JPH0456079A - Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery thereof - Google Patents

Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery thereof

Info

Publication number
JPH0456079A
JPH0456079A JP2163625A JP16362590A JPH0456079A JP H0456079 A JPH0456079 A JP H0456079A JP 2163625 A JP2163625 A JP 2163625A JP 16362590 A JP16362590 A JP 16362590A JP H0456079 A JPH0456079 A JP H0456079A
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
lithium
pyrrole
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2163625A
Other languages
Japanese (ja)
Inventor
Yoji Okazaki
岡崎 洋士
Hideyuki Sato
秀行 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Battery Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2163625A priority Critical patent/JPH0456079A/en
Publication of JPH0456079A publication Critical patent/JPH0456079A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To realize nonaqueous electrolyte for lithium secondary battery for prolonging a battery lifetime of a lithium secondary battery by including a special pyrrole derivatives. CONSTITUTION:At least one kind of pyrrole derivatives having methyl group at one of positions of first, second, third, fourth and fifth is included as a component of the nonaqueous electrolyte. About 0.1-5 volume % of that pyrrole derivatives is added to an ordinary solvent which compound of one kind or more than two kinds of solvent. A lithium secondary battery using the described non-aqueous electrolyte and that pyrrole derivatives restrict the reactionability of the nonaqueous electrolyte with electrodeposited lithium to improve cycle characteristic of a negative electrode. Consequently, lifetime of a battery is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウム二次電池用非水電解液並にリチウム
二次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a non-aqueous electrolyte for lithium secondary batteries and a lithium secondary battery.

〔従来の技術〕[Conventional technology]

近年、放電特性に優れ且つ高エネルギー密度を有する電
池として、リチウム二次電池が注目されている。該リチ
ウム二次電池は、リチウム金属又はその合金を負極とし
て使用するため、水溶性電解液を使用できず、通常、プ
ロピレンカーボネート(PC)、エチレンカーボネート
(FC)、ジメトキシエタン(DHE)、テトラしドロ
フラン(T肘)などの非水溶媒に、1lcI04、Li
AsF、、[IP Fs、LiBFsなどのリチウム燕
8!塩を溶解した非水電解液を使用している。
In recent years, lithium secondary batteries have attracted attention as batteries with excellent discharge characteristics and high energy density. Since the lithium secondary battery uses lithium metal or its alloy as the negative electrode, it cannot use a water-soluble electrolyte, and usually uses propylene carbonate (PC), ethylene carbonate (FC), dimethoxyethane (DHE), or tetrachloride. In a nonaqueous solvent such as Dorofuran (T elbow), 1lcI04, Li
AsF,, [IP Fs, LiBFs, etc. Lithium Swallow 8! A non-aqueous electrolyte containing dissolved salt is used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

然し乍ら、上記従来の非水電解液を用いたリチウム二次
電池は、充放電サイクルの緑り返しにより負極活物質で
あるリチウム金属は、徐々に劣化していく傾向が大きく
、寿命が短い。その負極劣化の大きな原因として、充電
時に負極上に析出しな電析リチウムが非常に活性であり
、電解液中の有機溶媒と反応してリチウム粒子表面に絶
縁性の不働態膜を形成し、活物質として使用不可能にな
ることがあげられるか、これには、従来の非水溶媒のリ
チウムに対する化学的不安定性が重大な影響を与えるこ
とが分った。
However, in the above-mentioned conventional lithium secondary battery using a non-aqueous electrolyte, the lithium metal, which is the negative electrode active material, tends to gradually deteriorate due to repeated charging and discharging cycles, resulting in a short lifespan. A major cause of negative electrode deterioration is that the lithium deposited on the negative electrode during charging is extremely active and reacts with the organic solvent in the electrolyte to form an insulating passive film on the surface of the lithium particles. It has been found that the chemical instability of conventional non-aqueous solvents towards lithium has a significant effect on this, making it unusable as an active material.

プロピレンカーボネート、エチレンカーボネート、γ−
ブチロラクトン等のC=〇二重結合を有する非水溶媒は
、高誘電率溶媒であるため、溶質のイオン解離度が高く
、優れた導電率を有する傾向があるが、上記の負極リチ
ウムに対する化学的安定性に問題があり、そのままでリ
チウム二次電池に使用すると、電析リチウムとの反応が
生じ易く、リチウム極のサイクル特性が悪く、電池寿命
が極めて短い、一方、テトラしドロフラン、2−メチル
テトラしドロフラン、ジメトキシエチレン、ジオキソラ
ン等のエーテル類は、一般に、前記の高誘電溶媒に比べ
て、リチウムに対する化学的安定性かや1良いものの、
誘電率が低いため、導電率に劣るという問題がある。
Propylene carbonate, ethylene carbonate, γ-
Nonaqueous solvents with C=〇 double bonds such as butyrolactone are high dielectric constant solvents, so they tend to have a high degree of ionic dissociation of solutes and have excellent electrical conductivity. There are problems with stability, and if used as is in a lithium secondary battery, reactions with deposited lithium tend to occur, the cycle characteristics of the lithium electrode are poor, and the battery life is extremely short.On the other hand, tetrahydrofuran, 2-methyl Ethers such as tetrahydrofuran, dimethoxyethylene, and dioxolane generally have slightly better chemical stability toward lithium than the above-mentioned high dielectric solvents.
Since the dielectric constant is low, there is a problem that the conductivity is inferior.

又、上記の高誘電率溶媒と低誘電率溶媒との混合溶媒は
、例えば、EC−TI−IF、PC−THEなどの種々
の混合溶媒ら検i−tされているか、リチウムに対する
化学的安定性は未だ充分でなく、電池X?命は短く、実
用に適しない。
In addition, the above-mentioned mixed solvent of a high dielectric constant solvent and a low dielectric constant solvent has been tested with various mixed solvents such as EC-TI-IF and PC-THE, or has been chemically stabilized against lithium. Sexuality is still not enough, battery X? Their lives are short and they are not suitable for practical use.

従来、か)る電解液中に有機化合物を添加し、負極と電
解液の反応を制御する試みがなされている。このような
有機添加剤として、ピロールの添加が提案されている。
Conventionally, attempts have been made to control the reaction between the negative electrode and the electrolyte by adding an organic compound to the electrolyte. As such an organic additive, addition of pyrrole has been proposed.

しかし乍ら、とロール添加による上記の抑制効果、従っ
て、寿命の向上は十分とは言い歎く、改善の必要がある
However, it cannot be said that the above-mentioned suppressive effect and therefore the improvement in lifespan due to the addition of rolls is sufficient, and there is a need for improvement.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記の課題に鑑み、鋭意研究を進めて来た結
果、上記の課題を解決し、上記の要望を満足した電池寿
命の向上したリチウム二次電池をもならすリチウム二次
電池用非水電解液を提供するもので、非水電解液の成分
として、1位、2位、3位、4位又は5位の少なくとも
1つの位置にメチル基を有するピロール誘導体の少なく
とも1種を含有せしめて成る。
In view of the above problems, as a result of intensive research, the present invention solves the above problems and provides a lithium secondary battery with improved battery life that satisfies the above demands. Provides an aqueous electrolyte, which contains at least one pyrrole derivative having a methyl group at at least one of the 1st, 2nd, 3rd, 4th, or 5th positions as a component of the non-aqueous electrolyte. It consists of

〔作 用〕[For production]

本発明の上記非水電解液を用い、リチウム二次電池を梢
成し、使用するとさ、該ピロール誘導体により、非水電
解液と電析リチウムの反応性を抑制し、負極のサイクル
特性を改善し、従って、電池寿命の向上をもたらす。
When a lithium secondary battery is formed and used using the non-aqueous electrolyte of the present invention, the pyrrole derivative suppresses the reactivity between the non-aqueous electrolyte and the deposited lithium, and improves the cycle characteristics of the negative electrode. , thus resulting in an improvement in battery life.

この場合、上記の任意の該ピロール誘導体は、通常の1
種スは2[!以上の溶媒に対し、約0.1〜5容量%の
範囲で添加して成る混合溶媒を含有せしめた非水電解液
をリチウム二次電池の非水電解液として用いるときは、
特に、ピロールを添加する場合の最大の効果よりも充放
電サイクル特性の向上が得られる。
In this case, any of the above-mentioned pyrrole derivatives may be
The seeds are 2[! When using a nonaqueous electrolyte containing a mixed solvent in the range of about 0.1 to 5% by volume to the above solvent as a nonaqueous electrolyte for a lithium secondary battery,
In particular, the charge/discharge cycle characteristics can be improved more than the maximum effect when adding pyrrole.

〔実施例〕〔Example〕

次に、本発明の詳細な説明する。 Next, the present invention will be explained in detail.

本発明の非水電解液の成分として添加されるピロール誘
導体は、下記のピロール環の1位、2位、3位、4位又
は5位の少なくとも1つの位置にメチル基を導入して成
るもので、下記は2位にCF13基を有するピロール誘
導体の例を示す。
The pyrrole derivative added as a component of the non-aqueous electrolyte of the present invention has a methyl group introduced into at least one of the following positions of the pyrrole ring: 1-position, 2-position, 3-position, 4-position, or 5-position. The following shows an example of a pyrrole derivative having a CF13 group at the 2-position.

より、次のような理由で、ピロールに比し化学的に安定
した添加剤となる。
Therefore, it is a chemically more stable additive than pyrrole for the following reasons.

即ち、ピロール環の状態よりは、少なくとも1個のCH
3基を導入して成るとロール誘導体は、ピロール環のπ
電子密度が増大し、これによりピロールのN−C結合が
切れ誼くなる。従って、かiるピロールのメチル化誘導
体は、ピロールよりも化学的に安定した溶媒となる。就
中、0113基が1位、2位又は5位に、即ち、窒素原
子に近い位置に有するときは、窒素原子のπ電子密度の
増大が特に大きくなる。従って、メチル基の導入した効
果が大きく、特に優れている。
That is, from the state of the pyrrole ring, at least one CH
When three groups are introduced, the role derivative is formed by introducing π of the pyrrole ring.
The electron density increases, which breaks the N-C bonds of pyrrole. Therefore, the methylated derivative of pyrrole is a chemically more stable solvent than pyrrole. In particular, when the 0113 group is present at the 1st, 2nd or 5th position, that is, at a position close to the nitrogen atom, the increase in the π electron density of the nitrogen atom is particularly large. Therefore, the effect of introducing the methyl group is large and is particularly excellent.

従って、かiる化学的に安定したピロール誘導体を添加
した非水電解液は、溶媒とリチウムの反応性が長期に亘
り抑制する効果が大きく、従って、添加剤を含有する非
水電解液を具備したリチウム二次電池は、そのサイクル
特性は著しく向上し、長寿命のリチウム二次電池をもた
らす。
Therefore, a non-aqueous electrolyte containing such a chemically stable pyrrole derivative has a great effect of suppressing the reactivity between the solvent and lithium over a long period of time, and therefore, a non-aqueous electrolyte containing an additive is highly effective in suppressing the reactivity between the solvent and lithium. The cycle characteristics of the lithium secondary battery improved significantly, resulting in a long-life lithium secondary battery.

次に、2位をメチル化して成るピロール誘導体をPC−
DME混合溶蝶中に添加せしめて成る非水電解液を用い
た場合の試験例で本発明の添加剤の添加効果を明らかに
する。
Next, a pyrrole derivative obtained by methylating the 2nd position is PC-
The effect of adding the additive of the present invention will be clarified in a test example using a non-aqueous electrolyte added to a DME mixed melt.

作用極、対極、参照極より成るリチウム電池を作製し、
充放電サイクル試験を行った。即ち、作用極としては、
厚さ0.2Bのリチウム箔を直径40簡のディスク状に
打ち抜いたものをステンレス製エキスバンドメタルを同
型に打ち抜いた集電体に圧着して成るものを用いた。こ
の作用極の容量は、5101Ahに相当する。又対極と
しては、厚さ0.75tmのリチウム箔を直径40am
のディスク状に打ち抜いたものを作用極同様に、ステン
レス製エキスバンドメタルに圧着して成るものを用いた
。#照極としては、リチウムワイヤーを用いた。上記作
用極及び対極をセパレータを挟んで相対向せしめ、その
間の空間部に本発明の非水電解液を注入しセルを構成し
た。
Fabricate a lithium battery consisting of a working electrode, a counter electrode, and a reference electrode,
A charge/discharge cycle test was conducted. That is, as a working electrode,
A lithium foil with a thickness of 0.2 B was punched out into a disk shape of 40 pieces in diameter, which was then pressure-bonded to a current collector punched out of stainless steel expanded metal in the same shape. The capacity of this working electrode is equivalent to 5101 Ah. As a counter electrode, a lithium foil with a thickness of 0.75 tm and a diameter of 40 am was used.
In the same way as the working electrode, a disk-shaped punch was used, which was pressed onto stainless steel expanded metal. #A lithium wire was used as the illumination electrode. The working electrode and the counter electrode were placed facing each other with a separator in between, and the non-aqueous electrolyte of the present invention was injected into the space between them to form a cell.

本発明の電解液としては、プロピレンカーボネートとジ
メトキシエタンの混合溶媒に1icIozを1モル/J
溶解し、更に、これに前記のピロール誘導体をその添加
量を異にして添加したものを夫々用い、その夫々のリチ
ウム作用極の平均充放電効率を測定した。尚、比較のた
めに従来の添加剤であるピロールを同様にその添加量を
変えて添加した場合についても、同様のセルを組立て、
上記の試験を行った。
The electrolytic solution of the present invention includes 1 icIoz of 1 mole/J in a mixed solvent of propylene carbonate and dimethoxyethane.
The pyrrole derivatives were dissolved and the pyrrole derivatives were added in different amounts, and the average charge/discharge efficiency of each lithium working electrode was measured. For comparison, similar cells were assembled in the case where the conventional additive pyrrole was added in different amounts.
The above test was conducted.

このようにして作製した夫々の試験セルを25℃で、1
0mAの電流値にて、51iAhの定容量にて充放電を
繰り返した。寿命判定は作用極の電位変化より決定した
。リチウム作用極のサイクル特性は、次式によりlサイ
クル当たりの平均充放電効率を産出し評価した。ここで
nはサイクル数を表す。
Each test cell thus prepared was heated at 25°C for 1
Charging and discharging were repeated at a current value of 0 mA and a constant capacity of 51 iAh. The lifespan was determined based on the potential change of the working electrode. The cycle characteristics of the lithium working electrode were evaluated by calculating the average charge/discharge efficiency per 1 cycle using the following equation. Here n represents the number of cycles.

E = 1−(51−(510−51)/n ) / 
51x 100その結果を図面に示す0図で曲線Aが本
発明によるピロール誘導体を添加した場合であり、曲線
Bが従来のピロールを添加した場合の結果である2図よ
り明らかなように、本発明の添加剤を添加した電解液を
使用したセルは、ピロールを添加した電解液を使用した
セルに比し、平均充放電効率が、その同じ添加濃度にお
いて著しく向上することが認められる。この場合、特に
、本発明の添加剤の添加量が約0.1〜5容量%の範囲
では、ピロールの最大の添加効果よりもその添加効果が
向上することが認められる。
E = 1-(51-(510-51)/n)/
51x 100 The results are shown in the drawings. In Figure 0, curve A is the result when the pyrrole derivative according to the present invention is added, and curve B is the result when the conventional pyrrole is added. As is clear from Figure 2, the present invention It is recognized that the average charge/discharge efficiency of a cell using an electrolytic solution to which pyrrole is added is significantly improved compared to a cell using an electrolytic solution to which pyrrole is added at the same additive concentration. In this case, especially when the amount of the additive of the present invention added is in the range of about 0.1 to 5% by volume, it is recognized that the addition effect is improved more than the maximum addition effect of pyrrole.

尚、同様の効果が、2位以外の位置にメチル基を導入し
たピロール誘導体においても、又、2つ又はそれ以上の
位置にメチル基を導入して種々のピロール誘導体におい
ても得られた。
Incidentally, similar effects were obtained in pyrrole derivatives in which methyl groups were introduced at positions other than the 2-position, and in various pyrrole derivatives in which methyl groups were introduced in two or more positions.

かくして、ピロール環の1位、2位、3位又は4位の少
なくとも1つの位置にメチル基を有するピロール誘導体
の少なくとも1種を含有する非水電解液を、金属リチウ
ム又はリチウムイオンを吸蔵・放出できる合金、炭素材
、導電性高分子、或いは無m酸化物から成る負極とリチ
ウムイオンと電気化学的に可逆的反応を行える物資から
成る正極とから成るリチウム二次電池の構成要素と組み
合わせることにより、充放電効率の向上した長寿命の本
発明のリチウム二次電池を構成することができる。
Thus, a non-aqueous electrolyte containing at least one pyrrole derivative having a methyl group at at least one of the 1st, 2nd, 3rd, or 4th positions of the pyrrole ring is used to absorb and release metallic lithium or lithium ions. By combining the components of a lithium secondary battery, which consists of a negative electrode made of an alloy, carbon material, conductive polymer, or non-molecular oxide, and a positive electrode made of a material that can electrochemically react reversibly with lithium ions. , the lithium secondary battery of the present invention with improved charge/discharge efficiency and long life can be constructed.

この場合、該リチウム二次電池の非水電解液としては、
一般に、エチレンカーボネート又はプロピレンカーボネ
ートより成る溶媒とテトラヒドロフランスは2−メチル
テトラヒドロフラン又は1.2−ジメトキシエタンより
成る溶媒とを体積比で1=1の割合で混合して成る溶媒
系に、該ピロール誘導体の少なくとも1種を添加せしめ
て成る非水溶媒から成る非水電解液を使用することが好
ましい、この場合、その添加量は、上記の理由から、約
0.1〜5容量%であることが有利である。
In this case, the nonaqueous electrolyte of the lithium secondary battery is
Generally, the pyrrole derivative is added to a solvent system consisting of a solvent consisting of ethylene carbonate or propylene carbonate and a solvent consisting of 2-methyltetrahydrofuran or 1,2-dimethoxyethane in a volume ratio of 1=1. It is preferable to use a non-aqueous electrolyte consisting of a non-aqueous solvent to which at least one of It's advantageous.

〔発明の効果〕〔Effect of the invention〕

このように本発明によるときは、リチウム二次電池用非
水電解液として、1位、2位、3位、4位又は5位の少
なくとも1つの位置に、メチル基を有するピロール誘導
体の少なくとも1種を含有したものを、リチウム二次電
池の電解液として用いるときは、該ピロール誘導体は、
非水溶蝶と電析リチウムとの反応を制御することができ
る効果を長期に亘り維持し、従って、本発明の上記電解
液を具備したリチウム二次電池の負極のサイクル特性を
高め、電池寿命を向上せしめる効果をもたらず。
As described above, according to the present invention, at least one pyrrole derivative having a methyl group at at least one position of the 1st, 2nd, 3rd, 4th, or 5th position is used as a nonaqueous electrolyte for a lithium secondary battery. When a species-containing one is used as an electrolyte for a lithium secondary battery, the pyrrole derivative is
The effect of controlling the reaction between non-aqueous molten butter and deposited lithium can be maintained over a long period of time, thereby improving the cycle characteristics of the negative electrode of a lithium secondary battery equipped with the above-mentioned electrolyte of the present invention, and extending the battery life. No improvement effect.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の添加剤を含む非水電解液と従来の添加
剤を含む非水電解液とを用いた場合のリチウム極の平均
充放電効率の比較グラフを示す。 A・・・本発明の特性曲線 特許出願人    古河電池株式会社 添カロ剤濃度1vo!%1
The drawing shows a comparison graph of the average charge/discharge efficiency of lithium electrodes when using a non-aqueous electrolyte containing the additive of the present invention and a non-aqueous electrolyte containing a conventional additive. A...Characteristic curve of the present invention Patent applicant: Furukawa Battery Co., Ltd. Added calorific agent concentration 1vo! %1

Claims (1)

【特許請求の範囲】 1、非水電解液の成分として、1位、2位、3位、4位
又は5位の少なくとも1つの位置にメチル基を有するピ
ロール誘導体の少なくとも1種を含有せしめて成るリチ
ウム二次電池用非水電解液。 2、通常の1種又は2種以上から成る溶媒に対し、該ピ
ロール誘導体の少なくとも1種を、約0.1〜5容量%
添加して成る請求項1記載のリチウム二次電池用非水電
解液。 3、非水電解液として、請求項1又は2記載の非水電解
液を具備して成るリチウム二次電池。
[Claims] 1. At least one pyrrole derivative having a methyl group at at least one of the 1st, 2nd, 3rd, 4th, or 5th positions is contained as a component of the nonaqueous electrolyte. A non-aqueous electrolyte for lithium secondary batteries. 2. About 0.1 to 5% by volume of at least one of the pyrrole derivatives in a conventional solvent consisting of one or more kinds.
The non-aqueous electrolyte for a lithium secondary battery according to claim 1, wherein the non-aqueous electrolyte is added. 3. A lithium secondary battery comprising the non-aqueous electrolyte according to claim 1 or 2 as a non-aqueous electrolyte.
JP2163625A 1990-06-21 1990-06-21 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery thereof Pending JPH0456079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2163625A JPH0456079A (en) 1990-06-21 1990-06-21 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2163625A JPH0456079A (en) 1990-06-21 1990-06-21 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery thereof

Publications (1)

Publication Number Publication Date
JPH0456079A true JPH0456079A (en) 1992-02-24

Family

ID=15777488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2163625A Pending JPH0456079A (en) 1990-06-21 1990-06-21 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery thereof

Country Status (1)

Country Link
JP (1) JPH0456079A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504619A (en) * 2003-09-19 2007-03-01 エルジー・ケム・リミテッド Non-aqueous lithium secondary battery with improved cycle characteristics and / or high temperature stability
US7553588B2 (en) * 2003-03-13 2009-06-30 Samsung Sdi Co., Ltd. Non-aqueous electrolyte and a lithium secondary battery comprising the same
US7794868B2 (en) 2005-12-02 2010-09-14 Lg Chem, Ltd. Battery module of high cooling efficiency
US7879485B2 (en) 2005-04-20 2011-02-01 Lg Chem, Ltd. Housing member for battery module
US7883793B2 (en) 2008-06-30 2011-02-08 Lg Chem, Ltd. Battery module having battery cell assemblies with alignment-coupling features
US8288031B1 (en) 2011-03-28 2012-10-16 Lg Chem, Ltd. Battery disconnect unit and method of assembling the battery disconnect unit
US8353315B2 (en) 2010-08-23 2013-01-15 Lg Chem, Ltd. End cap
US8426050B2 (en) 2008-06-30 2013-04-23 Lg Chem, Ltd. Battery module having cooling manifold and method for cooling battery module
US8852778B2 (en) 2009-04-30 2014-10-07 Lg Chem, Ltd. Battery systems, battery modules, and method for cooling a battery module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553588B2 (en) * 2003-03-13 2009-06-30 Samsung Sdi Co., Ltd. Non-aqueous electrolyte and a lithium secondary battery comprising the same
JP2007504619A (en) * 2003-09-19 2007-03-01 エルジー・ケム・リミテッド Non-aqueous lithium secondary battery with improved cycle characteristics and / or high temperature stability
US7879485B2 (en) 2005-04-20 2011-02-01 Lg Chem, Ltd. Housing member for battery module
US7794868B2 (en) 2005-12-02 2010-09-14 Lg Chem, Ltd. Battery module of high cooling efficiency
US7955726B2 (en) 2005-12-02 2011-06-07 Lg Chem, Ltd. Battery module of high cooling efficiency
US7883793B2 (en) 2008-06-30 2011-02-08 Lg Chem, Ltd. Battery module having battery cell assemblies with alignment-coupling features
US8426050B2 (en) 2008-06-30 2013-04-23 Lg Chem, Ltd. Battery module having cooling manifold and method for cooling battery module
US8852778B2 (en) 2009-04-30 2014-10-07 Lg Chem, Ltd. Battery systems, battery modules, and method for cooling a battery module
US8353315B2 (en) 2010-08-23 2013-01-15 Lg Chem, Ltd. End cap
US8288031B1 (en) 2011-03-28 2012-10-16 Lg Chem, Ltd. Battery disconnect unit and method of assembling the battery disconnect unit

Similar Documents

Publication Publication Date Title
US5731106A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
US20020150818A1 (en) Metal nitride electrode materials for high capacity rechargeable lithium battery cells
JP2010287380A (en) Lithium secondary battery using ionic liquid
US6146791A (en) Hydrogenated fullerenes as an additive to carbon anode for rechargeable lithium-ion batteries
KR20170092455A (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof
KR20170052493A (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte comprising the same, and lithium secondary battery comprising the same
CN100474682C (en) Organic electrolytic solution and lithium-sulfur battery comprising the same
US20040043291A1 (en) Cathode containing muticomponent binder mixture and lithium-sulfur battery using the same
JPH0456079A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery thereof
WO2003021707A1 (en) Nonaqueous electrolyte
EP0905807B1 (en) Nonaqueous secondary battery
JP4512776B2 (en) Non-aqueous electrolyte solution containing additive for capacity enhancement of lithium ion battery and lithium ion battery using the same
CN100524899C (en) Anode material and battery using the same
KR100404733B1 (en) Current collector coated with metal, electrodes comprising it, and lithium batteries comprising the electrodes
CA1061859A (en) Electrochemical cell with cathode containing silver carbonate
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JPH05234583A (en) Negative electrode for lithium secondary battery and lithium secondary battery using it
JP2000156224A (en) Nonaqueous electrolyte battery
US20190280294A1 (en) Active material for a positive electrode of a battery cell, positive electrode, and battery cell
KR101853149B1 (en) Anode active material for lithium secondary battery having core-shell structure, lithium secondary battery comprising the material, and method of preparing the material
KR20150041696A (en) Zinc air cell, anode for zinc air cell and method of preparing the same
JPH0359963A (en) Lithium secondary battery
US20220328848A1 (en) High voltage cathode materials for non-aquenous ammonia based
JPH09245798A (en) Lithium secondary battery
CA3029907A1 (en) Rechargeable electrochemical lithium ion cell