JPS5931571A - Electrolyte for lithium secondary battery - Google Patents

Electrolyte for lithium secondary battery

Info

Publication number
JPS5931571A
JPS5931571A JP57140978A JP14097882A JPS5931571A JP S5931571 A JPS5931571 A JP S5931571A JP 57140978 A JP57140978 A JP 57140978A JP 14097882 A JP14097882 A JP 14097882A JP S5931571 A JPS5931571 A JP S5931571A
Authority
JP
Japan
Prior art keywords
electrolyte
lithium
charging
lithium salt
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57140978A
Other languages
Japanese (ja)
Inventor
Shinichi Tobishima
真一 鳶島
Akihiko Yamaji
昭彦 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57140978A priority Critical patent/JPS5931571A/en
Publication of JPS5931571A publication Critical patent/JPS5931571A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To increase charge-discharge performance of a lithium electrode by using an ethylenediaminetetraacetic acid derivative containing lithium ion as a lithium salt in a nonaqueous electrolyte prepared by dissolving lithium salt in an organic solvent. CONSTITUTION:An electrolyte prepared by dissolving a lithium salt in an organic solvent is used. An ethylenediaminetetraacetic acid derivative containing at least one lithium ion is used as a lithium salt. One reason to increase charge- discharge performance is that ethylenediamine tetraacetic acid forms a complex with Li<+> ion, and solvation of Li<+> ion and dissociation of lithium salt in an electrolyte are changed. The amount of lithium salt to be dissolved is preferable to limit to a range of 2.0mol/l or less.

Description

【発明の詳細な説明】 本発明は、リチウム二次′電池に用いる非水電解液に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-aqueous electrolyte used in a lithium secondary battery.

リチウムを負極活物質として用いる電池は小型・高エネ
ルギ密度を有する電池として研究されているが、その二
次化が大きな問題点となっている。
Batteries using lithium as a negative electrode active material are being researched as small-sized batteries with high energy density, but secondaryization has become a major problem.

二次化が可能な正極活物質として、V、 O,。V, O, as positive electrode active materials that can be secondaryized.

T i Ot等の金属酸化物、 Ti St 、 WS
2等のI−状化合物が、Liとの間でトポケミカルな反
応をする化合物として知られており現在までチタン、ジ
ルコニウム、ハフニウム、ニオビウム、タンタル。
Metal oxides such as TiOt, TiSt, WS
I-type compounds such as 2 are known as compounds that undergo topochemical reactions with Li, and up to now titanium, zirconium, hafnium, niobium, and tantalum.

バナジウムの硫化物、セレン化物、テルル化物を用いた
電池(米国′+!f許第4089052号明州1臀参照
)及びセレン化ニオビつム等を用いた重油(J、Ele
ctrochem、 Soc、+ vol 124 、
 &l第968頁及び第325貞(1977年)参照)
等が開示されている。
Batteries using vanadium sulfide, selenide, and telluride (see U.S. Patent No. 4089052) and heavy oil (J, ELE) using niobium selenide, etc.
ctrochem, Soc, + vol 124,
&l p. 968 and 325 Sada (1977))
etc. are disclosed.

しかしながら、このような二次′電池用正極活物ノ^の
研究に比してLi4Qの充放’4.il性に関する研究
は充分とはいえず、Li二次串;池実現のためには、充
放電効率及びサイクル寿命等の充放電時性の良好な電解
液の探査が重大な問題となっている。
However, compared to such research on positive electrode active materials for secondary batteries, the charging and discharging of Li4. Research on il properties is not sufficient, and in order to realize Li secondary skewers, the search for electrolytes with good charging/discharging properties such as charging/discharging efficiency and cycle life is a critical issue. .

Li極の充放市効率を向上させる試みとしては、L i
 C10< /プロピレンカーボネイトにニトロメタン
、 SO,等の添加剤を加える試み(Electro−
chimica、 Acta、 vol 22 +第7
5〜83頁(1977))やL i CLOa /メチ
ルアセテートを用いる試み[Electrochjmi
ca、 Acta、  vol  22 +第85頁〜
91頁(1977))等が行なわれているが、必ずしも
充分とはいえず、さらに特性の優れたリチウム二次電池
用電解液が求められている。
As an attempt to improve the charging and discharging efficiency of Li poles,
Attempts to add additives such as nitromethane, SO, etc. to C10
chimica, Acta, vol 22 + 7th
5-83 (1977)) and attempts using L i CLOa /methyl acetate [Electrochjmi
ca, Acta, vol 22 + page 85~
91 (1977)), but these are not necessarily sufficient, and there is a need for an electrolytic solution for lithium secondary batteries with even better characteristics.

本発明は、このような現状に鑑みてなされたものであり
、その目的はLi極の充放電特性の優れたリチウム二次
電池用非水電解液を提供する事にある。
The present invention has been made in view of the current situation, and its purpose is to provide a non-aqueous electrolyte for lithium secondary batteries that has excellent charging and discharging characteristics of Li electrodes.

従って、本発明によるリチウム二次電池用非水電解液は
リチウム塩を有機溶媒に溶解させた非水電解液において
、前記非水電解液のリチウム塩として、少なくとも1個
のリチウムイオンを含むエチレンジアミン四酢酸誘導体
を用いた事を特徴とするものである。
Therefore, the nonaqueous electrolyte for a lithium secondary battery according to the present invention is a nonaqueous electrolyte in which a lithium salt is dissolved in an organic solvent, and the nonaqueous electrolyte contains ethylenediamine tetracontaining at least one lithium ion as the lithium salt of the nonaqueous electrolyte. It is characterized by the use of an acetic acid derivative.

本発明によれば、リチウム塩を有機溶媒に溶解した電解
液において、リチウム塩として、少なくとも1個のリチ
ウムイオンを含むエチレンジアミン四酢酸誘導体を用い
る事により、Li惟の充放電時性が良好なリチウム二次
電池を実現できる。
According to the present invention, by using an ethylenediaminetetraacetic acid derivative containing at least one lithium ion as the lithium salt in an electrolytic solution in which a lithium salt is dissolved in an organic solvent, lithium with good charging and discharging properties is produced. A secondary battery can be realized.

本発明を更に詳しく説明する。The present invention will be explained in more detail.

本発明によるリチウム二次電池の非水電解液に用いられ
る有4幾溶媒は、従来、この柿の電解液に用いられるも
のであれは、いかなるものでもよい。
The solvent used in the non-aqueous electrolyte of the lithium secondary battery according to the present invention may be any solvent conventionally used in the persimmon electrolyte.

例えばプロピレンカーボネイト、テトラハイドロフラ二
′、ジメチルスルポキシド、γ−ブチロラクトン、ジオ
キソラン、1,2−ジメトキシエタン。
For example, propylene carbonate, tetrahydrofuran di', dimethyl sulfoxide, γ-butyrolactone, dioxolane, 1,2-dimethoxyethane.

2−メチルテトラハイドロフランから選択された1 1
i1J以上の有機溶媒ケ用いる事ができる。
1 selected from 2-methyltetrahydrofuran 1
Organic solvents with a capacity of 1J or more can be used.

本発明においで、前記非水電解液に用いられるリチウム
塩は、少なくとも1 イb−1のリチウムイオンを含む
エチレンジアミ/四酢酸誘導体である。このようなエチ
レンジアミン四酢酸誘導体を用いると、なぜ充放電特性
が向上するのか、その理由は必すしも明確ではない。エ
チレンジアミン四酢酸とLl イオンは錯体を形成する
事にょシ、Li+イオンの溶媒和状態の変化や、電解液
中のリチウム塩のyyr =v 度の変化を生じしめる
のも一因と考えられる。
In the present invention, the lithium salt used in the non-aqueous electrolyte is an ethylenediami/tetraacetic acid derivative containing at least 1 lithium ion. The reason why the charge/discharge characteristics are improved when such an ethylenediaminetetraacetic acid derivative is used is not necessarily clear. Ethylenediaminetetraacetic acid and Ll ion form a complex, which is thought to be one of the causes of a change in the solvation state of Li + ion and a change in the degree of yyr = v of lithium salt in the electrolyte.

有機溶媒に溶解させる前記Li塩の量は好ましくは、2
.0 mot/を以下である。2.0 mol/lを趨
えると、溶解が田り・(Fとなり、充放電特性が著しく
低下するからである。
The amount of the Li salt dissolved in the organic solvent is preferably 2
.. 0 mot/ is below. This is because if the concentration exceeds 2.0 mol/l, the dissolution will become too low and the charge/discharge characteristics will deteriorate significantly.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例1 作用極としてPt極を、対憚と17でLiをさらに参照
’=4itとしてLiを用いたセルを組み、Pt極−ヒ
にLiを析出さぜる事により、Li1Mの充放電特性ケ
測定した。電解液には、4Li  イオン1a換したエ
チレンジアミン四酢酸・(以下4Li −EDTAと記
す)を1 mo!、/l *プロピレンカーボネイト(
以下PCと制す)に混合したものを用いた。
Example 1 By assembling a cell using Li as a working electrode and using Li with reference to 17 and 17, and depositing Li on the Pt electrode, the charge-discharge characteristics of Li1M were determined. Measured. The electrolyte contains 1 mo of 4Li ion 1a-exchanged ethylenediaminetetraacetic acid (hereinafter referred to as 4Li-EDTA). , /l *Propylene carbonate (
(hereinafter referred to as PC) was used.

測定は、捷ず5mA〆蒲 のw区流で1分間、pt他極
上Li?:析出させ光電した後、5mA/iの定電波で
Pt(?上に析出したLiをLl イオンとして放電す
るサイクル試暎を行なった。充放電効率はPt極の電位
変化より求め、ptng上に析出したLiをLl イオ
ンとして故紙させるのに要した電気量とPt極上にLi
を析出させるために要した電気量との比からq出した。
The measurement was carried out for 1 minute with a 5 mA current without switching, using PT and other high-quality Li? : After deposition and photoelectric charging, a cycle experiment was performed in which the Li deposited on Pt(?) was discharged as Ll ions using a constant radio wave of 5 mA/i.The charge/discharge efficiency was determined from the potential change of the Pt electrode, and The amount of electricity required to turn the precipitated Li into waste paper as Ll ions, and the amount of electricity required to turn the deposited Li into waste paper.
q was calculated from the ratio of the amount of electricity required to deposit .

第1図は、L l 瘤の充放電効率とサイクル数の関係
を示す図であり、図中の(a)は−上記電解液を用いた
場合であり、(b)はlNL i C/−04/P C
を電解液に用いた場合の充放電特性を参考図1として示
しだ。
FIG. 1 is a diagram showing the relationship between the charging/discharging efficiency of the L l lump and the number of cycles. In the figure, (a) is the case when - the above electrolyte is used, and (b) is the case when the above electrolyte is used. 04/PC
The charging and discharging characteristics when used as an electrolyte are shown in reference figure 1.

第1図から4′4」る様に参考i+1J(b)に比べて
、4Li−EDTA を用いだ系(a)では、明らかに
充放電サイクル、r♀性は向上している。
As shown in FIG. 1, the charge/discharge cycle and r♀ property are clearly improved in the system (a) using 4Li-EDTA compared to the reference i+1J (b).

実施例2 電解液として、3Li  イオンt+!4′換したエチ
レンジアミン四酢酸(3Li−EDTA)を1 mat
/lPCに混合したものを用いた以外は実施例1と同様
にして、Li極の充放電特性を測定した。
Example 2 As an electrolyte, 3Li ion t+! 1 mat of 4'-substituted ethylenediaminetetraacetic acid (3Li-EDTA)
The charging and discharging characteristics of the Li electrode were measured in the same manner as in Example 1 except that a mixture of Li/lPC was used.

第2図は充放tK効率とサイクル数の関係を示す図であ
り、1り[中の(2)は、上記電解液を用いた場合であ
り、(b)はlNLiC40a/PCを′電解液に用い
た場合の充放電時性を参考例として示した。
Figure 2 is a diagram showing the relationship between charging and discharging tK efficiency and cycle number, and (2) in (1) is the case when the above electrolyte is used, and (b) is when lNLiC40a/PC is The charging and discharging characteristics when used in the following are shown as a reference example.

第2図から判る様に、参考例(b)に比べて、3Li−
EDTAを用いた系(a)では、明らかに光放電ザイク
ル特性は向上している。
As can be seen from Figure 2, compared to reference example (b), 3Li-
In the system (a) using EDTA, the photodischarge cycle characteristics are clearly improved.

実施例3 電解液として、2Ll イオン置換したエチレン四酢酸
(2Li−EDTA)を1mot/lPCに混合したも
のを用いた以外は実施例1と同様にして、Li凧の充放
電特性を測置した。
Example 3 The charging and discharging characteristics of a Li kite were measured in the same manner as in Example 1, except that a mixture of 2Ll ion-substituted ethylenetetraacetic acid (2Li-EDTA) at 1 mot/lPC was used as the electrolyte. .

第3図は充放電効率とサイクル数の関係を示す図であり
、図中の(a)は、上記′1程解液を用いた場合であり
、(b) I NL i C10< /P Cを電解液
に用いた場合の充放電特性を参考例として示した。
FIG. 3 is a diagram showing the relationship between charge/discharge efficiency and cycle number, in which (a) is the case when the above-mentioned solution is used, and (b) I NL i C10< /P C The charging and discharging characteristics when used as an electrolyte are shown as a reference example.

第3図から判る様に、参考傍系(b)に比べて、2Li
−EDTAを用いた系(a)では、明らかに充放電サイ
クル特性は向上している。
As can be seen from Figure 3, compared to the reference subsystem (b), 2Li
- In the system (a) using EDTA, the charge/discharge cycle characteristics are clearly improved.

一実施例4 電)管液として、4L、1−EDTA/PC(2mot
/l)を用いた以外は実施例1と同様にして、T、i惚
の充放′(!トシ性に測定した。
Example 4 As a tube liquid, 4L, 1-EDTA/PC (2mot
/l) was used in the same manner as in Example 1, and measurements were made for T, i-love's fullness' (!toshi-ability).

;、n4図は充放・電動車とサイクル数の関係を示す図
であり、図中の(a)は、上記′諷屏欣?用いた場合で
あり、(b)ij: I N L i C10< /P
 Cを電解を改に用いた鳴曾の充放電特性を参考例とし
て示した。
, n4 diagram is a diagram showing the relationship between charging/discharging/electric vehicles and the number of cycles, and (a) in the diagram is the above-mentioned ``Pinging?'' (b) ij: I N L i C10< /P
The charging and discharging characteristics of Meiso using C for electrolysis are shown as a reference example.

第4図から判る様に、参考傍系(b)に比べて、4L 
i−K D T A  を用いた系(a)では、明らか
に光放電サイクル特性は向上している。
As can be seen from Figure 4, compared to the reference subsystem (b), 4L
In the system (a) using i-K DTA, the photodischarge cycle characteristics are clearly improved.

実施例5 電解液と[7て、3 L i −El)TA/PC(0
,1m o t/l)を用いた以外は実施例1と同様に
して、Li4+にの充放′亀li:lJ、性を副スヒし
た。
Example 5 Electrolyte and [7,3 Li -El)TA/PC (0
, 1 m ot/l) was used in the same manner as in Example 1, and Li4+ was charged and discharged at a lower rate of 1 J and 1 m ot/l.

735図(・ま光放屯効駐とサイクル数の関係r示す図
であり、図中の(a)は、上記、に解e、を用いた場合
であり、(b)はI Nl、i C10< /P Cを
電解液に用いた場付の充放電荷i生全参考例としてボし
た。
Figure 735 (・This is a diagram showing the relationship between the light emission efficiency and the number of cycles. In the figure, (a) is the case where the above solution is used, and (b) is the case where I Nl, i C10

45図から1月る・味に、参考副系(b)に比べて、3
Li−EDTAを用いた系(a)では、明らかに充放電
サイクル時性は同上している。
From Figure 45, compared to the reference subsystem (b), 3.
In the system (a) using Li-EDTA, the charge/discharge cycle time is clearly the same as above.

実施例 rtt、 s液として、:うLi−EDTA/PC(0
,5mot/l)を用いた以外は実施例1と同様にして
、Lii+負の充放電性1生全測ンぜした。
Example rtt, as liquid: Li-EDTA/PC (0
.

46図は充放′屯効率とサイクル数の関係を示す図であ
り、図中の(a)は、上記、″梶屓液を用いた揚台であ
り、(b)はI NL i C104/P Cを電解液
に用いた場合の充放電特性を参考例として示した。
Figure 46 is a diagram showing the relationship between the charging and discharging efficiency and the number of cycles, in which (a) is the lifting platform using the above-mentioned slag liquid, and (b) is the I NL i C104/ The charging and discharging characteristics when PC is used as the electrolyte are shown as a reference example.

第6図から判る様に、参考傍系(b)に比べて、3Li
−EDTAを用いた糸(a)では、明らかに充放′亀す
イクル特性は向上している。
As can be seen from Figure 6, compared to the reference subsystem (b), 3Li
- The yarn (a) using EDTA clearly has improved charging/discharging cycle characteristics.

実施例7 i’li、In液として、3hi−EDTA/PC((
1,25moL/l)を用いた以外は実施例1と同様に
して、Li唯の充放電特性を測定した。
Example 7 3hi-EDTA/PC ((
The charge/discharge characteristics of Li were measured in the same manner as in Example 1 except that 1.25 mol/l) was used.

第7図は充放・電動車とサイクル数の関係を示す図であ
り、図中の(a)は、上記′電解液を用いた場合であり
、(b)はI NL i Clck /P Cを電解液
に用いた場合の充放′低特性を参考例として示した。
FIG. 7 is a diagram showing the relationship between charging/discharging, electric vehicle, and cycle number. In the diagram, (a) is the case when the above-mentioned electrolyte is used, and (b) is I NL i Clck /P C The low charging and discharging characteristics when used as an electrolyte are shown as a reference example.

第7図から判る様に、参考傍系(b)に比べて、3Li
−EDTA  を用いた系(a)では、明らかに光放電
サイクル特性は向上している。
As can be seen from Figure 7, compared to the reference subsystem (b), 3Li
In the system (a) using -EDTA, the photodischarge cycle characteristics are clearly improved.

実施例8 tli、 If ’iとして、2Li−EDTA/PC
(0,5moL/l)を用いた以外は実施例1と同様に
して、Li極の充放電特性を測定した。
Example 8 2Li-EDTA/PC as tli, If 'i
The charge/discharge characteristics of the Li electrode were measured in the same manner as in Example 1 except that (0.5 moL/l) was used.

第8図は充放電効率とサイクル数の関係を示す図であり
、図中の(a)は、上記′電解液を用いた場合であり、
(b)はI NL i C104/P Cを電解液に用
い、た場合の充泗電特性を参考例として示した。
FIG. 8 is a diagram showing the relationship between charge/discharge efficiency and cycle number, and (a) in the diagram is the case when the above 'electrolyte solution is used,
(b) shows the charging characteristics as a reference example when I NL i C104/PC was used as the electrolyte.

第8図から判る様に、参考傍系(b)に比べて、2Li
−EDTAを用いた系(a)では、明らかに充放電サイ
クル特性は同上している。
As can be seen from Figure 8, compared to the reference subsystem (b), 2Li
- In the system (a) using EDTA, the charge/discharge cycle characteristics are clearly the same as above.

実施例9 電解液として、2Li−EDTA/PC(0,75mo
L/l)を用いた以外は実施例1と同様にして、Li%
Xの充放電特性を測定した。
Example 9 2Li-EDTA/PC (0,75 mo
Li%
The charging and discharging characteristics of X were measured.

第9図は充放電効率とサイクル数の関係を示す図であり
、図中の(a)  は。上記電解液勿用いた場合であり
、(b)はI NL i Clo4/P Cをα屏液に
用いた場合の充放電特性を参考例として示した。
FIG. 9 is a diagram showing the relationship between charge/discharge efficiency and cycle number, and (a) in the figure is. This is the case where the above electrolyte was not used, and (b) shows the charge/discharge characteristics when I NL i Clo4/P C was used as the α-folding liquid as a reference example.

第9図から判る様に、参考傍系(b)に比べて、2Li
−EDTAを用いた系(a)では、明らかに充放゛屯す
イイクル特性は向上している。
As can be seen from Figure 9, compared to the reference subsystem (b), 2Li
- In the system (a) using EDTA, the charging and discharging cycle characteristics are clearly improved.

実施例10 i!S、解液として、2 L i −BDTA/P C
(025mot/l)を用いた以外は実施例1と同様に
して、Li極の充放電特性を測定した。
Example 10 i! S, as a solution, 2 L i -BDTA/P C
The charge/discharge characteristics of the Li electrode were measured in the same manner as in Example 1 except that (025 mot/l) was used.

第10図は充放電効率とサイクル数の関係を示す1゛ズ
1であり、図中の(a)は、上記r17解液を用いた場
合であり、(b)はINLiCtO</PCを電解c夜
に用いた場合の充放電特性を参考例として示した。
Figure 10 shows the relationship between the charge/discharge efficiency and the number of cycles. In the figure, (a) is the case when the above r17 solution is used, and (b) is the case when INLiCtO</PC is electrolyzed. (c) Charging and discharging characteristics when used at night are shown as a reference example.

第10図から判る様に、参考側系(b)に比べて、2L
i−EDTAを用いた系(a)では、明らかに充放猷ブ
イクル%性は向上している。
As can be seen from Figure 10, compared to the reference side system (b), 2L
In the system (a) using i-EDTA, the charging/discharging vehicle % property is clearly improved.

上記実施1+l fは2Li−EDTA、3Li−ED
TA、4L i −EDTA全それぞれ有様溶媒に溶′
4トさせた例を示したがILi−EDTAを用いた系に
ついても同様に、I NL t Clo4/P Cを電
解液に用いた4台よりもすぐれた充放電特性が得られた
Above implementation 1+l f is 2Li-EDTA, 3Li-ED
TA, 4L i -EDTA were all dissolved in various solvents.
Although an example was shown in which four batteries were used, the system using ILi-EDTA also had better charge-discharge characteristics than the four systems using INLtClo4/PC as the electrolyte.

以上の説明から明らかな様に、不発明によれは、リチウ
ム塩を有機溶媒に溶解した非水電1’1Ill液におい
て、リチウム塩として少なくとも1個のリチウムイオン
を含むエチレンシマミン四酢酸訪4体ケ用いる事により
、Li極の充放1E特性の良好なリチウム二次電池用非
水電解液を実現する小ができ
As is clear from the above explanation, in accordance with the invention, in a non-aqueous solution in which a lithium salt is dissolved in an organic solvent, an ethylenesimaminetetraacetic acid compound containing at least one lithium ion is used as a lithium salt. By using this, it is possible to create a non-aqueous electrolyte for lithium secondary batteries with good charging and discharging 1E characteristics for Li electrodes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第10図は、本発明の実施例におけるリチウ極
の充放電効率とサイクル数の関係を示した図である。 出;領人代哩人  雨  宮  正  季すイフ渉数 第2図 ブイク+蚊 第 3 @ ブイク+軟 第4図 リイクノL軟 第5図 サイクル数 第6図 サイク乃数 サイフ4孜 第8 図 ブイクツL放 第9@ サイクル数 ヅイク)L、−救
FIGS. 1 to 10 are diagrams showing the relationship between the charging and discharging efficiency of the lithium electrode and the number of cycles in Examples of the present invention. Out; Tadashi Amane Miya Tadashi Kisuif number Figure 2 Buik + Mosquito number 3 @ Buik + Soft figure 4 Reiku no L Soft Figure 5 Cycle number Figure 6 Cyclic number Saif 4 Kei Figure 8 Buikatsu L Broadcasting No. 9 @ Cycle Number Zuik) L, -Save

Claims (1)

【特許請求の範囲】[Claims] リチウム塩を有様溶媒に溶解させた非水′電解液におい
て、前記非水電解液のリチウム塩として、少なくとも1
個のリチウムを含むエチレンジアミン四酢酸誘導体を用
いた事を0敞とするリチウム二次電池用′酸解液。
In a non-aqueous electrolytic solution in which a lithium salt is dissolved in a specific solvent, at least one
An acid solution for lithium secondary batteries that uses an ethylenediaminetetraacetic acid derivative containing 50% lithium.
JP57140978A 1982-08-16 1982-08-16 Electrolyte for lithium secondary battery Pending JPS5931571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57140978A JPS5931571A (en) 1982-08-16 1982-08-16 Electrolyte for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57140978A JPS5931571A (en) 1982-08-16 1982-08-16 Electrolyte for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPS5931571A true JPS5931571A (en) 1984-02-20

Family

ID=15281272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57140978A Pending JPS5931571A (en) 1982-08-16 1982-08-16 Electrolyte for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPS5931571A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170365882A1 (en) * 2016-06-19 2017-12-21 GM Global Technology Operations LLC Lithium ion battery
CN107528085A (en) * 2016-06-19 2017-12-29 通用汽车环球科技运作有限责任公司 Lithium ion battery
US10243241B2 (en) 2015-12-01 2019-03-26 GM Global Technology Operations LLC Lithium ion battery with transition metal ion traps
US10418668B2 (en) 2017-07-07 2019-09-17 GM Global Technology Operations LLC Electrolyte system including complexing agent to suppress or minimize metal contaminants and dendrite formation in lithium ion batteries
US10581117B2 (en) 2017-07-07 2020-03-03 GM Global Technology Operations LLC Iron ion trapping van der Waals gripper additives for electrolyte systems in lithium-ion batteries
US10581119B2 (en) 2017-07-07 2020-03-03 GM Global Technology Operations LLC Polymeric ion traps for suppressing or minimizing transition metal ions and dendrite formation or growth in lithium-ion batteries

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10243241B2 (en) 2015-12-01 2019-03-26 GM Global Technology Operations LLC Lithium ion battery with transition metal ion traps
US20170365882A1 (en) * 2016-06-19 2017-12-21 GM Global Technology Operations LLC Lithium ion battery
CN107528085A (en) * 2016-06-19 2017-12-29 通用汽车环球科技运作有限责任公司 Lithium ion battery
CN107528086A (en) * 2016-06-19 2017-12-29 通用汽车环球科技运作有限责任公司 Lithium ion battery
US10008749B2 (en) * 2016-06-19 2018-06-26 GM Global Technology Operations LLC Lithium ion battery
US10050313B2 (en) 2016-06-19 2018-08-14 GM Global Technology Operations LLC Lithium ion battery
DE102017113276B4 (en) 2016-06-19 2022-04-21 Bar-Ilan University LITHIUM ION BATTERY
DE102017113282B4 (en) 2016-06-19 2023-02-09 Bar-Ilan University LITHIUM ION BATTERY
US10418668B2 (en) 2017-07-07 2019-09-17 GM Global Technology Operations LLC Electrolyte system including complexing agent to suppress or minimize metal contaminants and dendrite formation in lithium ion batteries
US10581117B2 (en) 2017-07-07 2020-03-03 GM Global Technology Operations LLC Iron ion trapping van der Waals gripper additives for electrolyte systems in lithium-ion batteries
US10581119B2 (en) 2017-07-07 2020-03-03 GM Global Technology Operations LLC Polymeric ion traps for suppressing or minimizing transition metal ions and dendrite formation or growth in lithium-ion batteries

Similar Documents

Publication Publication Date Title
JP3187929B2 (en) Lithium secondary battery
JP2000223152A (en) Lithium ion secondary battery having extended cycle life in charge/discharge
JPS6286673A (en) Electrolyte for lithium secondary battery
JPS59134568A (en) Electrolyte for lithium battery
KR101875785B1 (en) Cathode material for rechargeable magnesium battery and its preparation method
JPH09147910A (en) Lithium secondary battery
JPS5931571A (en) Electrolyte for lithium secondary battery
JPH0636370B2 (en) Electrolyte for lithium secondary battery
JP3831599B2 (en) Lithium secondary battery
JP2000040524A (en) Electrolyte for lithium secondary battery and secondary battery
JPH08162154A (en) Secondary battery having nonaqueous solvent electrolyt
JPS61230276A (en) Electrolyte for lithium secondary battery
JPH0226345B2 (en)
JPS6079677A (en) Electrolyte for lithium secondary battery
JP3030143B2 (en) Non-aqueous electrolyte secondary battery
JPS59130073A (en) Electrolyte for lithic battery
JP2000182663A (en) Nonaqueous electrolyte and lithium secondary battery
JPS63152885A (en) Secondary battery
JPH05335033A (en) Non-aqueous solvent for battery electrolyte
JPH05258743A (en) Lithium secondary battery
JPH05290846A (en) Nonaqueous electrolytic secondary battery
JPH0722068A (en) Secondary battery having nonaqueous solvent electrolyte
JPS58106771A (en) Nonaqueous electrolyte for lithium secondary battery
JP2991758B2 (en) Non-aqueous electrolyte for lithium secondary batteries
JPH0650650B2 (en) Electrolyte for lithium secondary battery