JPS6286673A - Electrolyte for lithium secondary battery - Google Patents

Electrolyte for lithium secondary battery

Info

Publication number
JPS6286673A
JPS6286673A JP60227546A JP22754685A JPS6286673A JP S6286673 A JPS6286673 A JP S6286673A JP 60227546 A JP60227546 A JP 60227546A JP 22754685 A JP22754685 A JP 22754685A JP S6286673 A JPS6286673 A JP S6286673A
Authority
JP
Japan
Prior art keywords
lithium
electrolyte
organic compound
negative electrode
lithic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60227546A
Other languages
Japanese (ja)
Inventor
Fumio Goto
文夫 後藤
Katsuji Abe
阿部 勝司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP60227546A priority Critical patent/JPS6286673A/en
Publication of JPS6286673A publication Critical patent/JPS6286673A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To secure such an electrolyte that improves charge and discharge coulomb efficiency and life capacity in a lithic negative electrode, by adding a specific organic compound to the electrolyte in which lithic salt is dissolved by an organic solvent. CONSTITUTION:An organic compound having a benzene ring and a carbonyl group in a molecule simultaneously is added to a solution having lithic salt dissolved in an organic solvent. As for the organic compound, diphenyl carbonate, benzophenone, phenyl benzoate, 9-fluonorene, dibenzyl ketone, 3-phenyl acetylacetone, dibenzoylmethane, benzyl, 4-benzoylbiphenyl are used, or one or more than two kinds among derivatives having a substituent in these benzene rings are used. The substituent consists of methyl, ethyl, propyl, butyl, methoxyl, ethoxyl, propoxyl and butoxyl groups, etc., adding content should be set to a range of 0.005-1.0mol/l.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウムを負極活物質とするリチウム二次電
池に用いる電解液に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrolytic solution used in a lithium secondary battery using lithium as a negative electrode active material.

〔従来技術〕[Prior art]

リチウムを負極活物質として用いる電池は、高パワー・
高エネルギー密度を有するものとして期待されている。
Batteries that use lithium as the negative electrode active material have high power and
It is expected to have high energy density.

しかし、このリチウム負極は二酸化マンガンやフッ化カ
ーボンなどを正極とした一次電池への適用には成功して
いるものの、二次電池へ適用した場合、充放電のクーロ
ン効率が低いということが問題になっている。この充放
電のクーロン効率が低い原因には次のようなことが考え
られる。
However, although this lithium negative electrode has been successfully applied to primary batteries using manganese dioxide or carbon fluoride as positive electrodes, when applied to secondary batteries, the problem is that the coulombic efficiency of charging and discharging is low. It has become. Possible causes of the low coulombic efficiency of charging and discharging are as follows.

ひとつには、リチウム負極を充電した時に生ずる電析リ
チウムが非常に活性であり、これが電解液と反応して負
極表面に不活性な被膜を形成し。
For one thing, the deposited lithium produced when a lithium negative electrode is charged is very active, and this reacts with the electrolyte to form an inert film on the surface of the negative electrode.

負極を不働態化してしまうことである。また、この被膜
は均一ではなく2部分的に不完全であるため充放電の繰
り返しによってスポンジ状リチウムの生長核となる。こ
のスポンジ状リチウムが住長すると1両極間にあるセパ
レータを貫通し9両極を短絡させてしまう。
This is because the negative electrode becomes passivated. Further, since this film is not uniform and incomplete in two parts, it becomes a growth nucleus of spongy lithium through repeated charging and discharging. If this sponge-like lithium grows long enough, it will penetrate the separator between the two electrodes, causing a short circuit between the two electrodes.

上記のような要因を取り除(方法として、従来から次の
ような提案がなされている。
The following proposals have been made to eliminate the above factors:

負極基板としてアルミニウムを用いる方法である。アル
ミニウム上にリチウムが析出すると1合金化しながら、
リチウムがアルミニウム中へ浸透していくため、電析リ
チウムと電解液との反応が抑制されて、不働態化膜の形
成を防止しようとするものである。しかし、この方法で
は1合金化により、リチウム負極の電位が正極側にシフ
トし。
This method uses aluminum as the negative electrode substrate. When lithium is deposited on aluminum, it becomes a single alloy, and
Since lithium permeates into the aluminum, the reaction between the electrodeposited lithium and the electrolyte is suppressed, thereby preventing the formation of a passivation film. However, in this method, the potential of the lithium negative electrode shifts to the positive electrode side due to 1-alloying.

電池の起電力が低下し、しかも充放電の繰り返しにより
アルミニウム基板が粉末化、してしまう。
The electromotive force of the battery decreases, and the aluminum substrate turns into powder due to repeated charging and discharging.

また、プロピレンカーボネート等の高誘電性・高安定性
のある溶媒にエーテル等の溶媒を混合し。
In addition, a solvent such as ether is mixed with a highly dielectric and highly stable solvent such as propylene carbonate.

電解液の電導率を高めると同時にリチウムに対する反応
性を下げようとする方法がある(特開昭59−8279
号)。しかし、この方法では、クーロン効率や寿命性能
の向上に対する効果が非常に小さい。
There is a method of increasing the conductivity of the electrolyte and simultaneously lowering the reactivity toward lithium (Japanese Patent Application Laid-Open No. 59-8279
issue). However, this method has very little effect on improving coulombic efficiency and life performance.

更に、他の方法として、電解液にエチレングリコールを
添加して、リチウムと電解液との反応やリチウムの析出
形態を変化させようとすることが提案されている(特開
昭59−130073号)。
Furthermore, as another method, it has been proposed to add ethylene glycol to the electrolyte to change the reaction between lithium and the electrolyte and the form of lithium precipitation (Japanese Patent Laid-Open No. 130073/1982). .

しかし、この場合にも上記添加剤が負極全体にわたって
均一な作用を呈さないため、充分な効果は発揮されてい
ない。
However, in this case as well, the additive does not exhibit a uniform effect over the entire negative electrode, and therefore sufficient effects are not exhibited.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記従来技術の問題点に鑑みなされたもので
あり、リチウム負極の充放電クーロン効率及び寿命性能
を向上させるリチウム二次電池用電解液を提供しようと
するものである。
The present invention has been made in view of the problems of the prior art described above, and aims to provide an electrolytic solution for a lithium secondary battery that improves the charge/discharge coulombic efficiency and life performance of a lithium negative electrode.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のリチウム二次電池用電解液は、有機溶媒にリチ
ウム塩を溶解させた溶液に、ベンゼン環とカルボニル基
とを同時に分子内に有する有機化合物を添加して成るこ
とを特徴とするものである。
The electrolytic solution for lithium secondary batteries of the present invention is characterized in that it is made by adding an organic compound having both a benzene ring and a carbonyl group in the molecule to a solution in which a lithium salt is dissolved in an organic solvent. be.

リチウム二次電池は1本発明の電解液が含まれる電槽中
にリチウムあるいはリチウム合金から成る負極及び充放
電可能な正極を一部あるいは全部浸漬して構成されるも
のである。正極としては。
A lithium secondary battery is constructed by partially or completely immersing a negative electrode made of lithium or a lithium alloy and a chargeable/dischargeable positive electrode in a battery containing the electrolytic solution of the present invention. As a positive electrode.

二酸化モリブデン(MOO3)や五酸化バナジウム(v
20、)等の酸化物、硫化チタン(TiS2)やセレン
化ニオブ(NbSez)等のカルコゲン化合物、ポリア
セチレンやポリピロール等の導電性高分子、あるいはカ
ーボン等充放電可能な電極であればいかなるものでもよ
い。また、その他の電池構成部品もリチウム電池として
一般的に使用可能なものであればよい。
Molybdenum dioxide (MOO3) and vanadium pentoxide (v
Any chargeable and dischargeable electrode may be used, such as oxides such as 20), chalcogen compounds such as titanium sulfide (TiS2) and niobium selenide (NbSez), conductive polymers such as polyacetylene and polypyrrole, or carbon. . Further, other battery components may be used as long as they can be generally used as lithium batteries.

本発明の電解液は、リチウム負極が水溶液と反応するた
め、非水型、解液でなければならない。非水電解液に用
いられる有機溶媒は、一般的に電解液に用いられるもの
であればいかなるものでもよい。例えば、プロピレンカ
ーボネート、スルホラン、アセトニトリル、ジメチルス
ルホキシド、テトラヒドロフラン、2−メチルテトラヒ
ドロフラン、ジオキソラン、γ−ブチロラクトン、エチ
レンカーボネート、1,2−ジメトキシエタン等が挙げ
られ、それらのうちの1種または2種以上を使用する。
The electrolytic solution of the present invention must be non-aqueous and liquid-soluble since the lithium negative electrode reacts with an aqueous solution. The organic solvent used in the non-aqueous electrolyte may be any organic solvent that is generally used in electrolytes. Examples include propylene carbonate, sulfolane, acetonitrile, dimethyl sulfoxide, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, γ-butyrolactone, ethylene carbonate, 1,2-dimethoxyethane, etc., and one or more of them may be used. use.

リチウム塩は、上記有機溶媒に溶解して、電解液に電導
性を与える支持電解質であり、一般的にこの種の支持電
解質として用いられているものでよし)。例えば、Lx
C10*、L+BP、、Lt八へFb、 LiPFb、
 Li [。
The lithium salt is a supporting electrolyte that is dissolved in the organic solvent and provides conductivity to the electrolytic solution, and may be one that is generally used as this type of supporting electrolyte). For example, Lx
C10*, L+BP,, Fb to Lt8, LiPFb,
Li [.

LiBr等が挙げられ、それらのうちの1種または2種
以上を使用する。
Examples include LiBr, and one or more of them are used.

該リチウム塩の有機溶媒への溶解量は、有機溶媒12に
対して0.01〜2モルの範囲で溶解させるのが望まし
い。0.01モル未満の場合には、溶液の抵抗が大きく
、電流を定常的に流しにくくなり、更に充放電の容量が
小さくなる可能性がある。
The amount of the lithium salt dissolved in the organic solvent is desirably in the range of 0.01 to 2 mol per organic solvent 12. When the amount is less than 0.01 mol, the resistance of the solution is large, making it difficult to pass current steadily, and furthermore, the charge/discharge capacity may be reduced.

一方、2モルを越える場合には、溶液中にリチウム塩が
飽和して、リチウム塩を完全に溶解させることが困難と
なる。
On the other hand, if the amount exceeds 2 moles, the lithium salt becomes saturated in the solution, making it difficult to completely dissolve the lithium salt.

本発明において、上記リチウム塩を有機溶媒に溶解して
なる溶液にベンゼン環とカルボニル基を同時に分子内に
有する有機化合物を添加する。
In the present invention, an organic compound having both a benzene ring and a carbonyl group in its molecule is added to a solution prepared by dissolving the above lithium salt in an organic solvent.

この有機化合物を添加することにより5以下のような現
象が生じていると考えられる。リチウム二次電池を充電
すると負極側にリチウムが電析する・この電析リチウム
表面に上記有機化合物力(吸着し、一種のイオン伝導性
の被膜を形成する。該有機化合物が有するカルボニル基
は、電析リチウムへの吸着活性が大きく、逆にベンゼン
環は、吸着活性が小さい。電析リチウムへの吸着活性が
異なる2種の官能基を有するため、該有機化合物は。
It is thought that the following phenomena occur by adding this organic compound. When a lithium secondary battery is charged, lithium is electrodeposited on the negative electrode side.The organic compound is adsorbed onto the surface of this electrodeposited lithium, forming a kind of ion-conductive film.The carbonyl group of the organic compound is The adsorption activity to electrodeposited lithium is large, while the benzene ring has a small adsorption activity.This organic compound has two types of functional groups that have different adsorption activities to electrodeposited lithium.

エネルギーレベルにバラツキのある電析リチウム表面に
対して、均一な強さで吸着した被膜を形成する。
Forms a film that is adsorbed with uniform strength on the surface of electrodeposited lithium, which has varying energy levels.

上記均一に吸着した被膜が、電解液と電析リチウムとの
反応を阻止する。そのため、リチウムの不働態化やスポ
ンジ状の析出が抑制され、負極の充放電クーロン効率や
寿命性能が向上する。
The uniformly adsorbed film prevents the reaction between the electrolyte and the deposited lithium. Therefore, passivation of lithium and spongy precipitation are suppressed, and the charge/discharge coulombic efficiency and life performance of the negative electrode are improved.

上記有機化合物としては、炭酸ジフェニル、ベンゾフェ
ノン、安息香酸フェニル、9−フルオノレン、ジヘンジ
ルケトン、3−フェニルアセチルアセトン、ジベンゾイ
ルメタン、ベンジル、4−ベンゾイルビフェニル、ある
いはこれらのベンゼン環に置換基を有する誘導体等が挙
げられ、これらのうちの1種または2種以上を使用する
。なお。
Examples of the organic compounds include diphenyl carbonate, benzophenone, phenyl benzoate, 9-fluoronolene, dihenzyl ketone, 3-phenylacetylacetone, dibenzoylmethane, benzyl, 4-benzoylbiphenyl, or derivatives thereof having a substituent on the benzene ring. One or more of these may be used. In addition.

上記置換基は、メチル基、エチル基、プロピル基。The above substituents are a methyl group, an ethyl group, and a propyl group.

ブヂル基5メトキシ基、エトキシ基、プロポキシ基、ブ
トキシ基等である。例えば、上記のベンゼン環に置換基
を有する誘導体として、ベンゾフェノンにメチル基を導
入した4、4° −ジメチルベンゾフェノンが挙げられ
る。
butyl group, methoxy group, ethoxy group, propoxy group, butoxy group, etc. For example, an example of the derivative having a substituent on the benzene ring is 4,4°-dimethylbenzophenone, which is obtained by introducing a methyl group into benzophenone.

上記有機化合物の添加濃度は、0.005〜1.0mo
l/lの範囲が望ましい。添加濃度が0.005m。
The concentration of the organic compound added is 0.005 to 1.0 mo
A range of l/l is desirable. Addition concentration is 0.005m.

l/1未満では、有機化合物を添加したことによる効果
が非常に小さく、一方、  1.Omol/6を越える
場合には、逆に充放電クーロン効率や寿命性能が低下し
てしまう。
If it is less than l/1, the effect of adding the organic compound will be very small; on the other hand, 1. If it exceeds Omol/6, the charge/discharge coulombic efficiency and life performance will deteriorate.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、リチウム二次電池のリチウム負極にお
ける充放電クーロン効率及び寿命性能を向上させる電解
液を提供することができる。これは、有機溶媒によりリ
チウム塩を溶解した電解液に、ベンゼン環とカルボニル
基とを同時に分子内に有する有機化合物を添加したため
である。
According to the present invention, it is possible to provide an electrolytic solution that improves the charge/discharge coulombic efficiency and life performance of a lithium negative electrode of a lithium secondary battery. This is because an organic compound having both a benzene ring and a carbonyl group in its molecule was added to an electrolytic solution in which a lithium salt was dissolved in an organic solvent.

〔実施例〕〔Example〕

以下9本発明の詳細な説明する。 Hereinafter, nine aspects of the present invention will be described in detail.

実施例1゜ Cu線を試料極、 Li箔を対極、 Li線を照合電極
として、これらをビーカー型セルに組付けた。電解液に
は、添加剤としての炭酸ジフェニルを0.5m。
Example 1 A Cu wire was used as a sample electrode, a Li foil was used as a counter electrode, and a Li wire was used as a reference electrode, and these were assembled into a beaker-shaped cell. The electrolyte contains 0.5 m of diphenyl carbonate as an additive.

1/L  リチウム塩としての過塩素酸リチウム(Li
C104)を1.0 mol/ 1溶解させたプロピレ
ンカーボネート?g液を用いた。この電解液中において
、Liを上記Cu綿上に電析させて、 Liの負極特性
を調べた。
1/L Lithium perchlorate (Li
C104) dissolved in 1.0 mol/1 propylene carbonate? g solution was used. In this electrolytic solution, Li was electrodeposited onto the Cu cotton, and the negative electrode characteristics of Li were investigated.

すなわち、まず1mA/cJの定電流で30分間Liを
電析させて充電した後、直らに同じ電流密度でLiを溶
解させて放電した。なお、放電の終了は、照合電極に対
する試料極の電位が0.5Vに達した時点とした。この
充放電サイクルを繰り返し行い。
That is, first, after charging by electrodepositing Li at a constant current of 1 mA/cJ for 30 minutes, the battery was immediately discharged by dissolving Li at the same current density. Note that the discharge ended when the potential of the sample electrode with respect to the reference electrode reached 0.5V. Repeat this charge/discharge cycle.

各サイクルでの放電容量を測定した。そして、充電電気
量に対する放電容量の割合、すなわちクーロン効率を求
めた。
The discharge capacity at each cycle was measured. Then, the ratio of the discharge capacity to the amount of charged electricity, that is, the coulomb efficiency, was determined.

第1図は、Li極のクーロン効率とサイクル数との関係
を示す図であり2図中aは本発明の上記電解液を用いた
場合であり、またSlは比較例として添加剤を含まない
1 mol/ 7!LiClO4/プロピレンカーボネ
ートを電解液とした場合である。
Figure 1 is a diagram showing the relationship between the coulombic efficiency of Li electrodes and the number of cycles, and in Figure 2, a is the case where the above electrolyte of the present invention is used, and Sl is a comparative example that does not contain additives. 1 mol/7! This is the case when LiClO4/propylene carbonate is used as the electrolyte.

第1図より明らかなように、炭酸ジフェニルを添加した
本発明の電解液を使用することにより。
As is clear from FIG. 1, by using the electrolytic solution of the present invention to which diphenyl carbonate is added.

Li極のクーロン効率及び寿命性能を著しく向上させる
ことがわかる。
It can be seen that the coulombic efficiency and life performance of the Li electrode are significantly improved.

実施例2゜ 添加剤として表に示すような有機化合物をそれぞれ0.
02 mol/ E添加した以外は実施例1と同様にし
て5種類の電解液を調製した(表の試料mb〜「)。こ
れらの電解液を用いて実施例1と同様にしてLi極の充
放電特性を測定した。
Example 2 0.0% of the organic compounds shown in the table were used as additives.
Five types of electrolytic solutions were prepared in the same manner as in Example 1 except that 02 mol/E was added (samples mb to " in the table). Using these electrolytic solutions, Li electrodes were charged in the same manner as in Example 1. The discharge characteristics were measured.

表 第2図は、Li極のクーロン効率とサイクル数との関係
を示す図であり1図中b−fは本発明の上記電解液を用
いた場合(表中の試料階と対応する)であり、またSl
は比較例として添加剤を含まない1 mo+/ 12 
LiClO4/プロピレンカーボネートを電解液とした
場合である。
Table 2 shows the relationship between the Coulombic efficiency of Li electrodes and the number of cycles. In the figure, b to f are the cases when the above electrolyte of the present invention is used (corresponding to the sample scale in the table). Yes, also Sl
is 1 mo+/12 without additives as a comparative example.
This is the case when LiClO4/propylene carbonate is used as the electrolyte.

第2図より明らかなように、添加剤を添加した本発明の
電解液を使用することにより、Li極のクーロン効率及
び寿命性能を著しく向上させることがわかる。
As is clear from FIG. 2, it can be seen that by using the electrolytic solution of the present invention containing additives, the Coulombic efficiency and life performance of the Li electrode are significantly improved.

実施例3゜ スルホランに炭酸ジフェニル0.5 mol/ lと過
塩素酸リチウム(LiC104) 1.0 mo+/ 
1とを溶解して本発明の電解液を調製した。この電解液
を用いて実施例1と同様にしてLi極の充放電特性を測
定した。
Example 3 0.5 mol/l of diphenyl carbonate and 1.0 mo+/l of lithium perchlorate (LiC104) in sulfolane
1 was dissolved to prepare an electrolytic solution of the present invention. Using this electrolytic solution, the charging and discharging characteristics of the Li electrode were measured in the same manner as in Example 1.

第3図は、Li極のクーロン効率とサイクル数との関係
を示す図であり1図中gは本発明の上記電解液を用いた
場合であり、またS2は比較例として添加剤を含まない
1 mol/ l LiClO4/スルホランを電解液
とした場合である。
Figure 3 is a diagram showing the relationship between the coulombic efficiency of Li electrodes and the number of cycles. This is a case where 1 mol/l LiClO4/sulfolane is used as the electrolyte.

第3図より明らかなように2本発明の電解液を使用する
ことにより、 Li極のクーロン効率及び寿命性能を著
しく向上させることがわかる。
As is clear from FIG. 3, by using the electrolytic solution of the present invention, the Coulombic efficiency and life performance of the Li electrode are significantly improved.

実施例4゜ プロピレンカーボネートにベンゾフェノン0.0’l 
mol/ lとテトラフルオロホウ酸リチウム(LiB
F。
Example 4 0.0'l of benzophenone in propylene carbonate
mol/l and lithium tetrafluoroborate (LiB
F.

)  1.0mol/j!とを溶解して本発明の電解液
を調製した。この電解液を用いて実施例1と同様にして
Li極の充放電特性を測定した。
) 1.0mol/j! An electrolytic solution of the present invention was prepared by dissolving the above. Using this electrolytic solution, the charging and discharging characteristics of the Li electrode were measured in the same manner as in Example 1.

第4図は、Li極のクーロン効率とサイクル数との関係
を示す図であり2図中りは本発明の上記電解液を用いた
場合であり、また、S3は比較例として添加剤を含まな
い1 mol/ e LiBF4/プロピレンカーボネ
ートを電解液とした場合である。
Figure 4 is a diagram showing the relationship between the coulombic efficiency of Li electrodes and the number of cycles. This is the case when 1 mol/e of LiBF4/propylene carbonate is used as the electrolyte.

第4図より明らかなように9本発明の電解液を使用する
ことにより、Li極のクーロン効率及び寿命性能を著し
く向上させることがわかる。
As is clear from FIG. 4, it can be seen that by using the electrolytic solution of the present invention, the Coulombic efficiency and life performance of the Li electrode are significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は2本発明の電解液を用いた場合の
Li極のクーロン効率と充放電サイクル数との関係を示
す図である。
FIGS. 1 to 4 are diagrams showing the relationship between the Coulombic efficiency of Li electrodes and the number of charge/discharge cycles when two electrolytic solutions of the present invention are used.

Claims (1)

【特許請求の範囲】[Claims] (1)有機溶媒にリチウム塩を溶解させた溶液に、ベン
ゼン環とカルボニル基とを同時に分子内に有する有機化
合物を添加して成ることを特徴とするリチウム二次電池
用電解液。(2)上記有機化合物は、炭酸ジフェニル、
ベンゾフェノン、安息香酸フェニル、9−フルオノレン
、ジベンジルケトン、3−フェニルアセチルアセトン、
ジベンゾイルメタン、ベンジル、4−ベンゾイルビフェ
ニル、あるいはこれらのベンゼン環に置換基を有する誘
導体のうちの1種または2種以上である特許請求の範囲
第(1)項記載のリチウム二次電池用電解液。
(1) An electrolytic solution for a lithium secondary battery, characterized in that an organic compound having a benzene ring and a carbonyl group in the molecule is added to a solution of a lithium salt dissolved in an organic solvent. (2) The above organic compound is diphenyl carbonate,
Benzophenone, phenyl benzoate, 9-fluoronolene, dibenzyl ketone, 3-phenylacetylacetone,
The electrolyte for lithium secondary batteries according to claim (1), which is dibenzoylmethane, benzyl, 4-benzoylbiphenyl, or one or more derivatives thereof having a substituent on the benzene ring. liquid.
JP60227546A 1985-10-11 1985-10-11 Electrolyte for lithium secondary battery Pending JPS6286673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60227546A JPS6286673A (en) 1985-10-11 1985-10-11 Electrolyte for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60227546A JPS6286673A (en) 1985-10-11 1985-10-11 Electrolyte for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPS6286673A true JPS6286673A (en) 1987-04-21

Family

ID=16862592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60227546A Pending JPS6286673A (en) 1985-10-11 1985-10-11 Electrolyte for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPS6286673A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0628848A1 (en) * 1992-12-28 1994-12-14 Tonen Corporation Electrochromic device
EP0803924A2 (en) * 1996-04-25 1997-10-29 Wilson Greatbatch Ltd. Organic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
WO1999009606A1 (en) * 1997-08-15 1999-02-25 Aea Technology Plc Electrolyte for a rechargeable cell
EP0901180A1 (en) * 1997-08-29 1999-03-10 Alcatel Rechargeable lithium battery with organic electrolyte and carbone anode
EP0944126A1 (en) * 1998-03-18 1999-09-22 Hitachi, Ltd. Lithium secondary battery, its electrolyte, and electric apparatus using the same
WO2001091223A1 (en) * 2000-05-26 2001-11-29 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and secondary battery containing the same
JP2004063432A (en) * 2002-06-05 2004-02-26 Sony Corp Battery
KR100417563B1 (en) * 1995-05-26 2004-05-07 소니 가부시끼 가이샤 Non-Aqueous Electrolyte Secondary Battery
KR100423227B1 (en) * 1995-04-28 2004-06-23 소니 가부시끼 가이샤 Non-aqueous electrolyte secondary battery with shuttle
US6759170B2 (en) 1998-10-22 2004-07-06 Wilson Greatbatch Technologies, Inc. Organic carbonate additives for nonaqueous electrolyte rechargeable electrochemical cells
JP2010503956A (en) * 2006-09-14 2010-02-04 ハイ パワー リチウム ソシエテ アノニム Lithium-ion battery overcharge and discharge protection
WO2013133384A1 (en) * 2012-03-08 2013-09-12 富士フイルム株式会社 Electrolytic solution for nonaqueous secondary battery, and secondary battery
JP2013187061A (en) * 2012-03-08 2013-09-19 Nippon Carbide Ind Co Inc Electrolyte, electrochemical device
US9735448B2 (en) 2013-01-28 2017-08-15 Fujifilm Corporation Electrolytic solution for non-aqueous secondary battery, and non-aqueous secondary battery
US9941543B2 (en) 2012-05-24 2018-04-10 Fujifilm Corporation Non-aqueous liquid electrolyte for secondary battery and secondary battery
US10923769B2 (en) 2016-07-20 2021-02-16 Fujifilm Corporation Electrolytic solution for non-aqueous secondary battery and non-aqueous secondary battery
US11201352B2 (en) 2017-01-20 2021-12-14 Fujifilm Corporation Electrolytic solution for non-aqueous secondary battery, non-aqueous secondary battery, and metal complex
CN114976169A (en) * 2021-02-25 2022-08-30 国家能源投资集团有限责任公司 Electrolyte, application thereof, flow battery and battery stack

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0628848A4 (en) * 1992-12-28 1995-12-20 Tonen Corp Electrochromic device.
EP0628848A1 (en) * 1992-12-28 1994-12-14 Tonen Corporation Electrochromic device
KR100423227B1 (en) * 1995-04-28 2004-06-23 소니 가부시끼 가이샤 Non-aqueous electrolyte secondary battery with shuttle
KR100417563B1 (en) * 1995-05-26 2004-05-07 소니 가부시끼 가이샤 Non-Aqueous Electrolyte Secondary Battery
EP0803924A2 (en) * 1996-04-25 1997-10-29 Wilson Greatbatch Ltd. Organic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
EP0803924A3 (en) * 1996-04-25 1998-12-09 Wilson Greatbatch Ltd. Organic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US6387571B1 (en) * 1997-08-15 2002-05-14 Accentus Plc Electrolyte for a rechargeable cell
WO1999009606A1 (en) * 1997-08-15 1999-02-25 Aea Technology Plc Electrolyte for a rechargeable cell
EP0901180A1 (en) * 1997-08-29 1999-03-10 Alcatel Rechargeable lithium battery with organic electrolyte and carbone anode
EP0944126A1 (en) * 1998-03-18 1999-09-22 Hitachi, Ltd. Lithium secondary battery, its electrolyte, and electric apparatus using the same
US6759170B2 (en) 1998-10-22 2004-07-06 Wilson Greatbatch Technologies, Inc. Organic carbonate additives for nonaqueous electrolyte rechargeable electrochemical cells
EP1286409A1 (en) * 2000-05-26 2003-02-26 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and secondary battery containing the same
JP2001338681A (en) * 2000-05-26 2001-12-07 Mitsubishi Chemicals Corp Nonaqueous electrolyte and secondary cell using the same
WO2001091223A1 (en) * 2000-05-26 2001-11-29 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and secondary battery containing the same
US6905799B2 (en) * 2000-05-26 2005-06-14 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and secondary battery containing the same
EP1286409A4 (en) * 2000-05-26 2008-04-02 Mitsubishi Chem Corp Nonaqueous electrolytic solution and secondary battery containing the same
JP2004063432A (en) * 2002-06-05 2004-02-26 Sony Corp Battery
JP2010503956A (en) * 2006-09-14 2010-02-04 ハイ パワー リチウム ソシエテ アノニム Lithium-ion battery overcharge and discharge protection
WO2013133384A1 (en) * 2012-03-08 2013-09-12 富士フイルム株式会社 Electrolytic solution for nonaqueous secondary battery, and secondary battery
JP2013187061A (en) * 2012-03-08 2013-09-19 Nippon Carbide Ind Co Inc Electrolyte, electrochemical device
CN104205470A (en) * 2012-03-08 2014-12-10 富士胶片株式会社 Electrolytic solution for nonaqueous secondary battery, and secondary battery
US9905886B2 (en) 2012-03-08 2018-02-27 Fujifilm Corporation Non-aqueous liquid electrolyte for secondary battery and secondary battery
US9941543B2 (en) 2012-05-24 2018-04-10 Fujifilm Corporation Non-aqueous liquid electrolyte for secondary battery and secondary battery
US9735448B2 (en) 2013-01-28 2017-08-15 Fujifilm Corporation Electrolytic solution for non-aqueous secondary battery, and non-aqueous secondary battery
US10923769B2 (en) 2016-07-20 2021-02-16 Fujifilm Corporation Electrolytic solution for non-aqueous secondary battery and non-aqueous secondary battery
US11201352B2 (en) 2017-01-20 2021-12-14 Fujifilm Corporation Electrolytic solution for non-aqueous secondary battery, non-aqueous secondary battery, and metal complex
CN114976169A (en) * 2021-02-25 2022-08-30 国家能源投资集团有限责任公司 Electrolyte, application thereof, flow battery and battery stack

Similar Documents

Publication Publication Date Title
KR101430615B1 (en) Cathode and lithium battery using the same
US7416813B2 (en) Lithium secondary battery
JP3187929B2 (en) Lithium secondary battery
KR100413595B1 (en) secondary battery
US8168333B2 (en) Plastic crystal electrolyte for lithium batteries
JP3304187B2 (en) Electrolyte for lithium secondary battery
JP4092618B2 (en) Nonaqueous electrolyte secondary battery
JPS6286673A (en) Electrolyte for lithium secondary battery
JP5410277B2 (en) Nonaqueous electrolyte additive having cyano group and electrochemical device using the same
US7635542B2 (en) Non-aqueous electrolyte secondary battery
JP2001516130A (en) Electrolyte for storage battery
JP2005078820A (en) Non-aqueous electrolyte secondary battery
JPH11111332A (en) Nonaqueous electrolyte battery
JP2001057234A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JPH0922722A (en) Electrolytic solution for lithium ion battery
JP3016447B2 (en) Non-aqueous electrolyte battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP4253921B2 (en) Lithium secondary battery
JP2001266939A (en) Non-aqueous electrolytic solution for lithium ion secondary battery
JPH01200572A (en) Electrolyte for lithium storage battery
JPH0878058A (en) Lithium secondary battery
JPH08171934A (en) Lithium secondary battery
JP3348175B2 (en) Organic electrolyte secondary battery
JPS5931571A (en) Electrolyte for lithium secondary battery
JP4313982B2 (en) Nonaqueous electrolyte secondary battery