JPS59163761A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPS59163761A
JPS59163761A JP3688083A JP3688083A JPS59163761A JP S59163761 A JPS59163761 A JP S59163761A JP 3688083 A JP3688083 A JP 3688083A JP 3688083 A JP3688083 A JP 3688083A JP S59163761 A JPS59163761 A JP S59163761A
Authority
JP
Japan
Prior art keywords
negative electrode
cadmium
lithium
alloy
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3688083A
Other languages
Japanese (ja)
Other versions
JPH0421986B2 (en
Inventor
Yoshinori Toyoguchi
豊口 吉徳
Junichi Yamaura
純一 山浦
Toru Matsui
徹 松井
Takashi Iijima
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3688083A priority Critical patent/JPS59163761A/en
Priority to EP84901015A priority patent/EP0144429B1/en
Priority to PCT/JP1984/000086 priority patent/WO1984003590A1/en
Priority to DE8484901015T priority patent/DE3483244D1/en
Priority to US06/873,093 priority patent/US4683182A/en
Publication of JPS59163761A publication Critical patent/JPS59163761A/en
Publication of JPH0421986B2 publication Critical patent/JPH0421986B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a nonaqueous electrolyte secondary battery having a high energy density and a long charge-and-discharge life and being excellently safe and reliable by causing lithium or the like to be absorbed by a negative electrode material during charging and causing the negative electrode material to discharge lithium ion or the like into electrolyte during discharging by using cadmium or an alloy principally consisting of cadmium as the negative electrode material. CONSTITUTION:Cadmium metal or an alloy principally consisting of cadmium is used as a negative electrode material so that it absorbs alkali metal ion contained in electrolyte during charging and discharges the absorbed alkali metal ion during discharging. It is preferred that the above negative electrode material consisting of an alloy principally composed of cadmium contain at least one element chosen from among bismuth, lead, tin and indium as well.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非水電解質二次電池用の負極の改良に係るもの
で、この改良の結果高エネルギー密度で充放電寿命が長
く、安全性、信頼性に優れた充電可能な電池を提供する
ものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to improvement of a negative electrode for non-aqueous electrolyte secondary batteries, and as a result of this improvement, it has a high energy density, a long charge/discharge life, safety, and reliability. This provides an excellent rechargeable battery.

従来例の構成とその問題点 現在まで、リチウム、すトリウムなどのアルカリ金属を
負極とする非水電解質二次電池としては、たとえば、二
硫化チタン(TiS2)をはじめ各種の層間化合物など
を正極活物質として用い、電解質としては、炭酸プロピ
レン(以後PCと略す)などの有機溶媒に過塩素酸リチ
ウム(LiCd04)などを溶解した有機電解質を用い
る電池の開発が活溌に進められてきた。この二次電池の
特徴は、負極にリチウムを用いることにより、電池電圧
か高くなり、高エネルギー密度の二次電池となることで
ある。
Conventional configurations and their problems Up until now, non-aqueous electrolyte secondary batteries that use alkali metals such as lithium and strium as negative electrodes have used various interlayer compounds such as titanium disulfide (TiS2) as active electrodes. The development of batteries using an organic electrolyte prepared by dissolving lithium perchlorate (LiCd04) in an organic solvent such as propylene carbonate (hereinafter abbreviated as PC) has been actively pursued. A feature of this secondary battery is that by using lithium for the negative electrode, the battery voltage increases, resulting in a high energy density secondary battery.

しかし、この種の二次電池は、現在、捷だ実用化されて
いない。その主な理由は、充放電回数(サイクル)の寿
命が短かく、また充放電に際しての充放電効率が低いた
めである。この原因は、リチウム負極の劣化によるとこ
ろが非常に太きV/)。
However, this type of secondary battery has not yet been put into practical use. The main reason for this is that the life of the number of charging and discharging times (cycles) is short and the charging and discharging efficiency during charging and discharging is low. This is due to the deterioration of the lithium negative electrode, which is extremely thick (V/).

すなわら、現在のリチウム負極はニッケ/Lなどのスク
リーン状集電体に板状の金属リチウムを圧着したものが
主に用いられているが、放電時に金属リチウムは、電解
質中にリチウムイオンとして溶解する。しかしこれを充
電して、放電前のような板状のリチウムに析出させるこ
とは難しく、テンドライト状(樹枝状)のリチウムが発
生してこれが根元より折れて脱落したり、あるいは、小
球状(谷状)に析出したリチウムが集電体より脱離する
などの現象が起こる。このため充放電が不能の電池とな
ってし丑う。捷だ、発生したデンドライト状の金属リチ
ウムが、正極、負極間を隔離しているセパレータを貫通
して正極に接し短絡を起こし、電池の機能を失なわせる
ようなことも度々生じる。
In other words, current lithium negative electrodes are mainly made by pressing a plate of metallic lithium onto a screen-shaped current collector such as nickel/L, but during discharge, metallic lithium is released as lithium ions in the electrolyte. dissolve. However, it is difficult to charge this and deposit it into the plate-shaped lithium that it was before discharge, and tendritic (dendritic) lithium may be generated that breaks off from the base and falls off, or small spherical (valley) lithium forms. Phenomena such as the lithium deposited on the lithium ions being desorbed from the current collector occur. This results in a battery that cannot be charged or discharged. Unfortunately, the generated dendrite-like metallic lithium often penetrates the separator separating the positive and negative electrodes and contacts the positive electrode, causing a short circuit and causing the battery to lose its function.

このような負極の欠点を改良するだめの方法は従来から
各種試みられている。一般的には、負極集電体の材料を
替えて析出するリチウムとの密着性を良くしたり、ある
いは、電解質中にデンドライト発生防止の添加剤を加え
たりする方法が報告されている。しかしこれらの方法は
必ずしも効果的ではない。すなわち、集電体材料に関し
ては、集電体材料に直接析出するリチウムに有効である
が、更に充電(析出)を続けると析出リチウム上へリチ
ウム析出することになり、集電体材料の効果は消失する
。また添加剤に関しても、充放電サイクルの初期では有
効であるが、サイクルが進むと電池内での酸化還元反応
などにより分解し、その効果がなくなるものが殆んどで
ある。さらに最近は、負極として、リチウムとの合金を
用いることが提案されている。この例としては、リチウ
ム−アルミニウム合金がよく知られている。この場合は
、一応均一の合金が形成されるが、充放電をくり返すと
その均一性を消失し、特にリチウム量を多くすると電極
が微粒化し崩壊するなどの欠点があった。また、銀とア
ルカリ金属との固溶体を用いることも提案されている。
Various attempts have been made to overcome these drawbacks of negative electrodes. Generally, methods have been reported in which the material of the negative electrode current collector is changed to improve its adhesion to the precipitated lithium, or an additive to prevent the formation of dendrites is added to the electrolyte. However, these methods are not always effective. In other words, the current collector material is effective for lithium deposited directly on the current collector material, but if the charging (deposition) continues, lithium will be deposited on the precipitated lithium, and the effect of the current collector material will be reduced. Disappear. Furthermore, most additives are effective at the beginning of the charge/discharge cycle, but as the cycle progresses, they decompose due to oxidation-reduction reactions within the battery and lose their effectiveness. Furthermore, recently, it has been proposed to use an alloy with lithium as a negative electrode. A well-known example of this is lithium-aluminum alloy. In this case, a somewhat uniform alloy is formed, but this uniformity disappears when charging and discharging are repeated, and especially when the amount of lithium is increased, the electrode becomes atomized and collapses. It has also been proposed to use a solid solution of silver and an alkali metal.

(特開昭56−7386)この場合は、アルミニウムと
の合金のような崩壊はないとされているが、十分に速く
合金化するリチウムの量は少なく、金属状のリチウムが
合金化しないま\析出する場合があり、これを防ぐため
に多孔体の使用などを推奨している。
(Japanese Unexamined Patent Publication No. 56-7386) In this case, it is said that there is no collapse like in alloys with aluminum, but the amount of lithium that alloys quickly enough is small, and metallic lithium remains unalloyed. Precipitation may occur, and the use of porous materials is recommended to prevent this.

したがって、大電流の充電効率は悪く、寸だリチウム量
の多い合金は、充放電による微細化が徐々に加速され、
サイクル寿命が急激に減少する。
Therefore, the charging efficiency of large currents is poor, and alloys with a large amount of lithium gradually accelerate their miniaturization through charging and discharging.
Cycle life decreases rapidly.

この他にはリチウム−水銀合金を用いる考案(特開昭5
7−98978 )、リチウム−鉛合金を用いる考案(
特開昭57−141869 )がある。しかし、リチウ
ム−水銀合金の場合は、放電により、負極は液状粒子の
水銀となり電極形状を保+4し力くなる。捷だ、リチウ
ム−鉛合金の場合は、電極の充放電による微細粉化は、
銀固溶体以−」二であり、このため合金中の鉛量を8・
二)%位にすることが望寸しいとされているが、これで
は高エネルギー密度電池を実現できない。以上のように
非水電解質二次電池用負極としては、実用上満足できる
ものは、寸だ見い出されていないといえる。
In addition, the idea of using a lithium-mercury alloy (Japanese Unexamined Patent Publication No. 5
7-98978), a device using lithium-lead alloy (
JP-A-57-141869). However, in the case of a lithium-mercury alloy, the negative electrode turns into liquid particles of mercury upon discharge, maintaining the electrode shape and providing strength. In the case of lithium-lead alloy, fine powdering by charging and discharging the electrode is
The amount of lead in the alloy was reduced to 8.
2) Although it is said that it is desirable to reduce the energy density to around 10%, this makes it impossible to realize a high energy density battery. As described above, it can be said that no practically satisfactory negative electrode for non-aqueous electrolyte secondary batteries has been found.

したがって、優れた負極としては、アルカリ金属の吸蔵
量が大きく、しかも放出や吸蔵速度の犬なる負極材料の
開発が望浄れている。
Therefore, as an excellent negative electrode, it is desirable to develop a negative electrode material that has a large amount of alkali metal occlusion and has a good desorption and occlusion rate.

発明の目的 本発明は負極材料を特定することにより、単位体積当り
の充放電量の多い、また充放電寿命の長い、良好な特性
を示す非水電解質二次電池を提供するものである。
OBJECTS OF THE INVENTION The present invention provides a non-aqueous electrolyte secondary battery exhibiting good characteristics such as a large charge/discharge capacity per unit volume and a long charge/discharge life by specifying a negative electrode material.

発明の構成 本発明の二次電池は、カドミウムまたはカドミウムを主
成分とする合金を負極材料に用いることを特徴とし、充
電により負極材料に用いた金属や合金中に、リチウムを
吸蔵せしめ、放電により電解質中にリチウムイオン放出
させるものである。
Structure of the Invention The secondary battery of the present invention is characterized in that cadmium or an alloy containing cadmium as a main component is used as a negative electrode material, and lithium is occluded in the metal or alloy used as the negative electrode material by charging, and lithium is occluded by discharging. It releases lithium ions into the electrolyte.

実施例の説明 前記のように本発明の二次電池においては、負極材料合
金に充電によりリチウムを吸蔵させ、放電により電解質
中にリチウムイオンを放出させるものであるので、充電
により、カドミウムとリチウムの合金、またはカドミウ
ム合金とリチウムの合金が出来ることになる。本発明で
述べる負極材料とは、リチウムとの合金を作る以前の金
属カドミウムやカドミウム合金のことである。
Description of Examples As mentioned above, in the secondary battery of the present invention, lithium is occluded in the negative electrode material alloy by charging, and lithium ions are released into the electrolyte by discharging. This results in the creation of an alloy, or an alloy of cadmium alloy and lithium. The negative electrode material described in the present invention refers to metal cadmium or cadmium alloy before forming an alloy with lithium.

例えば重量パーセントで70%のカドミウムと30%の
スズよりなる合金を用いた時の充放電反応は(1)式の
ようになる。
For example, when an alloy consisting of 70% cadmium and 30% tin by weight is used, the charge/discharge reaction is expressed by equation (1).

式中、(Cd(7o)In(3o))Li工は充電によ
り生成した、カドミウム、スズ、リチウム合金を示して
おり、本発明で定義した負極材料とは(1)式中でばc
a(7o:)sn(3o)のことである。
In the formula, (Cd(7o)In(3o))Li represents a cadmium, tin, and lithium alloy produced by charging, and the negative electrode material defined in the present invention is c in the formula (1).
a(7o:)sn(3o).

また、充放電の範囲としては、(1)式のように完全に
負極中よりリチウムがなく々るまで放電する必要はなく
、(2)式のように負極中に吸蔵されたリチウム (Cd(70)−sn(so))Li、、シー−(2)
量を変えるようにして、充放電ができることは当然であ
る。また(2)式においても負極材料がCd (70)
−3n(3o)であることは自明である。
In addition, regarding the range of charging and discharging, it is not necessary to discharge until the lithium is completely exhausted from the negative electrode as shown in equation (1), and it is not necessary to discharge until the lithium is completely exhausted from the negative electrode, as shown in equation (2). 70)-sn(so))Li,, sea-(2)
It goes without saying that charging and discharging can be done by changing the amount. Also in equation (2), the negative electrode material is Cd (70)
It is obvious that -3n(3o).

まだ、カドミウムを主成分とする合金とは、合金中最も
重量が多い金罵がカドミウムである合金とする。
An alloy whose main component is cadmium is an alloy in which the heaviest metal in the alloy is cadmium.

発明者らは、カドミウムやカドミウムを主成分とする合
金を負極材料として、アルカリ金属イオンを含む非水電
解質中で充電を行うことにより、高率充電を行ってもア
ルカリ金属の析出が起らずに負極材料中にアルカリ金属
が吸蔵され、さらに放電を行うと高電流効率で吸蔵され
たアルカリ金属がアルカリ金属イオンとして電解質中に
放出されることを見い出した。捷だ充放電をくり返し行
っても負極材料の微細粉化が起らず、良好な非水電解質
二次電池の負極特性を示すことがわかった。
The inventors have discovered that by using cadmium or an alloy mainly composed of cadmium as a negative electrode material and charging in a non-aqueous electrolyte containing alkali metal ions, no alkali metal precipitation occurs even during high-rate charging. It was discovered that alkali metals are occluded in the negative electrode material, and that when further discharge is performed, the occluded alkali metals are released into the electrolyte as alkali metal ions with high current efficiency. It was found that the negative electrode material did not become finely powdered even after repeated charging and discharging, and exhibited good negative electrode characteristics of a non-aqueous electrolyte secondary battery.

負極材料として、金属カドミウムとカドミウムを主成分
とする合金を比較すると合金の方が良好な負極特性を示
した。カドミウムを主成分とする合金の他の成分として
、鉛、ビスマス、スズ、インジウムなどを加えて作った
合金の多くは、微視的に見ると、各金属成分や、金属間
化合物などの多くの相からなっており、均一なものでは
ない。
When comparing cadmium metal and an alloy mainly composed of cadmium as negative electrode materials, the alloy showed better negative electrode characteristics. Many alloys made by adding other ingredients such as lead, bismuth, tin, and indium to alloys containing cadmium as the main component can be seen microscopically to show that many of the metal components and intermetallic compounds are present. It consists of phases and is not uniform.

充電により吸蔵されたリチウムなどのアルカリ金属は合
金中の相と相の間の界面に沿って、早い速度で拡散して
ゆくと考えられ、高率充放電を行うとカドミウムを主成
分とする合金を用いる方が良好であった。
Alkali metals such as lithium absorbed by charging are thought to diffuse at a high rate along the interface between phases in the alloy, and when high-rate charging and discharging is performed, alloys mainly composed of cadmium It was better to use

第1図に示したセルを構成して、各種金属や合金の非水
電解質二次電池の負極の特性を調べた。
The cell shown in FIG. 1 was constructed and the characteristics of the negative electrode of a non-aqueous electrolyte secondary battery made of various metals and alloys were investigated.

第1図中、Aは検討した金属1合金よりなる試験極、B
はTl52よりなる正極、Cは照合電極としてのリチウ
ム板である。各々の電極のリードEA。
In Figure 1, A is a test electrode made of the studied metal 1 alloy, B is
C is a positive electrode made of Tl52, and C is a lithium plate as a reference electrode. Lead EA for each electrode.

EB、KCKはニッケル線を用いた。試゛験極Aは第2
図に示すように、ICInX11厚さ1 mMの金属あ
るいは合金りに、リードとしてニッケルリボンE。
Nickel wires were used for EB and KCK. Test pole A is the second
As shown in the figure, a nickel ribbon E was used as a lead on a 1 mm thick ICInX11 metal or alloy.

をとりつけた。電解質には、1モル/lのLi(JO4
を溶したPCを用いた。試験極Aの液槽Hと照合極Cの
液槽Gとは連通電工で接続されている。金4や合金の非
水電解質二次電池の負極としての特性を測定するために
、試験極Aの電位が、リチウム照合電極Cに対してOm
vになるまで5mAの定電流でカンード方向に充電した
。この条件では、試験極上にリチウムは析出せず、合金
中に入る。
I took it. The electrolyte contains 1 mol/l of Li(JO4
A PC solution containing the following was used. The liquid tank H of the test electrode A and the liquid tank G of the reference electrode C are connected by a connecting electric wire. In order to measure the characteristics of gold 4 or alloy as a negative electrode of a non-aqueous electrolyte secondary battery, the potential of test electrode A is set to 0.0 m with respect to lithium reference electrode C.
The battery was charged in the direction of the cand with a constant current of 5 mA until the voltage reached V. Under these conditions, lithium does not precipitate on the test electrode but enters the alloy.

試験極Aの電位がomvに達した後、照合電極Cに対し
て10Vになるまで、577LAの定電流でアノード方
向に放電し、その後充電、放電を同じ条件で繰り返した
。表には、試験極Aに用いた合金。
After the potential of test electrode A reached omv, it was discharged toward the anode at a constant current of 577 LA until it reached 10 V with respect to reference electrode C, and then charging and discharging were repeated under the same conditions. The table shows the alloy used for test electrode A.

金属の第1サイクルと第10サイクルにおける充電電気
量、放電電気量、および効率として放電電気量を充電電
気量で除したもの、サイクル特性として、第10サイク
ルの放電電気量を第1サイクルの放電電気量で除したも
のを示す。充電電気量。
The amount of charged electricity, the amount of discharged electricity in the 1st cycle and the 10th cycle of the metal, and the efficiency, which is the amount of discharged electricity divided by the amount of charged electricity, and the cycle characteristics, which is the amount of electricity discharged in the 10th cycle divided by the amount of electricity discharged in the 1st cycle. Shows the value divided by the amount of electricity. Charge electricity amount.

放電電気量、効率、サイクル特性の数値が犬である程よ
い負極と言える。また表中に記号で示した試験極人の第
10サイクルでの充電曲線を第3図に、放電曲線を第4
図に示す。
It can be said that the negative electrode has good values for the amount of discharged electricity, efficiency, and cycle characteristics. In addition, the charging curve at the 10th cycle of the test electrode indicated by the symbol in the table is shown in Figure 3, and the discharging curve is shown in Figure 4.
As shown in the figure.

(以下余白) 以上の結果より、非水電解質二次電池用負極材料として
、従来より用いられて来たアルミニウム。
(Left below) From the above results, aluminum has traditionally been used as a negative electrode material for non-aqueous electrolyte secondary batteries.

鉛、銀、水銀に比べ、本発明のカドミウムあるいはカド
ミウムを主成分とする合金が良好であることがわかった
It has been found that cadmium or an alloy containing cadmium as a main component of the present invention is better than lead, silver, and mercury.

寸だカドミウムとカドミウム合金を比較すると合金の方
が良好な特性を示している。1表中には、カドミウム合
金を作るのに使用した他の成分である金屈単体の負検特
性をも示した。これより、各成分の金屈単体より合金を
用いた方が性能が向上していた。捷だ←表に示したよう
にカドミウム−鉛合金で示すように、他の成分量が増加
する程、性能は向上する傾向が見られた。
When comparing cadmium and cadmium alloys, the alloys show better properties. Table 1 also shows the negative test characteristics of Kinkuta, another component used to make the cadmium alloy. This shows that the performance was better when using the alloy than when each component was used alone. As shown in the table, as shown in the cadmium-lead alloy, there was a tendency for performance to improve as the amount of other components increased.

なお、負極材料として水銀を用いた場合、充放電電気量
が小さいのは、水銀の食塩電解におけるナトリウムアマ
ルガム中のナトリウムが。、2%程度しかないことと関
連しているがもじれない。
Note that when mercury is used as the negative electrode material, the amount of charge and discharge electricity is small because of the sodium in the sodium amalgam in mercury salt electrolysis. , which is related to the fact that it is only about 2%, is not surprising.

上記実施例では、負極電極材料にリチウムを吸蔵、放出
させる例を示した。リチウム以外にもナトリウムやカリ
ウムなどのアルカリ金属の吸蔵。
In the above embodiment, an example was shown in which lithium was inserted into and released from the negative electrode material. In addition to lithium, it also absorbs alkali metals such as sodium and potassium.

放出を行わせる負極を構成することも可能である。It is also possible to construct a negative electrode that allows emission to take place.

また電解質として、実施例に示したLi(JO4を溶解
したPCだけでなく、Li5N(窒化リチウム)やLi
I(ヨウ化リチウム)のような固体電解質を用いた場合
でも、従来のアルミニウム、鉛、銀。
In addition, as an electrolyte, Li5N (lithium nitride), Li5N (lithium nitride), Li5N (lithium nitride), Li5N (lithium nitride), Li5N (lithium nitride), Li5N (lithium nitride), etc.
Conventional aluminum, lead, silver, even when using solid electrolytes such as I (lithium iodide).

水銀に比ベビスマス寸たはビスマスを主成分とする合金
を負極材料とする方が優れた負極が得られた。
An excellent negative electrode was obtained by using Bebismuth size or an alloy containing bismuth as the main component as the negative electrode material compared to mercury.

発明の効果 以上のようにカドミウムまたは主成分をカドミウムとす
る合金を負極材料とすることにより、充放電電気量の多
い、サイクル特性の良い、すなわち充放電寿命の長い信
頼性に優れた非水電解質電池を得ることができる。
As described above, by using cadmium or an alloy containing cadmium as the main component as the negative electrode material, a highly reliable nonaqueous electrolyte with a large amount of charge and discharge, good cycle characteristics, and a long charge and discharge life can be achieved. You can get batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は負極特性の検討に用いたセルの構成図、第2図
は試験極の側面図、第3図および第4図は充電曲線図と
放電曲線図である。 A・・・・・・試験極、B・・・・・・正極、C・・・
・・・照合電極。 代理人の氏名−弁理士 中 尾 敏 男 ほか1名第1
図 I I     d      、SJ     /2  
   //     2σノlヨ1−+ 八〇(綺呵ン 第4図 ′V、、哉綺肩(時閘2
FIG. 1 is a configuration diagram of a cell used for examining negative electrode characteristics, FIG. 2 is a side view of a test electrode, and FIGS. 3 and 4 are charging and discharging curve diagrams. A...Test electrode, B...Positive electrode, C...
...Reference electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Figure I I d , SJ /2
// 2σ no lyo 1-+ 80

Claims (2)

【特許請求の範囲】[Claims] (1)充電時に電解質中のアルカリ金属イオンを吸蔵し
、放電時に上記金属イオンを電解質中に放出する機能を
有し、負電極桐料として、金属カドミウム、甘たけ、カ
ドミウムを主成金とする合金を用いることを特徴とする
非水電解質二次電池。
(1) An alloy that has the function of storing alkali metal ions in the electrolyte during charging and releasing the above metal ions into the electrolyte during discharging, and whose main alloy is metal cadmium, sweet mushroom, or cadmium as the negative electrode paulownia material. A non-aqueous electrolyte secondary battery characterized by using.
(2)負極材料は、主成分をカドミウムとする合金とし
、添加成分としてビスマス、鉛、スズ、インジウムのう
ち少くとも一つを用いることを特徴とする特許請求の範
囲第1項記載の非水電解質二次電池。
(2) The negative electrode material is an alloy containing cadmium as a main component, and at least one of bismuth, lead, tin, and indium is used as an additive component. Electrolyte secondary battery.
JP3688083A 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery Granted JPS59163761A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3688083A JPS59163761A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery
EP84901015A EP0144429B1 (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus and negative pole therefor
PCT/JP1984/000086 WO1984003590A1 (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus and negative pole therefor
DE8484901015T DE3483244D1 (en) 1983-03-07 1984-03-06 RECHARGEABLE ELECTROCHEMICAL DEVICE AND NEGATIVE POLE THEREOF.
US06/873,093 US4683182A (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3688083A JPS59163761A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS59163761A true JPS59163761A (en) 1984-09-14
JPH0421986B2 JPH0421986B2 (en) 1992-04-14

Family

ID=12482088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3688083A Granted JPS59163761A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS59163761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221963A (en) * 1984-04-19 1985-11-06 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221963A (en) * 1984-04-19 1985-11-06 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH0648625B2 (en) * 1984-04-19 1994-06-22 松下電器産業株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPH0421986B2 (en) 1992-04-14

Similar Documents

Publication Publication Date Title
JP3148293B2 (en) Non-aqueous electrolyte secondary battery
JPS59186274A (en) Manufacture of nonaqueous electrolyte secondary battery
EP0139756B1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPH05190171A (en) Nonaqueous electrolyte secondary battery
JPS6086760A (en) Nonaqueous electrolyte secondary battery
JPS59163761A (en) Nonaqueous electrolyte secondary battery
JPH0364987B2 (en)
JPS6089069A (en) Nonaqueous electrolyte battery
JP2009093943A (en) Negative active material for secondary battery and secondary battery using this
JPS6089068A (en) Nonaqueous electrolyte secondary battery
JPS59163759A (en) Nonaqueous electrolyte secondary battery
JPS59163757A (en) Nonaqueous electrolyte secondary battery
JPH0364988B2 (en)
JP2708884B2 (en) Non-aqueous electrolyte battery
JPH0412586B2 (en)
JPS59163756A (en) Nonaqueous electrolyte secondary battery
JPS6049565A (en) Nonaqueous electrolyte secondary battery
JPS59186276A (en) Nonaqueous electrolyte secondary battery
JP2804577B2 (en) Non-aqueous electrolyte battery
JPH0552038B2 (en)
JPS60124357A (en) Negative electrode of nonaqueous electrolyte secondary battery
JPH0711957B2 (en) Non-aqueous secondary battery
EP0144429A1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPS6084768A (en) Alkaline zinc storage battery
JPS634554A (en) Organic electrolyte secondary battery