less and a hardness of 2.0 or less is 1:9 to 9:1, particularly 1:2 to 2:1 in terms of weight ratio.
It is preferable to do so.
また、積層構造のi?L極は、例えばアルミニウム薄膜
の間に原子番号50番以下でかつ硬度2.0以下の金属
をはさみ平板上でたたき込むなどしてこれらの二種の金
属を張シ合わす方法等により製造される。この場合、表
層にあるアルミニウムの膜厚は1〜1000Pとするの
が好ましい。なお、この場合、電極としてはアルミニウ
ム面のみが使用される。In addition, the laminated structure i? The L pole is manufactured by, for example, sandwiching a metal having an atomic number of 50 or less and a hardness of 2.0 or less between thin aluminum films and hammering the two metals together on a flat plate. In this case, the thickness of the aluminum layer in the surface layer is preferably 1 to 1000P. Note that in this case, only the aluminum surface is used as the electrode.
アルミニウム基盤の劣化の原因は明らかではないが1例
えば次のことが考えられる。すなわち、充電時における
アルミニウム基盤へのリチウム金属の浸入が、アルミニ
ウムーリチウム合金のα相におけるリチウムの拡散速度
r律速されるために、アルミニウム基盤の表面に集中す
ること、及びリチウムの出入りによる体積変化が急激で
あシ比較的硬くて機械的強度の弱いアルミニウム金属が
その変化に追従できないために微粉化が生じるものと考
えられる。Although the cause of the deterioration of the aluminum substrate is not clear, the following may be considered, for example. That is, the infiltration of lithium metal into the aluminum substrate during charging is concentrated on the surface of the aluminum substrate because the diffusion rate of lithium in the α phase of the aluminum-lithium alloy is determined by r, and the volume change due to the inflow and outflow of lithium. It is thought that the pulverization occurs because the change is sudden and the aluminum metal, which is relatively hard and has low mechanical strength, cannot follow this change.
従って、この考えを基にするなら、本発明で使用した原
子番号50番以下でかつモース硬度2.0以下の金属は
、電極中にあって、充電により供給されるリチウム金属
を電極全体で均一に吸蔵できるようにする作用、あるい
はリチウムと合金化したときの体積変化を吸収できるよ
うに電極の柔軟性を増進させる作用、換言すればバイン
ダー的役割を有するものと考えられる。Therefore, based on this idea, the metal used in the present invention, which has an atomic number of 50 or less and a Mohs hardness of 2.0 or less, is in the electrode and allows the lithium metal supplied by charging to be distributed uniformly throughout the electrode. It is thought that it has the function of allowing lithium to be occluded, or the function of increasing the flexibility of the electrode so that it can absorb the volume change when alloyed with lithium, in other words, it has the role of a binder.
次に実施例を挙げて本発明を説明するが、 8一 本発明はこれら実施例に限定されるものではかい。 Next, the present invention will be explained with reference to Examples. The present invention is not limited to these examples.
実施例
インジウム金属(和光紬薬製、純度99.99%)を1
0μの厚さのアルミニウム薄膜(純度99.99%)2
枚を用いてはさみ、平板上でたたき込み、厚さ100μ
のサンドイッチ構造を有する合金を作製した。このもの
を1儂×1備の大きさに切り出し、切り口を工?キシ樹
脂で被覆してインジウムの露出部がなくなるようにする
。このようにして作製した電極を1.0モルの濃度のリ
チウム、re−クロレー) (LiC104)を溶解し
た7”aビレンカーメネート中で電解(100μム/
cm”の電流を用いた)シ、電極表面上にリチウムを析
出させた。その後、逆電流を流して放電させると、クー
ロン効率90%以上でリチウムの利用がなされた。Example Indium metal (manufactured by Wako Tsumugi Pharmaceutical Co., Ltd., purity 99.99%)
0μ thick aluminum thin film (99.99% purity)2
Using scissors, fold it on a flat plate to a thickness of 100 μm.
An alloy with a sandwich structure was fabricated. Cut this thing into a size of 1 x 1 and cut the cut. Cover with oxy resin so that there are no exposed indium parts. The thus prepared electrode was electrolyzed (100 μm/m) in 7”a birene carmenate in which 1.0 molar concentration of lithium, re-chloride (LiC104) was dissolved.
Lithium was deposited on the surface of the electrode using a current of 2 cm". Thereafter, when a reverse current was applied to discharge the electrode, lithium was utilized with a coulombic efficiency of 90% or more.
実施例2
窒素気流下で、アルミニウム(純度99.99%)とス
ズ(和光紬薬製99.99%)(モル比で1=1)を溶
融させ均一な合金を作シ、平板上でたたいてI C1!
X I CI!の板状電極を作製した。この電極を用
い実施例1で用いた溶液中でリチウムの析出、溶出を繰
り返し大所、クーロン効率90%以上でリチウムの利用
がなされた。しかも、1000回のサイクル試験の後も
なんら電極の劣化は見られなかった。Example 2 Under a nitrogen stream, aluminum (purity 99.99%) and tin (Wako Tsumugi Pharmaceutical Co., Ltd. 99.99%) (molar ratio 1=1) were melted to produce a uniform alloy, which was deposited on a flat plate. Mostly I C1!
X I CI! A plate-shaped electrode was fabricated. Using this electrode, lithium was repeatedly deposited and eluted in the solution used in Example 1, and lithium was utilized with a Coulombic efficiency of 90% or more. Moreover, no deterioration of the electrode was observed even after 1000 cycle tests.
本発明のリチウム2次電池用電極は、多数回の充放電サ
イクルを繰り返しても劣化が起こらないので、リチウム
2次電池の実用化を進めることができる。Since the electrode for a lithium secondary battery of the present invention does not deteriorate even after repeated charge/discharge cycles many times, it is possible to put lithium secondary batteries into practical use.
以上that's all
Claims (1)
度2.0以下の金属とからなることを特徴とするリチウ
ム2次電池用電極。 2、アルミニウムと、原子番号50番以下でかつモース
硬度2.0以下の金属の合金である特許請求の範囲第1
項記載のリチウム2次電池用電極。 3、原子番号50番以下でかつモース硬度2.0以下の
金属の表面にアルミニウムを積層したものである特許請
求の範囲第1項記載のリチウム2次電池用電極。 4、原子番号50番以下でかつモース硬度2.0以下の
金属がインジウム又はスズである特許請求の範囲第1〜
3項のいずれか1項記載のリチウム2次電池用電極。[Scope of Claims] 1. An electrode for a lithium secondary battery comprising aluminum and a metal having an atomic number of 50 or less and a Mohs hardness of 2.0 or less. 2. Claim 1, which is an alloy of aluminum and a metal with an atomic number of 50 or less and a Mohs hardness of 2.0 or less
The electrode for a lithium secondary battery as described in . 3. The electrode for a lithium secondary battery according to claim 1, which is made by laminating aluminum on the surface of a metal having an atomic number of 50 or less and a Mohs hardness of 2.0 or less. 4. Claims 1 to 4, wherein the metal having an atomic number of 50 or less and a Mohs hardness of 2.0 or less is indium or tin.
The electrode for a lithium secondary battery according to any one of Item 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60169512A JPS6231950A (en) | 1985-07-31 | 1985-07-31 | Electrode for lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60169512A JPS6231950A (en) | 1985-07-31 | 1985-07-31 | Electrode for lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6231950A true JPS6231950A (en) | 1987-02-10 |
Family
ID=15887882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60169512A Pending JPS6231950A (en) | 1985-07-31 | 1985-07-31 | Electrode for lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6231950A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5344079A (en) * | 1990-10-12 | 1994-09-06 | Yoshino Kogyosho Co., Ltd. | Foaming nozzle for sprayer |
-
1985
- 1985-07-31 JP JP60169512A patent/JPS6231950A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5344079A (en) * | 1990-10-12 | 1994-09-06 | Yoshino Kogyosho Co., Ltd. | Foaming nozzle for sprayer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9876225B2 (en) | Anode active material and battery | |
Winter et al. | Electrochemical lithiation of tin and tin-based intermetallics and composites | |
Yang et al. | SnSbx-based composite electrodes for lithium ion cells | |
JPS63274058A (en) | Negative electrode for nonaqueous electrolyte secondary battery | |
JP3565272B2 (en) | Negative electrode material for Li secondary battery, negative electrode using the same | |
JPS6231950A (en) | Electrode for lithium secondary battery | |
KR101113350B1 (en) | Negative electrode and the battery using it | |
JP3168600B2 (en) | Negative electrode for non-aqueous electrolyte secondary batteries | |
JP2002203593A (en) | Inorganic solid electrolyte thin film and lithium battery member using it | |
JP2006155960A (en) | Negative electrode and battery | |
JP2006059714A (en) | Negative electrode and battery | |
JP4381023B2 (en) | Secondary battery | |
JPH08321302A (en) | Hydrogen storage electrode | |
JPS60202675A (en) | Manufacture of negative electrode for nonaqueous electrolyte secondary battery | |
JPS63175348A (en) | Lithium cell | |
JPS59224064A (en) | Positive pole material for lithium cell | |
JPS6086759A (en) | Nonaqueous electrolyte secondary battery | |
JP3370111B2 (en) | Hydrogen storage alloy electrode | |
JP2929716B2 (en) | Hydrogen storage alloy electrode | |
JPS63289758A (en) | Secondary battery | |
JPS59186276A (en) | Nonaqueous electrolyte secondary battery | |
JPS59163755A (en) | Nonaqueous electrolyte secondary battery | |
JPS63313466A (en) | Nonaqueous li accumulator | |
JPS62145650A (en) | Nonaqueous electrolyte secondary cell | |
JP2005050806A (en) | Negative electrode and battery using it |