JPH05190171A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH05190171A
JPH05190171A JP4006737A JP673792A JPH05190171A JP H05190171 A JPH05190171 A JP H05190171A JP 4006737 A JP4006737 A JP 4006737A JP 673792 A JP673792 A JP 673792A JP H05190171 A JPH05190171 A JP H05190171A
Authority
JP
Japan
Prior art keywords
alloy
negative electrode
electrolyte secondary
secondary battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4006737A
Other languages
Japanese (ja)
Other versions
JP3081336B2 (en
Inventor
Ikurou Nakane
育朗 中根
Seiji Yoshimura
精司 吉村
Sanehiro Furukawa
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP04006737A priority Critical patent/JP3081336B2/en
Publication of JPH05190171A publication Critical patent/JPH05190171A/en
Application granted granted Critical
Publication of JP3081336B2 publication Critical patent/JP3081336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a nonaqueous electrolyte secondary battery which has the long cycle characteristic life and the superior cycle characteristic after storage. CONSTITUTION:As the negative electrode 1 of a nonaqueous electrolyte secondary battery, is used the alloy of Li as activating susbstance and a basic material which consists of the alloy which is formed by adding at least one kind selected from the metals which are more electrochemically precious than aluminium, into the allay formed from aluminium and manganese. The addition quantity of manganese in the alloy as basic material is 0.1-2.0wt.%, and the addition quantity of at least one kind selected from vanadium, chromium, and titanium is selected to 0.01-2.0wt%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウム等のアルカリ金
属、あるいはアルカリ土類金属を活物質とする負極と、
二酸化マンガン、三酸化モリブデン、五酸化バナジウ
ム、硫化チタンなどを活物質とする正極とを備えた非水
電解質二次電池に関する。
FIELD OF THE INVENTION The present invention relates to a negative electrode using an alkali metal such as lithium or an alkaline earth metal as an active material,
The present invention relates to a non-aqueous electrolyte secondary battery provided with a positive electrode whose active material is manganese dioxide, molybdenum trioxide, vanadium pentoxide, titanium sulfide or the like.

【0002】[0002]

【従来の技術】リチウム等のアルカリ金属、あるいはア
ルカリ土類金属を活物質とする負極と、二酸化マンガ
ン、三酸化モリブデン、五酸化バナジウム、硫化チタン
などを活物質とする正極とを備えた非水電解質二次電池
は、現在二次電池として多用されているニカド電池など
に比べ、電池容量が多いことが知られており、盛んにそ
の研究が成されており、一部実用化の域に達している。
2. Description of the Related Art A non-aqueous material having a negative electrode whose active material is an alkali metal such as lithium or an alkaline earth metal and a positive electrode whose active material is manganese dioxide, molybdenum trioxide, vanadium pentoxide, titanium sulfide and the like. It is known that the electrolyte secondary battery has a larger battery capacity than the Ni-Cd battery, which is widely used as a secondary battery nowadays, and its research has been actively conducted, and it has reached the range of practical application. ing.

【0003】ところがこの種電池の問題点としては、負
極活物質であるリチウムが、充電の際に負極表面に樹枝
状に成長して正極に接し、内部短絡を引き起こすために
充放電サイクルが極めて短いことが挙げられる。
However, a problem with this type of battery is that the lithium, which is the negative electrode active material, grows in a dendritic manner on the surface of the negative electrode during charging and contacts the positive electrode, causing an internal short circuit, resulting in an extremely short charge / discharge cycle. It can be mentioned.

【0004】このリチウムの負極表面への樹枝状成長に
対する対策として負極をリチウム合金で構成することが
提案されている。
As a countermeasure against the dendritic growth of lithium on the surface of the negative electrode, it has been proposed to construct the negative electrode with a lithium alloy.

【0005】これはリチウム単独の場合、放電によって
リチウムがイオンになって溶出すると負極表面が凹凸状
となり、その後の充電の際、リチウムが凸部に集中的に
電析して樹枝状に成長するのに対し、リチウム合金の場
合には充電時にリチウムが負極の基体となる金属と合金
を形成するように復元するため、リチウムの樹枝状成長
が抑制されるという利点を奏すためである。このような
基体となる金属としてはアルミニウム合金や、鉛、錫、
カドミウムなどの合金が提案されており、特にアルミニ
ウム中にマンガンを添加した合金を基体材料としたリチ
ウム合金を使用すればサイクル特性が優れた電池を作製
でき、実用化されている。
This is because in the case of lithium alone, the surface of the negative electrode becomes uneven when lithium becomes ions and elutes by discharging, and during subsequent charging, lithium is electrodeposited intensively on the convex portion and grows in a dendritic form. On the other hand, in the case of a lithium alloy, lithium is restored so as to form an alloy with a metal serving as a base of the negative electrode during charging, and thus there is an advantage that dendritic growth of lithium is suppressed. Examples of such base metal include aluminum alloy, lead, tin,
Alloys such as cadmium have been proposed. In particular, if a lithium alloy containing an alloy in which manganese is added to aluminum as a base material is used, a battery having excellent cycle characteristics can be produced and put into practical use.

【0006】[0006]

【発明が解決しようとする課題】然し乍らこの種のリチ
ウム合金を用いた電池では保存後のサイクル特性が劣化
するという新たな課題が存在することが判明した。これ
は保存によりリチウムとアルミニウムの合金が電解液と
反応してリチウム−アルミニウム合金表面に負活性皮膜
が生成し、充放電時リチウムの挿入、脱離反応を阻害す
るため負極反応が局在化し、その反応が集中して生じる
部分でリチウム−アルミニウム合金の微粉化が生じ、電
極の膨張や電極の脱落等が起きるためである。
However, it has been found that batteries using this type of lithium alloy have a new problem that cycle characteristics after storage deteriorate. This is because the alloy of lithium and aluminum reacts with the electrolytic solution by storage to form a negative active film on the surface of the lithium-aluminum alloy, and the negative electrode reaction is localized because the lithium insertion and desorption reactions during charging and discharging are inhibited, This is because the lithium-aluminum alloy is pulverized at a portion where the reaction is concentrated and the electrodes expand or fall off.

【0007】[0007]

【課題を解決するための手段】本発明はこのような新た
な課題に鑑みて為されたものであって、非水電解質二次
電池の負極として、アルミニウムとマンガンとから成る
合金に、アルミニウムよりも電気化学的に貴な金属から
選ばれる少なくとも一種を添加した合金から成る基体材
料と、活物質であるリチウムとの合金を用いている。
The present invention has been made in view of such a new problem as described above, and a negative electrode of a non-aqueous electrolyte secondary battery has an alloy composed of aluminum and manganese, Also uses an alloy of a base material made of an alloy to which at least one kind selected from electrochemically noble metals is added and lithium as an active material.

【0008】またこの基体材料となる合金中のマンガン
の添加量は、0.1wt%以上で、2.0wt%以下で
あり、且つバナジウム、クロム、チタンより選ばれる少
なくとも一種の添加量は、0.01wt%以上、2.0
wt%以下、に選ばれている。
The addition amount of manganese in the alloy which is the base material is 0.1 wt% or more and 2.0 wt% or less, and the addition amount of at least one selected from vanadium, chromium and titanium is 0. 0.01 wt% or more, 2.0
It is selected to be less than wt%.

【0009】[0009]

【作用】本発明によれば、サイクル特性寿命が長く、し
かも保存後のサイクル特性にも優れた非水電解質二次電
池を得ることができる。
According to the present invention, it is possible to obtain a non-aqueous electrolyte secondary battery having a long cycle characteristic life and excellent cycle characteristics after storage.

【0010】この理由は基体材料としてアルミニウムと
マンガンとの合金を用いることによって、マンガンの添
加の効果により合金中にリチウムとの反応の活性点が増
加し、反応の局在化が抑制されサイクル特性が向上し、
更にバナジウム、クロム、チタン等の添加効果により保
存時に負極表面上に負活性皮膜が生成するすることを抑
制するため、保存後のサイクル特性の劣化を抑えること
ができたものと考えられる。またここでバナジウム、ク
ロム、チタンの添加が負活性皮膜の生成を抑制する理由
は定かではないが、これらの金属が電解液とリチウムと
の反応の被毒作用があるためではなかろうか。
The reason for this is that the use of an alloy of aluminum and manganese as the base material increases the active sites of the reaction with lithium in the alloy due to the effect of the addition of manganese, and suppresses the localization of the reaction, resulting in cycle characteristics. Is improved,
Further, it is considered that the addition of vanadium, chromium, titanium, etc. suppresses the formation of a negative active film on the surface of the negative electrode during storage, so that deterioration of cycle characteristics after storage can be suppressed. Further, the reason why addition of vanadium, chromium, and titanium suppresses the formation of the negative active film is not clear, but it may be because these metals have a poisoning effect on the reaction between the electrolytic solution and lithium.

【0011】[0011]

【実施例】図1は本発明に係る非水電解質二次電池の一
実施例を示す断面図であって、1は本発明の特徴とする
リチウム合金から成る負極であって、負極缶2の内底面
に固着した負極集電体3に圧着されている。4は正極で
あって、活物質としてのマンガン酸化物にアセチレンブ
ラック導電剤とフッ素樹脂結着剤とを80:10:10
(重量比)の割合で混合した合剤を成型したものであ
り、正極缶5の内底面の正極集電体6に圧接されてい
る。
1 is a sectional view showing an embodiment of a non-aqueous electrolyte secondary battery according to the present invention, in which 1 is a negative electrode made of a lithium alloy, which is a feature of the present invention, and a negative electrode can 2 It is pressure-bonded to the negative electrode current collector 3 fixed to the inner bottom surface. Numeral 4 is a positive electrode, in which acetylene black conductive agent and fluororesin binder are added to manganese oxide as an active material at 80:10:10.
The mixture is molded at a ratio of (weight ratio), and is pressed against the positive electrode current collector 6 on the inner bottom surface of the positive electrode can 5.

【0012】7はポリプロピレン不織布よりなるセパレ
ータであって、このセパレータはプロピレンカーボネー
トと1.2ジメトキシエタンとの等体積混合溶媒に過塩
素酸リチウムを1モル/リットル溶解した非水電解液が
含浸されている。8は正、負極缶を電気絶縁する絶縁パ
ッキングである。尚、電池寸法は直径25mmφ、厚み
3.0mmである。
Reference numeral 7 is a separator made of polypropylene non-woven fabric, and this separator is impregnated with a non-aqueous electrolytic solution in which 1 mol / liter of lithium perchlorate is dissolved in an equal volume mixed solvent of propylene carbonate and 1.2 dimethoxyethane. ing. Reference numeral 8 is an insulating packing for electrically insulating the positive and negative electrode cans. The battery has a diameter of 25 mmφ and a thickness of 3.0 mm.

【0013】次に本発明の特徴とする負極1の作成例に
ついて詳述する。
Next, an example of producing the negative electrode 1 which is a feature of the present invention will be described in detail.

【0014】[作成例 1]アルミニウム中にマンガン
1.0wt%と、バナジウムを表1に示す量になるよう
に添加して溶融して鋳造した後、冷却して得たアルミニ
ウムのインゴットを冷間圧延し厚み0.5mmのAl−
Mn−V合金の板を作製した。
[Preparation Example 1] 1.0 wt% of manganese and vanadium were added to aluminum in amounts shown in Table 1, melted and cast, and then cooled to obtain an aluminum ingot. Al-rolled with a thickness of 0.5 mm
A Mn-V alloy plate was prepared.

【0015】[0015]

【表1】 [Table 1]

【0016】斯様にして作製したAl−Mn−V合金板
を直径19mmの円盤上に打ち抜き、これを1モル/リ
ットルとなるようにLiClO4を溶解した1.3ジオ
キソラン中で電解し、200mAhの電気量に相当する
リチウムと反応させて合金化した。このようにして作製
した負極1を用いて作製した電池のうち、バナジウムV
の添加量が0.01wt%〜2.0wt%のものをそれ
ぞれ本発明電池A−1〜A−8とし、バナジウムを添加
していなもの、並びに添加量3.0wt%のものを比較
電池H−1、H−2とする。
The Al-Mn-V alloy plate thus prepared was punched out on a disk having a diameter of 19 mm, and this was electrolyzed in 1.3 dioxolane in which LiClO 4 was dissolved to a concentration of 1 mol / liter, and 200 mAh. And was alloyed by reacting with lithium corresponding to the amount of electricity. Among the batteries manufactured using the negative electrode 1 manufactured in this way, vanadium V
Of the present invention batteries A-1 to A-8 with the addition amount of 0.01 wt% to 2.0 wt% respectively, and those without addition of vanadium and the addition amount of 3.0 wt% are comparative batteries H -1, H-2.

【0017】図2にバナジウム添加量を横軸にとり、縦
軸にサイクル数をとったサイクル特性図を示す。この図
において、実線は電池組立て直後の二次電池の特性、破
線は電池組立て後、室温で1年間保存したものの特性を
それぞれ示しており、バナジウムの添加量が0.01w
t%〜2.0wt%のもの(A−1〜A−8)が優れた
サイクル特性を示すことがわかる。またバナジウムの添
加量が0.1wt%〜1.0wt%のもの(A−2〜A
−6)のものが特に優れた特性を示している。
FIG. 2 shows a cycle characteristic diagram in which the horizontal axis represents the amount of vanadium added and the vertical axis represents the number of cycles. In this figure, the solid line shows the characteristics of the secondary battery immediately after the battery is assembled, and the broken line shows the characteristics of the battery stored for one year at room temperature after the battery is assembled.
It can be seen that those of t% to 2.0 wt% (A-1 to A-8) show excellent cycle characteristics. Moreover, the addition amount of vanadium is 0.1 wt% to 1.0 wt% (A-2 to A
-6) shows particularly excellent characteristics.

【0018】尚、この時の試験条件は放電容量12mA
hとし、充電は3mAで3.2Vを終止としている。
The test condition at this time was a discharge capacity of 12 mA.
It is set to h, and charging is 3 mA, and 3.2 V is terminated.

【0019】[作成例 2]バナジウムの代わりにクロ
ムを使用する他は作成例1と同様にして電池を作製し
た。ここで表2に本発明電池B−1〜B−8と比較電池
H−1、H−3の負極基体材料中のクロム添加量を示
す。
[Preparation Example 2] A battery was prepared in the same manner as in Preparation Example 1 except that chromium was used instead of vanadium. Here, Table 2 shows the amount of chromium added to the negative electrode substrate materials of the present invention batteries B-1 to B-8 and the comparative batteries H-1 and H-3.

【0020】[0020]

【表2】 [Table 2]

【0021】図3にクロム添加量を横軸にとり、縦軸に
サイクル数をとったサイクル特性図を示す。この図にお
いて、実線は電池組立て直後の電池の特性、破線は室温
で1年間保存後の電池の特性をそれぞれ示しており、ク
ロムの添加量が0.01wt%〜2.0wt%の電池
(B−1〜B−8)が優れたサイクル特性を示すことが
わかる。またクロムの添加量が0.1wt%〜1.0w
t%のもの(B−2〜B−6)のものが特に優れた特性
を示している。尚、この時の試験条件は、作成例1と同
様である。
FIG. 3 shows a cycle characteristic diagram in which the horizontal axis represents the amount of chromium added and the vertical axis represents the number of cycles. In this figure, the solid line shows the characteristics of the battery immediately after assembling the battery, and the broken line shows the characteristics of the battery after storage at room temperature for 1 year, and the amount of chromium added is 0.01 wt% to 2.0 wt% (B It can be seen that -1 to B-8) show excellent cycle characteristics. The amount of chromium added is 0.1 wt% to 1.0 w
Those of t% (B-2 to B-6) show particularly excellent characteristics. The test conditions at this time are the same as those in the first creation example.

【0022】[作成例 3]バナジウムの代わりにチタ
ンを使用する他は作成例1と同様にして電池を作製し
た。ここで表3に本発明電池C−1〜C−8と比較電池
H−1、H−4の負極基体材料中のチタン添加量を示
す。
[Preparation Example 3] A battery was prepared in the same manner as Preparation Example 1 except that titanium was used instead of vanadium. Here, Table 3 shows the amount of titanium added to the negative electrode base materials of the present invention batteries C-1 to C-8 and the comparative batteries H-1 and H-4.

【0023】[0023]

【表3】 [Table 3]

【0024】図4にチタン添加量を横軸にとり、縦軸に
サイクル数をとったサイクル特性図を示す。この図にお
いて、実線は電池組立て直後のものの特性、破線は室温
で1年間保存後のものの特性をそれぞれ示しており、チ
タンの添加量が0.01wt%〜2.0wt%の電池
(C−1〜C−8)が優れたサイクル特性を示すことが
わかる。またチタンの添加量が0.1wt%〜1.0w
t%のもの(C−2〜C−6)のものが特に優れた特性
を示している。尚、この時の試験条件も、作成例1と同
様である。
FIG. 4 shows a cycle characteristic diagram in which the horizontal axis represents the amount of titanium added and the vertical axis represents the number of cycles. In this figure, the solid line shows the characteristics immediately after battery assembly, and the broken line shows the characteristics after one year of storage at room temperature. The titanium addition amount was 0.01 wt% to 2.0 wt% (C-1 ~ C-8) shows excellent cycle characteristics. The amount of titanium added is 0.1 wt% to 1.0 w
Those of t% (C-2 to C-6) show particularly excellent characteristics. The test conditions at this time are the same as those in the first creation example.

【0025】[作成例 4]アルミニウム中にバナジウ
ム0.5wt%と、マンガンを表4に示す量になるよう
に添加して溶融して鋳造した後、冷却して得たアルミニ
ウムのインゴットを冷間圧延し厚み0.5mmのAl−
Mn−V合金の板を作製した。
[Preparation Example 4] 0.5 wt% of vanadium and manganese were added to aluminum in amounts shown in Table 4, melted and cast, and cooled to obtain an aluminum ingot. Al-rolled with a thickness of 0.5 mm
A Mn-V alloy plate was prepared.

【0026】[0026]

【表4】 [Table 4]

【0027】斯様にして作製したAl−Mn−V合金板
を直径19mmの円盤上に打ち抜き、これを1モル/リ
ットルとなるようにLiClO4を溶解した1.3ジオ
キソラン中で電解し、200mAhの電気量に相当する
リチウムと反応させて合金化した。このようにして作製
した負極1を用いて作製した電池のうち、マンガンMn
の添加量が0.01wt%〜2.0wt%のものをそれ
ぞれ本発明電池D−1〜D−8とし、マンガンを添加し
ていなもの、並びに添加量3.0wt%のものを比較電
池H−5、H−6とする。
The Al-Mn-V alloy plate thus prepared was punched out on a disk having a diameter of 19 mm, and this was electrolyzed in 1.3 dioxolane in which LiClO 4 was dissolved to a concentration of 1 mol / liter, and 200 mAh. And was alloyed by reacting with lithium corresponding to the amount of electricity. Among the batteries manufactured using the negative electrode 1 manufactured in this way, manganese Mn
Comparative batteries H with addition amounts of 0.01 wt% to 2.0 wt% were designated as batteries D-1 to D-8 of the present invention, and those with no added manganese and addition amounts of 3.0 wt% -5 and H-6.

【0028】図5にマンガン添加量を横軸にとり、縦軸
にサイクル数をとったサイクル特性図を示す。この図に
おいて、実線は電池組立て直後の二次電池の特性で、破
線は組立て後、室温で1年間保存した電池の特性をそれ
ぞれ示しており、マンガンの添加量が0.01wt%〜
2.0wt%のもの(D−1〜D−8)が優れたサイク
ル特性を示すことがわかる。またマンガンの添加量が
0.1wt%〜2.0wt%の電池(D−2〜D−8)
が特に優れた特性を示している。尚、この時の試験条件
も、作成例1の場合と同じである。
FIG. 5 is a cycle characteristic diagram in which the horizontal axis represents the amount of manganese added and the vertical axis represents the number of cycles. In this figure, the solid line shows the characteristics of the secondary battery immediately after the battery is assembled, and the broken line shows the characteristics of the battery stored for one year at room temperature after the assembly.
It can be seen that those of 2.0 wt% (D-1 to D-8) show excellent cycle characteristics. Batteries containing 0.1% to 2.0% by weight of manganese (D-2 to D-8)
Shows particularly excellent characteristics. The test conditions at this time are also the same as in the case of Preparation Example 1.

【0029】[0029]

【発明の効果】本発明は以上の説明から明らかなよう
に、非水電解質二次電池の負極として、アルミニウムと
マンガンとから成る合金に、アルミニウムよりも電気化
学的に貴な金属から選ばれる少なくとも一種を添加した
合金から成る基体材料と、活物質であるリチウムとの合
金を用いているので、二次電池にとって重要なサイクル
特性が改善されており、特に電池組立てた後に保存状態
に置かれていた電池のサイクル特性が著しく改善され、
非水電解質二次電池に対する工業的価値は極めて高い。
As is apparent from the above description, the present invention is an alloy of aluminum and manganese, which is used as a negative electrode of a non-aqueous electrolyte secondary battery, and at least a metal which is electrochemically more noble than aluminum. The use of an alloy of a base material consisting of an alloy with one type added and lithium, which is the active material, improves the cycle characteristics that are important for secondary batteries, and in particular, it is placed in a storage state after battery assembly. The battery cycle characteristics are significantly improved,
The industrial value of the non-aqueous electrolyte secondary battery is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る非水電解質二次電池の縦断面図で
ある。
FIG. 1 is a vertical cross-sectional view of a non-aqueous electrolyte secondary battery according to the present invention.

【図2】本発明電池A−1〜A−8と比較電池H−1、
H−2とのサイクル特性図である。
FIG. 2 shows the present invention batteries A-1 to A-8 and the comparative battery H-1.
It is a cycle characteristic view with H-2.

【図3】本発明電池B−1〜B−8と比較電池H−1、
H−3とのサイクル特性図である。
FIG. 3 shows the present invention batteries B-1 to B-8 and the comparative battery H-1.
It is a cycle characteristic view with H-3.

【図4】本発明電池C−1〜C−8と比較電池H−1、
H−4とのサイクル特性図である。
FIG. 4 shows the present invention batteries C-1 to C-8 and a comparative battery H-1.
It is a cycle characteristic view with H-4.

【図5】本発明電池D−1〜D−8と比較電池H−5、
H−6とのサイクル特性図である。
FIG. 5 shows the present invention batteries D-1 to D-8 and the comparative battery H-5.
It is a cycle characteristic view with H-6.

【符号の説明】[Explanation of symbols]

1 負極 4 正極 7 セパレータ 1 Negative electrode 4 Positive electrode 7 Separator

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 充放電可能な正極と、非水電解質と、負
極と、を備え、前記負極は、アルミニウムとマンガンと
から成る合金に、アルミニウムよりも電気化学的に貴な
金属から選ばれる少なくとも一種を添加した合金から成
る基体材料と、活物質であるリチウムとの合金から成る
ことを特徴とした非水電解質二次電池。
1. A chargeable / dischargeable positive electrode, a non-aqueous electrolyte, and a negative electrode, the negative electrode being an alloy of aluminum and manganese, and at least a metal electrochemically nobler than aluminum. A non-aqueous electrolyte secondary battery comprising an alloy of a base material made of an alloy to which one kind is added and lithium which is an active material.
【請求項2】 前記負極は、前記基体材料と活物質であ
るリチウムとを電気化学的に反応させて作製した合金か
ら成ることを特徴とした請求項1記載の非水電解質二次
電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode is made of an alloy produced by electrochemically reacting the base material and lithium as an active material.
【請求項3】 前記アルミニウムより電気化学的に貴な
金属は、バナジウム、クロム、チタンから選ばれる少な
くとも一種であることを特徴とする請求項1、または請
求項2記載の非水電解質二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the metal electrochemically more noble than aluminum is at least one selected from vanadium, chromium and titanium. ..
【請求項4】 前記負極の基体材料である合金中のマン
ガン量は、0.1wt%以上で、2.0wt%以下であ
り、且つバナジウムの添加量は、0.01wt%以上、
2.0wt%以下であることを特徴とした請求項3記載
の非水電解液二次電池。
4. The amount of manganese in the alloy, which is the base material of the negative electrode, is 0.1 wt% or more and 2.0 wt% or less, and the addition amount of vanadium is 0.01 wt% or more,
The non-aqueous electrolyte secondary battery according to claim 3, wherein the content is 2.0 wt% or less.
【請求項5】 前記負極の基体材料である合金中のバナ
ジウムの添加量は、0.1wt%で、以上1.0wt%
以下であることを特徴とする請求項4記載の非水電解質
二次電池。
5. The addition amount of vanadium in the alloy, which is the base material of the negative electrode, is 0.1 wt% and is 1.0 wt% or more.
The non-aqueous electrolyte secondary battery according to claim 4, wherein:
【請求項6】 前記負極の基体材料である合金中のマン
ガン量は、0.1wt%以上で、2.0wt%以下であ
り、且つクロムの添加量は、0.01wt%以上、2.
0wt%以下であることを特徴とした請求項3記載の非
水電解液二次電池。
6. The amount of manganese in the alloy, which is the base material of the negative electrode, is 0.1 wt% or more and 2.0 wt% or less, and the amount of chromium added is 0.01 wt% or more, 2.
The non-aqueous electrolyte secondary battery according to claim 3, wherein the content is 0 wt% or less.
【請求項7】 前記負極の基体材料である合金中のクロ
ムの添加量は、0.1wt%以上で、1.0wt%以下
であることを特徴とする請求項6記載の非水電解質二次
電池。
7. The non-aqueous electrolyte secondary according to claim 6, wherein the amount of chromium added to the alloy as the base material of the negative electrode is 0.1 wt% or more and 1.0 wt% or less. battery.
【請求項8】 前記負極の基体材料である合金中のマン
ガン量は、0.1wt%以上で、2.0wt%以下であ
り、且つチタンの添加量は、0.01wt%以上、2.
0wt%以下であることを特徴とした請求項3記載の非
水電解液二次電池。
8. The amount of manganese in the alloy, which is the base material of the negative electrode, is 0.1 wt% or more and 2.0 wt% or less, and the amount of titanium added is 0.01 wt% or more, 2.
The non-aqueous electrolyte secondary battery according to claim 3, wherein the content is 0 wt% or less.
【請求項9】 前記負極の基体材料である合金中のチタ
ンの添加量は、0.1wt%以上で、2.0wt%以下
であることを特徴とする請求項8記載の非水電解質二次
電池。
9. The non-aqueous electrolyte secondary according to claim 8, wherein the addition amount of titanium in the alloy that is the base material of the negative electrode is 0.1 wt% or more and 2.0 wt% or less. battery.
JP04006737A 1992-01-17 1992-01-17 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3081336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04006737A JP3081336B2 (en) 1992-01-17 1992-01-17 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04006737A JP3081336B2 (en) 1992-01-17 1992-01-17 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH05190171A true JPH05190171A (en) 1993-07-30
JP3081336B2 JP3081336B2 (en) 2000-08-28

Family

ID=11646535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04006737A Expired - Fee Related JP3081336B2 (en) 1992-01-17 1992-01-17 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3081336B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690520A1 (en) 1994-05-30 1996-01-03 Canon Kabushiki Kaisha Rechargeable batteries
EP0693792A1 (en) 1994-07-19 1996-01-24 Canon Kabushiki Kaisha Rechargeable batteries having a specific anode and process for the production of them
US5658689A (en) * 1995-09-06 1997-08-19 Canon Kabushiki Kaisha Rechargeable lithium battery having a specific electrolyte
US5698339A (en) * 1994-10-21 1997-12-16 Canon Kabushiki Kaisha Anode with an anode active material-retaining body having a number of pores distributed therein, a rechargeable battery, provided with said anode, and the process for the production of said anode
US5728482A (en) * 1995-12-22 1998-03-17 Canon Kabushiki Kaisha Secondary battery and method for manufacturing the same
US5998063A (en) * 1994-12-02 1999-12-07 Canon Kabushiki Kaisha Lithium secondary cell
US6051340A (en) * 1994-05-30 2000-04-18 Canon Kabushiki Kaisha Rechargeable lithium battery
US6063142A (en) * 1994-12-01 2000-05-16 Canon Kabushiki Kaisha Process for producing a rechargeable lithium battery having an improved anode coated by a film containing a specific metal oxide material
US6432585B1 (en) 1997-01-28 2002-08-13 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and rechargeable battery
US6517974B1 (en) 1998-01-30 2003-02-11 Canon Kabushiki Kaisha Lithium secondary battery and method of manufacturing the lithium secondary battery
US6730434B1 (en) 1998-09-18 2004-05-04 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US6835332B2 (en) 2000-03-13 2004-12-28 Canon Kabushiki Kaisha Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode structural body is used, and a process for producing said rechargeable lithium battery
US6949312B1 (en) 1998-09-18 2005-09-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051340A (en) * 1994-05-30 2000-04-18 Canon Kabushiki Kaisha Rechargeable lithium battery
US6596432B2 (en) 1994-05-30 2003-07-22 Canon Kabushiki Kaisha Rechargeable batteries
EP0690520A1 (en) 1994-05-30 1996-01-03 Canon Kabushiki Kaisha Rechargeable batteries
EP0693792A1 (en) 1994-07-19 1996-01-24 Canon Kabushiki Kaisha Rechargeable batteries having a specific anode and process for the production of them
US5641591A (en) * 1994-07-19 1997-06-24 Canon Kabushiki Kaisha Rechargeable batteries having a specific anode and process for the production of them
US5698339A (en) * 1994-10-21 1997-12-16 Canon Kabushiki Kaisha Anode with an anode active material-retaining body having a number of pores distributed therein, a rechargeable battery, provided with said anode, and the process for the production of said anode
US6063142A (en) * 1994-12-01 2000-05-16 Canon Kabushiki Kaisha Process for producing a rechargeable lithium battery having an improved anode coated by a film containing a specific metal oxide material
US5998063A (en) * 1994-12-02 1999-12-07 Canon Kabushiki Kaisha Lithium secondary cell
US5658689A (en) * 1995-09-06 1997-08-19 Canon Kabushiki Kaisha Rechargeable lithium battery having a specific electrolyte
US5728482A (en) * 1995-12-22 1998-03-17 Canon Kabushiki Kaisha Secondary battery and method for manufacturing the same
US6432585B1 (en) 1997-01-28 2002-08-13 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and rechargeable battery
US6569568B2 (en) 1998-01-30 2003-05-27 Canon Kabushiki Kaisha Lithium secondary battery and method of manufacturing the lithium secondary battery
US6517974B1 (en) 1998-01-30 2003-02-11 Canon Kabushiki Kaisha Lithium secondary battery and method of manufacturing the lithium secondary battery
US6730434B1 (en) 1998-09-18 2004-05-04 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US6949312B1 (en) 1998-09-18 2005-09-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US7183018B2 (en) 1998-09-18 2007-02-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US7534528B2 (en) 1998-09-18 2009-05-19 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
EP2219253A2 (en) 1998-09-18 2010-08-18 Canon Kabushiki Kaisha Electrode material
US6835332B2 (en) 2000-03-13 2004-12-28 Canon Kabushiki Kaisha Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode structural body is used, and a process for producing said rechargeable lithium battery

Also Published As

Publication number Publication date
JP3081336B2 (en) 2000-08-28

Similar Documents

Publication Publication Date Title
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
JPH05101846A (en) Non-aqueous electrolytic secondary battery
JPH0574486A (en) Nonaqueous electrolyte battery
JPH0750165A (en) Non-aqueous electrolyte battery
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
EP0139756A1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPH01200572A (en) Electrolyte for lithium storage battery
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JPH0456079A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery thereof
JPH0536401A (en) Lithium secondary battery
JPH0353743B2 (en)
JP2664469B2 (en) Non-aqueous electrolyte battery
JPH01274359A (en) Nonaqueous electrolyte secondary battery
JP4007636B2 (en) Organic electrolyte secondary battery
JP2989212B2 (en) Non-aqueous electrolyte secondary battery
JP3025692B2 (en) Rechargeable battery
US6291108B1 (en) Non-aqueous electrolyte cell
JPH0864239A (en) Nonaqueous electrolyte battery
JP2714078B2 (en) Non-aqueous electrolyte battery
JP2840357B2 (en) Non-aqueous electrolyte secondary battery
JPH0935716A (en) Lithium battery
JP2656305B2 (en) Organic electrolyte secondary battery
JP2991758B2 (en) Non-aqueous electrolyte for lithium secondary batteries
JP2744061B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees