JPH01200572A - Electrolyte for lithium storage battery - Google Patents

Electrolyte for lithium storage battery

Info

Publication number
JPH01200572A
JPH01200572A JP63158602A JP15860288A JPH01200572A JP H01200572 A JPH01200572 A JP H01200572A JP 63158602 A JP63158602 A JP 63158602A JP 15860288 A JP15860288 A JP 15860288A JP H01200572 A JPH01200572 A JP H01200572A
Authority
JP
Japan
Prior art keywords
lithium
molybdenum
negative electrode
molybdenum oxide
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63158602A
Other languages
Japanese (ja)
Inventor
Fumio Goto
文夫 後藤
Katsuji Abe
阿部 勝司
Katsuaki Okabayashi
岡林 克明
Masahiko Asaoka
賢彦 朝岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP63158602A priority Critical patent/JPH01200572A/en
Publication of JPH01200572A publication Critical patent/JPH01200572A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve charge-discharge coulomb efficiency and life performance of a lithium negative electrode by adding a molybdenum oxide to a solution, in which lithium salt is dissolved in an organic solvent, as an additive. CONSTITUTION:An electrolyte for a lithium storage battery is used, while lithium salt is dissolved into an organic solvent and thereto a molybdenum oxide is added. For this molybdenum oxide, molybdenum trioxide (MoO3), lithium molybdate (Li2MoO4), molybdenum dichloride dioxide (MoO2Cl2) or molybdenum tetrachloride monoxide (MoOCl4) are used, and concentration of adding molybdenum oxide is to be 0.001-0.5mol/l. In this way, charge-discharge coulomb efficiency and life performance of a lithium negative electrode can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウムを負極活物質とするリチウム二次電
池に用いる電解液に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrolytic solution used in a lithium secondary battery using lithium as a negative electrode active material.

〔従来技術〕[Prior art]

リチウムを負極活物質として用いる電池は高パワー、高
エネルギー密度を有するものとして期待されている。し
かし、このリチウム負極は二酸化マンガンやフッ化カー
ボンなどを正極とした一次電池への適用には成功してい
るものの、二次電池へ適用した場合、充放電のクーロン
効率が低い、寿命が短い等の理由により、実用化に至っ
ていないのが現状である。
Batteries using lithium as a negative electrode active material are expected to have high power and high energy density. However, although this lithium negative electrode has been successfully applied to primary batteries using manganese dioxide, carbon fluoride, etc. as positive electrodes, when applied to secondary batteries, the coulombic efficiency of charging and discharging is low, the life is short, etc. For these reasons, it has not yet been put into practical use.

したがって、リチウム負極の低クーロン効率及び短寿命
が改善されれば高性能の二次電池が実現できる。
Therefore, if the low coulombic efficiency and short life of the lithium negative electrode are improved, a high-performance secondary battery can be realized.

リチウム負極のクーロン効率および寿命性能が悪い原因
は、次のように考えられている。充電時に負極上に電析
するリチウムは非常に活性で、このリチウムは電解液と
反応し、負極表面に不活性な被膜を形成する。そのため
電析したリチウムの一部は放電反応に寄与し得な(なり
、クーロン効率が低下する。また、この不活性な被膜は
均一でなく、部分的に不完全であるため、充放電の繰り
返しによってデンドライト状リチウムの生長をもたらす
。そして、このデンドライト状リチウムは、ついには、
負極と正極の接触を防ぐポリプロピレン製セパレータを
貫通し、両極を短絡させ、電池を寿命に至らしめる。
The reason for the poor coulombic efficiency and poor life performance of the lithium negative electrode is thought to be as follows. The lithium that is deposited on the negative electrode during charging is very active, and this lithium reacts with the electrolyte to form an inert film on the negative electrode surface. Therefore, some of the deposited lithium cannot contribute to the discharge reaction (and the Coulombic efficiency decreases).Also, this inert film is not uniform and partially incomplete, so repeated charging and discharging is necessary. This leads to the growth of dendrite-like lithium.And this dendrite-like lithium finally becomes
It penetrates the polypropylene separator that prevents contact between the negative and positive electrodes, shorting the two electrodes and extending the life of the battery.

上記のような要因を取り除く方法として、従来から次の
ような提案がなされている。
Conventionally, the following proposals have been made as methods for eliminating the above-mentioned factors.

活物質保持体としてアルミニウムを用いる方法である。This is a method using aluminum as an active material holder.

アルミニウム上にリチウムが析出すると、合金化しなが
ら、リチウムがアルミニウム中へ浸透していくため、電
析リチウムと電解液との反応が抑制されて、不働態化膜
の形成が防止される。
When lithium is deposited on aluminum, the lithium penetrates into the aluminum while being alloyed, so the reaction between the deposited lithium and the electrolyte is suppressed, and the formation of a passivation film is prevented.

しかし、この方法では、合金化により、リチウム負極の
電位が正極側にシフトし、電池の起電力が低下し、・し
かも充放電の繰り返しによりアルミニウム製活物質保持
体が粉末化してしまう。
However, in this method, the potential of the lithium negative electrode shifts to the positive electrode side due to alloying, lowering the electromotive force of the battery, and furthermore, the aluminum active material holder becomes powdered due to repeated charging and discharging.

また、沸点が高く、リチウムに対し安定なためリチウム
二次電池用の電解液としてよく用いられるプロピレンカ
ーボネイト等の粘性の高い溶媒にエーテル等の粘性の低
い溶媒を混合し、電解液の電導率を高めると同時にリチ
ウムに対する反応性を下げようとする方法がある(特開
昭59−8279号)。しかし、この方法では、クーロ
ン効率や寿命性能の向上に対する効果が充分でない。
In addition, a low viscosity solvent such as ether is mixed with a highly viscous solvent such as propylene carbonate, which is often used as an electrolyte for lithium secondary batteries because it has a high boiling point and is stable against lithium, to increase the conductivity of the electrolyte. There is a method of increasing the reactivity to lithium and at the same time lowering the reactivity to lithium (Japanese Patent Application Laid-open No. 8279/1983). However, this method is not sufficiently effective in improving coulombic efficiency and life performance.

さらに、他の方法として、電解液にエチレングリコール
を添加して、リチウムと電解液との反応やリチウムの析
出形態を変化させようとすることが提案されている(特
開昭59−130073号)。
Furthermore, as another method, it has been proposed to add ethylene glycol to the electrolyte to change the reaction between lithium and the electrolyte and the form of lithium precipitation (Japanese Patent Laid-Open No. 130073/1982). .

しかし、この場合にも上記添加剤が負極全体にわたって
均一な作用を呈さないため、充分な効果は発揮されてい
ない。
However, in this case as well, the additive does not exhibit a uniform effect over the entire negative electrode, and therefore sufficient effects are not exhibited.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記従来技術の問題点に鑑みなされたもので
あり、リチウム負極の充放電クーロン効率及び寿命性能
を向上させるリチウム二次電池用電解液を提供しようと
するものである。
The present invention has been made in view of the problems of the prior art described above, and aims to provide an electrolytic solution for a lithium secondary battery that improves the charge/discharge coulombic efficiency and life performance of a lithium negative electrode.

〔発明の説明〕[Description of the invention]

本発明は有機溶媒にリチウム塩を溶解させた溶液に添加
剤としてモリブデン酸化物を加えることを特徴とするリ
チウム二次電池用電解液に関するものである。
The present invention relates to an electrolytic solution for lithium secondary batteries, characterized in that molybdenum oxide is added as an additive to a solution of a lithium salt dissolved in an organic solvent.

本発明においては、リチウム塩を有機溶媒に溶解した溶
液にモリブデン酸化物を添加する。
In the present invention, molybdenum oxide is added to a solution in which a lithium salt is dissolved in an organic solvent.

モリブデン酸化物を添加することにより、以下のような
現象が生じていると考えられる。リチウム二次電池を充
電すると負極にリチウムが電析する。この電析したリチ
ウムの表面には、電解液とリチウムとの反応によって生
ずる被膜が形成される。モリブデン酸化物が添加されて
いない電解液中で該電解液とリチウムとの反応によって
形成される被膜は脆く絶縁性であるため強制的な通電に
より亀裂が生ずる。したがって、この被膜ではリチウム
の溶解・析出反応は被膜の亀裂を通して行われる。つま
り、充電時、リチウムが析出する場合には、亀裂を通し
てリチウムのデンドライトが成長することとなる。この
デンドライト表面は再び電解液に触れるので、新たな絶
縁性の被膜に覆われる。この繰り返しによって絶縁膜が
生長し、最終的には電極全体が不活性化してしまう。こ
れに対し、モリブデン酸化物を添加した電解液を用いた
場合に形成される被膜中には微量のモリブデン(MO)
が存在する。Moは多数の酸化状態をとり得る遷移金属
系の元素であって、Moが膜中に存在すると価数の異な
る元素が膜中に存在することになり、リチウムイオンの
伝導性が常に保持されることとなる。したがって、以後
の反応ではリチウムイオンが被膜を透過して溶′解・析
出を起こす。そのため、被膜に亀裂が殆ど発生せず、電
解液とリチウムとの反応が抑制され、負極の不活性化が
防止される。このように、本発明のごと〈従来用いられ
てきた電解液にモリブデン酸化物を添加すると、リチウ
ム負極の充放電クーロン効率および寿命を著しく向上さ
せることができる。
It is thought that the following phenomenon occurs by adding molybdenum oxide. When a lithium secondary battery is charged, lithium is deposited on the negative electrode. A film is formed on the surface of the electrodeposited lithium due to the reaction between the electrolytic solution and lithium. The film formed by the reaction between the electrolytic solution and lithium in an electrolytic solution to which no molybdenum oxide is added is brittle and insulating, and therefore cracks occur when forced to conduct electricity. Therefore, in this coating, the dissolution/precipitation reaction of lithium takes place through the cracks in the coating. In other words, if lithium precipitates during charging, lithium dendrites will grow through the cracks. Since this dendrite surface comes into contact with the electrolyte again, it is covered with a new insulating film. By repeating this process, the insulating film grows, and eventually the entire electrode becomes inactive. On the other hand, when an electrolyte containing molybdenum oxide is used, a trace amount of molybdenum (MO) is present in the film formed.
exists. Mo is a transition metal element that can take many oxidation states, and when Mo is present in the film, elements with different valences are present in the film, and lithium ion conductivity is always maintained. That will happen. Therefore, in subsequent reactions, lithium ions permeate through the coating and cause dissolution and precipitation. Therefore, almost no cracks occur in the coating, the reaction between the electrolyte and lithium is suppressed, and deactivation of the negative electrode is prevented. As described above, according to the present invention, when molybdenum oxide is added to a conventionally used electrolytic solution, the charge/discharge coulombic efficiency and life of the lithium negative electrode can be significantly improved.

〔実施態様の説明〕[Description of implementation]

リチウム二次電池は、本発明の電解液が含まれる電槽中
にリチウムあるいはリチウム合金からなる負極及び充放
電可能な正極の一部あるいは全部を浸漬して構成される
ものである。
A lithium secondary battery is constructed by immersing a part or all of a negative electrode made of lithium or a lithium alloy and a chargeable and dischargeable positive electrode in a battery containing the electrolytic solution of the present invention.

本発明の電解液は、リチウム負極が水溶液と反応するた
め、非水電解液でなければならない。非水電解液に用い
られる有機溶媒は、一般的に電解液に用いられるもので
あればいかなるものでもよい。例えば、プロピレンカー
ボネイト、スルホラン、アセトニトリル、ジメチルスル
ホキンド、テトラヒドロフラン、2−メチルテトラヒド
ロフラン、ジオキソラン、T−プチロラクタン、エチレ
ンカーボネート、1.2−ジメトキシエタン等が挙げら
れ、それらのうちの1種または2種以上を使用する。
The electrolytic solution of the present invention must be a non-aqueous electrolytic solution since the lithium negative electrode reacts with an aqueous solution. The organic solvent used in the non-aqueous electrolyte may be any organic solvent that is generally used in electrolytes. Examples include propylene carbonate, sulfolane, acetonitrile, dimethylsulfoquinde, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, T-butyrolactane, ethylene carbonate, 1,2-dimethoxyethane, and one or more of them. use.

リチウム塩は、上記有機溶媒に溶解して、電解液に電導
性を与える電解質であり、一般的にこの種の電解質とし
て用いられているものでよい。例えば、LiCl!、0
4、LiBF4、LiAsF+。
The lithium salt is an electrolyte that is dissolved in the organic solvent and imparts conductivity to the electrolytic solution, and may be one that is generally used as this type of electrolyte. For example, LiCl! ,0
4, LiBF4, LiAsF+.

、LiPF6、LiI、LiBr等が挙げられ、それら
のうちの1種または2種以上を使用する。
, LiPF6, LiI, LiBr, etc., and one or more of them are used.

該リチウム塩の有機溶媒への溶解量は、有機溶媒ifに
対して0.01〜2モルの範囲で溶解させるのが望まし
い。0.01モル未満の場合には、溶液の抵抗が大きく
、電流を定常的に流しにくくなり、更に充放電の容量が
小さ(なる可能性がある。
The amount of the lithium salt dissolved in the organic solvent is desirably in the range of 0.01 to 2 moles relative to the organic solvent if. When the amount is less than 0.01 mol, the resistance of the solution is large, making it difficult to pass current steadily, and furthermore, the charge/discharge capacity may be small.

一方、2モルを越える場合には、溶液中にリチウム塩が
飽和して、リチウム塩を完全に溶解させることが困難と
なる。
On the other hand, if the amount exceeds 2 moles, the lithium salt becomes saturated in the solution, making it difficult to completely dissolve the lithium salt.

リチウム塩を溶解した有機溶媒中へ添加するモリブデン
酸化物とじては三酸化モリブデン(M。
The molybdenum oxide added to the organic solvent in which the lithium salt is dissolved is molybdenum trioxide (M).

Ol)、モリブデン酸リチウム(L i 2M o 0
4)、二塩化二酸化モリブデン(MoO□(1,)、四
塩化一酸化モリブデン(MoOCj24)を用いる。
OL), lithium molybdate (L i 2M o 0
4) Using molybdenum dioxide dichloride (MoO□(1,), molybdenum monoxide tetrachloride (MoOCj24).

モリブデン酸化物の添加濃度は0.001〜0.5mo
2/1の範囲が望ましい。添加濃度が0.001m o
 l / 1未満では添加したことによる効果が非常に
小さく、一方、0.5 m o l / 1以上添加し
ても溶液中への溶解が十分でないため添加した効果がな
い。
The concentration of molybdenum oxide added is 0.001 to 0.5 mo
A range of 2/1 is desirable. Addition concentration is 0.001 m o
If it is less than 1/1, the effect of adding it will be very small, and on the other hand, even if it is added at 0.5 mol/1 or more, it will not be effective because it will not be sufficiently dissolved in the solution.

正極としては、五酸化バナジウム(Vz’ Os )等
の酸化物、硫化チタン(T i S z )やセレン化
ニオブ(NbSe2)等のカルコゲン化物、ポリアセチ
レンやポリピロール等の導電性高分子、あるいはカーボ
ン等充放電可能な電極であればいかなるものでもよい。
As a positive electrode, oxides such as vanadium pentoxide (Vz'Os), chalcogenides such as titanium sulfide (T i S z ) and niobium selenide (NbSe2), conductive polymers such as polyacetylene and polypyrrole, or carbon, etc. Any electrode that can be charged and discharged may be used.

また、その他の電池構成部品もリチウム電池として一般
的に使用可能なものであればよい。
Further, other battery components may be used as long as they can be generally used as lithium batteries.

C実施例〕 実施例1 リチウム負極に及ぼす電解液の影響を評価するために電
池を組み、充放電試験を行った。この電池の負極はステ
ンレスメツシュの導電体に圧着したリチウムフォイル(
縦×横 20X20mm、厚さ0.1m)、正極はチタ
ンメツシュの導電体に圧着したポリアニリンフィルムで
、1枚の負極の両側に2枚の正極が配置されている。両
極の間はイオンは通すが電子は通さない微孔性のポリプ
ロピレン製のフィルムで仕切られている。図はこの電池
の構成図である。該電池の電槽に過塩素酸リチウム(L
iCfO4)を1.0 m o l / l溶解させた
プロピレンカーボネート溶液にLi、MoQ。
C Example] Example 1 In order to evaluate the influence of the electrolyte on the lithium negative electrode, a battery was assembled and a charge/discharge test was conducted. The negative electrode of this battery is a lithium foil (
The positive electrode is a polyaniline film crimped onto a titanium mesh conductor, and two positive electrodes are placed on both sides of one negative electrode. The two electrodes are separated by a microporous polypropylene film that allows ions to pass through but not electrons. The figure is a configuration diagram of this battery. Lithium perchlorate (L
Li, MoQ in a propylene carbonate solution in which 1.0 mol/l of iCfO4) was dissolved.

をO,OO5m o E / l溶解した電解液を注入
した。
An electrolytic solution containing O,OO5m o E/l was injected.

このように作製した電池の性能を充放電試験により調べ
た。まず、1mA/cd!の定電流で1時間充電を行い
、次に同じ電流密度で端子電圧が1.5 Vに低下する
まで放電した。この充放電サイクルを繰り返し行うと充
電電気量の100%を放電できなくなるサイクル数が求
まる。該充放電における負極の反応は、充電時には電解
液中に溶解したリチウムが電析し、この一部は絶縁被膜
で覆われ不活性となる。そのため放電の際には、該電析
リチウムの一部と初期のリチウム負極の一部が溶解する
こととなる。この初期のリチウムを全て使い尽くしたと
きに充電電気量を100%放電できなくなり、寿命とな
る。クーロン効率は次式のごとく、初期リチウム容量を
寿命になるまでの総放電容量で割った値をもとに求める
The performance of the battery produced in this way was investigated by a charge/discharge test. First, 1mA/cd! The battery was charged for 1 hour at a constant current of 1.5 V, and then discharged at the same current density until the terminal voltage decreased to 1.5 V. When this charging/discharging cycle is repeated, the number of cycles at which 100% of the charged electricity cannot be discharged is determined. The reaction of the negative electrode during charging and discharging is such that lithium dissolved in the electrolytic solution is electrodeposited during charging, and a portion of this is covered with an insulating film and becomes inactive. Therefore, during discharge, a portion of the electrodeposited lithium and a portion of the initial lithium negative electrode will dissolve. When all of this initial lithium is used up, 100% of the charged electricity cannot be discharged, and the battery life reaches its end. Coulombic efficiency is calculated based on the initial lithium capacity divided by the total discharge capacity until the end of life, as shown in the following formula.

上記クーロン効率および寿命に達するまでの充放電回数
を表のNα1に示す。
The coulombic efficiency and the number of times of charging and discharging until reaching the end of life are shown in Nα1 in the table.

また、比較例としてLiCfO4 ffi/fプロピレンカーボネートに溶解させた電解液
を用い、上記と同じ電池を組み、同一条件の充放電試験
を行った場合の結果も表のNcLClに示した。
Further, as a comparative example, the same battery as above was assembled using an electrolytic solution dissolved in LiCfO4 ffi/f propylene carbonate, and a charge/discharge test was conducted under the same conditions. The results are also shown in NcLCl in the table.

このように、Li2Mo0.を添加することにより、リ
チウム負極の充放電クーロン効率が向上した。また寿命
も2倍に向上した。 □実施例2 四フッ化ホウ酸リチウム(LiBF、)を1.0m o
 1 / lプロピレンカーボネートに溶解させた溶液
にLitMoO4をO,OO5m o 1 / l添加
した電解液を用いた以外は実施例1と全く同じ電池を構
成し、実施例1と同一条件の充放電試験を行い、Li、
MoO,を添加したことによる効果を調べた。結果を表
のNα2に示した。
In this way, Li2Mo0. By adding , the charge/discharge coulombic efficiency of the lithium negative electrode was improved. The lifespan has also been doubled. □Example 2 Lithium tetrafluoroborate (LiBF) at 1.0 m o
A battery was constructed that was exactly the same as in Example 1, except that an electrolytic solution in which 1/l of LitMoO4 was added to a solution dissolved in 1/l propylene carbonate was used, and a charge/discharge test was conducted under the same conditions as in Example 1. and Li,
The effect of adding MoO was investigated. The results are shown in Nα2 in the table.

また、比較例としてL 1BF41mo f!/lのみ
をプロピレンカーボネートに溶解させた電解液を用い、
同様の実験を行った結果を表のNαC2に示した。
Also, as a comparative example, L 1BF41mo f! Using an electrolytic solution in which only /l is dissolved in propylene carbonate,
The results of a similar experiment are shown in NαC2 in the table.

このようにLitMoO,を添加することによりリチウ
ム負極の充放電クーロン効率が向上し、寿命も2倍向上
した。
By adding LitMoO in this manner, the charge/discharge coulombic efficiency of the lithium negative electrode was improved, and the life span was also doubled.

実施例3 LiCj2041moj2/ffiをプロピレンカーボ
ネートとエチレンカーボネートを容積比で1=2に混合
した溶媒に溶解させた溶液を用意し、該溶液にモリブデ
ン酸化物としてLi、MoO,を0゜005moffi
/42SMootを0.05 m o e / l 。
Example 3 A solution in which LiCj2041moj2/ffi was dissolved in a solvent in which propylene carbonate and ethylene carbonate were mixed at a volume ratio of 1=2 was prepared, and Li, MoO, as molybdenum oxide was added to the solution at 0°005moffi.
/42SMoot to 0.05 moe/l.

MoO,Cf2を0.01moj!/ffi、 Mo0
CI!、4を0.05 m o l / 1、Mo0(
、C4をO,l m o 1/2をそれぞれ添加して電
解液を製作し、他の条件は実施例1と同一構成の電池を
組み、実施例1と同一条件の充放電試験を行った。結果
を表のNo、 3.4.5.6.7に示した。
MoO, Cf2 is 0.01 moj! /ffi, Mo0
CI! , 4 to 0.05 mol/1, Mo0(
, C4, O and l m o 1/2 were respectively added to prepare an electrolytic solution, and a battery with the same configuration as in Example 1 was assembled under other conditions, and a charge/discharge test was conducted under the same conditions as in Example 1. . The results are shown in No. 3.4.5.6.7 of the table.

また、比較例として、LiCff1O4のみをプロピレ
ンカーボネートとエチレンカーボネートを容積比で1=
2に混合した溶媒に溶解させた電解液を用い、同様の実
験を行った結果を表のNo、 C3に示した。
In addition, as a comparative example, only LiCff1O4 was mixed with propylene carbonate and ethylene carbonate at a volume ratio of 1=
The results of a similar experiment conducted using an electrolytic solution dissolved in the solvent mixed in 2 are shown in No. C3 in the table.

このように、モリブデン酸化物を添加することによりリ
チウム負極の充放電クーロン効率が向上した。また、寿
命も1.5〜5倍向上した。
As described above, the charge/discharge coulombic efficiency of the lithium negative electrode was improved by adding molybdenum oxide. Furthermore, the life span was improved by 1.5 to 5 times.

実施例4 L i CIO,,1mo 1/lをスルホランに溶解
させた溶液にLizMoOnをO,OO5m o 1/
r添加した電解液を用いたこと以外は実施例1と全く同
じ電池を構成し、実施例1と同一条件の充放電試験を行
った。結果を表のNα8に示した。
Example 4 LizMoOn was added to a solution in which 1/l of Li CIO, 1 mo was dissolved in sulfolane.
A battery was constructed exactly the same as in Example 1, except that an electrolytic solution containing r was used, and a charge/discharge test was conducted under the same conditions as in Example 1. The results are shown in Nα8 in the table.

また、比較例としてLiCff1O,のみをスルホラン
に1 m o l / l溶解させた電解液を用い、同
様の実験を行った結果を表のNaC4に示した。
Further, as a comparative example, a similar experiment was conducted using an electrolytic solution in which only LiCff1O was dissolved in sulfolane at a concentration of 1 mol/l, and the results are shown in NaC4 in the table.

このように、LizMOOaを添加することによりリチ
ウム負極の充放電クーロン効率が向上した。また、寿命
も2.5倍向上した。
As described above, the charge/discharge coulombic efficiency of the lithium negative electrode was improved by adding LizMOOa. Furthermore, the life span was improved by 2.5 times.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の効果を評価するために用いた電池の構成図
である。 ■・・・リチウム負極、2・・・ポリアニリン正極3・
・・ポリプロピレン製セパレータ 4・・・電解液、5・・・電槽
The figure is a configuration diagram of a battery used to evaluate the effects of the present invention. ■...Lithium negative electrode, 2...Polyaniline positive electrode 3.
...Polypropylene separator 4...Electrolyte solution, 5...Battery container

Claims (3)

【特許請求の範囲】[Claims] (1)有機溶媒にリチウム塩を溶解させた溶液に添加剤
としてモリブデン酸化物を加えることを特徴とするリチ
ウム二次電池用電解液
(1) An electrolytic solution for lithium secondary batteries characterized by adding molybdenum oxide as an additive to a solution of lithium salt dissolved in an organic solvent.
(2)モリブデン酸化物は三酸化モリブデン(MoO_
3)、モリブデン酸リチウム(Li_2MoO_4)、
二塩化二酸化モリブデン(MoO_2Cl_2)または
四塩化一酸化モリブデン(MoOCl_4)である特許
請求の範囲第(1)項記載のリチウム二次電池用電解液
(2) Molybdenum oxide is molybdenum trioxide (MoO_
3), lithium molybdate (Li_2MoO_4),
The electrolytic solution for a lithium secondary battery according to claim (1), which is molybdenum dioxide dichloride (MoO_2Cl_2) or molybdenum monoxide tetrachloride (MoOCl_4).
(3)モリブデン酸化物の添加濃度は0.001〜0.
5mol/lである特許請求の範囲第(1)項記載のリ
チウム二次電池用電解液。
(3) The concentration of molybdenum oxide added is 0.001-0.
The electrolytic solution for a lithium secondary battery according to claim (1), which has a concentration of 5 mol/l.
JP63158602A 1987-10-14 1988-06-27 Electrolyte for lithium storage battery Pending JPH01200572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63158602A JPH01200572A (en) 1987-10-14 1988-06-27 Electrolyte for lithium storage battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-259060 1987-10-14
JP25906087 1987-10-14
JP63158602A JPH01200572A (en) 1987-10-14 1988-06-27 Electrolyte for lithium storage battery

Publications (1)

Publication Number Publication Date
JPH01200572A true JPH01200572A (en) 1989-08-11

Family

ID=26485659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63158602A Pending JPH01200572A (en) 1987-10-14 1988-06-27 Electrolyte for lithium storage battery

Country Status (1)

Country Link
JP (1) JPH01200572A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0805504A1 (en) * 1996-05-03 1997-11-05 Moli Energy (1990) Limited Use of B2O3 additive in non-aqueous electrolytes of rechargeable lithium batteries
JP2000106174A (en) * 1998-09-30 2000-04-11 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008510287A (en) * 2004-12-07 2008-04-03 エルジー・ケム・リミテッド Non-aqueous electrolyte containing oxygen anion and lithium secondary battery using the same
JP2009123576A (en) * 2007-11-16 2009-06-04 Sony Corp Nonaqueous electrolyte secondary battery and nonaqueous electrolyte composition
JP2011181353A (en) * 2010-03-02 2011-09-15 Sony Corp Nonaqueous electrolyte composition and nonaqueous electrolyte battery
JP2011181357A (en) * 2010-03-02 2011-09-15 Sony Corp Nonaqueous electrolyte battery
JP2011181355A (en) * 2010-03-02 2011-09-15 Sony Corp Nonaqueous electrolyte battery
JP2011181358A (en) * 2010-03-02 2011-09-15 Sony Corp Nonaqueous electrolytic solution and battery
JP2021163564A (en) * 2020-03-31 2021-10-11 Muアイオニックソリューションズ株式会社 Power storage device and non-aqueous electrolyte used for the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5964902A (en) * 1996-05-03 1999-10-12 Nec Moli Energy (Canada) Limited Use of B2 O3 additive in non-aqueous rechargeable lithium batteries
EP0805504A1 (en) * 1996-05-03 1997-11-05 Moli Energy (1990) Limited Use of B2O3 additive in non-aqueous electrolytes of rechargeable lithium batteries
JP2000106174A (en) * 1998-09-30 2000-04-11 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US8597826B2 (en) 2004-12-07 2013-12-03 Lg Chem, Ltd. Nonaqueous electrolyte comprising oxyanion and lithium secondary battery using the same
JP2008510287A (en) * 2004-12-07 2008-04-03 エルジー・ケム・リミテッド Non-aqueous electrolyte containing oxygen anion and lithium secondary battery using the same
JP4664978B2 (en) * 2004-12-07 2011-04-06 エルジー・ケム・リミテッド Non-aqueous electrolyte containing oxygen anion and lithium secondary battery using the same
JP2009123576A (en) * 2007-11-16 2009-06-04 Sony Corp Nonaqueous electrolyte secondary battery and nonaqueous electrolyte composition
JP2011181353A (en) * 2010-03-02 2011-09-15 Sony Corp Nonaqueous electrolyte composition and nonaqueous electrolyte battery
JP2011181355A (en) * 2010-03-02 2011-09-15 Sony Corp Nonaqueous electrolyte battery
JP2011181358A (en) * 2010-03-02 2011-09-15 Sony Corp Nonaqueous electrolytic solution and battery
JP2011181357A (en) * 2010-03-02 2011-09-15 Sony Corp Nonaqueous electrolyte battery
US9343775B2 (en) 2010-03-02 2016-05-17 Sony Corporation Nonaqueous electrolyte composition and nonaqueous electrolyte battery
US9401529B2 (en) 2010-03-02 2016-07-26 Sony Corporation Nonaqueous electrolytic solution and battery including a heteropolyacid and/or a heteropolyacid compound
JP2021163564A (en) * 2020-03-31 2021-10-11 Muアイオニックソリューションズ株式会社 Power storage device and non-aqueous electrolyte used for the same

Similar Documents

Publication Publication Date Title
JPS6286673A (en) Electrolyte for lithium secondary battery
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
JPH01200572A (en) Electrolyte for lithium storage battery
JP2830365B2 (en) Non-aqueous electrolyte secondary battery
JP3016447B2 (en) Non-aqueous electrolyte battery
JPS634569A (en) Nonaqueous electrolyte secondary battery
JPH03152879A (en) Nonaqueous electrolyte secondary battery
JP3565478B2 (en) Non-aqueous electrolyte secondary battery
JPH04355056A (en) Nonaqueous electrolyte secondary battery
JPH06267542A (en) Nonaqueous electrolyte battery
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JP3443257B2 (en) Solid electrolyte battery
JPH05182665A (en) Nonaqueous secondary battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JPH0359963A (en) Lithium secondary battery
JPH0355770A (en) Lithium secondary battery
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JPH04206276A (en) Nonaqueous electrolyte secondary battery
JP3128230B2 (en) Non-aqueous electrolyte secondary battery
JPH0349166A (en) Lithium secondary battery
JPH0357168A (en) Lithium secondary battery
JPH01274359A (en) Nonaqueous electrolyte secondary battery
JPH03285271A (en) Battery
JPH0564429B2 (en)