JP2009093943A - Negative active material for secondary battery and secondary battery using this - Google Patents

Negative active material for secondary battery and secondary battery using this Download PDF

Info

Publication number
JP2009093943A
JP2009093943A JP2007264195A JP2007264195A JP2009093943A JP 2009093943 A JP2009093943 A JP 2009093943A JP 2007264195 A JP2007264195 A JP 2007264195A JP 2007264195 A JP2007264195 A JP 2007264195A JP 2009093943 A JP2009093943 A JP 2009093943A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
active material
electrode active
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007264195A
Other languages
Japanese (ja)
Other versions
JP5329066B2 (en
Inventor
Hidekazu Ido
秀和 井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Research Institute Inc
Original Assignee
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Research Institute Inc filed Critical Kobelco Research Institute Inc
Priority to JP2007264195A priority Critical patent/JP5329066B2/en
Priority to PCT/JP2008/068494 priority patent/WO2009048146A1/en
Publication of JP2009093943A publication Critical patent/JP2009093943A/en
Application granted granted Critical
Publication of JP5329066B2 publication Critical patent/JP5329066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative active material for a secondary battery producing no dendrite in charge and causing no damage in charge/discharge; and to provide a secondary battery using it. <P>SOLUTION: The secondary battery is equipped with a negative electrode 4 holding a negative active material 4d for the secondary battery containing a prescribed amount of a metal element having the standard electrode potential lower than gallium in metal containing the prescribed amount of each of tin and gallium, a positive electrode 2, and an ion conductive electrolyte arranged between the negative electrode 4 and the positive electrode 2. The metal element diffuses into the electrolyte as ions of the metal element during discharge, and the ions of the metal element return again to the metal element on the surface of the negative active material during charge, and the metal element diffuses into the negative active material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、二次電池用負極活物質およびこれを用いた二次電池に関する。   The present invention relates to a negative electrode active material for a secondary battery and a secondary battery using the same.

近年、二次電池として、リチウム二次電池が脚光を浴びている。それは、リチウム(Li)という比重が金属の中でもっとも小さく、標準電極電位がマイナス3.04Vともっとも大きな数値を示す卑な電位である等の材料的な特異性が着目されたものである。しかし、リチウム二次電池は、充放電を繰り返すと、負極にリチウムのデンドライトが成長し、セパレータの破損やショートを引き起こしたり、容量の低下を招いたりする問題があった。   In recent years, lithium secondary batteries have attracted attention as secondary batteries. This is because material specificities such as the specific gravity of lithium (Li) being the smallest among metals and the standard electrode potential being a negative potential showing the largest value of minus 3.04 V have been noticed. However, when the lithium secondary battery is repeatedly charged and discharged, lithium dendrite grows on the negative electrode, causing problems such as breakage or short-circuiting of the separator or reduction in capacity.

そこで、これらの問題を解決すべく、さまざまな提案がなされている。   Therefore, various proposals have been made to solve these problems.

例えば、特許文献1には、カソードと、結晶度>0.8の炭素材料を含有するアノードと、高誘電定数を有する第1の溶媒及び低粘度を有する第2の溶媒を含む少なくとも2種の非プロトン性有機溶媒の混合物とリチウム塩からなる電解液とを含むリチウム二次電池であって、前記電解液が、少なくとも1個の不飽和結合を含み且つ不動態化層を形成するためにリチウムよりも1V高い電位で前記アノードにおいて還元可能な、前記溶媒の少なくとも1種と同一種の可溶性化合物を更に含有することを特徴とするリチウム二次電池が開示されている。   For example, Patent Document 1 discloses at least two types including a cathode, an anode containing a carbon material having a crystallinity> 0.8, a first solvent having a high dielectric constant, and a second solvent having a low viscosity. A lithium secondary battery comprising a mixture of an aprotic organic solvent and an electrolyte comprising a lithium salt, wherein the electrolyte contains at least one unsaturated bond and forms a passivation layer to form a passivation layer Further disclosed is a lithium secondary battery further comprising a soluble compound of the same type as at least one of the solvents, which can be reduced at the anode at a potential higher by 1 V than that of the solvent.

また、特許文献2には、非プロトン性非水性電解液と、該電解液と有効に接触している正極及び負極とからなり、前記正極がリチウム層間化合物からなるものであり且つ前記負極が炭素−炭素複合材料からなるものであるリチウム二次電池が開示されている。   Patent Document 2 includes an aprotic non-aqueous electrolyte, a positive electrode and a negative electrode that are in effective contact with the electrolyte, the positive electrode is made of a lithium intercalation compound, and the negative electrode is carbon. -A lithium secondary battery comprising a carbon composite material is disclosed.

また、特許文献3には、カソードと、結晶度>0.8の炭素材料を含有するアノードと、高誘電定数を有する第1の溶媒及び低粘度を有する第2の溶媒を含む少なくとも2種の非プロトン性有機溶媒の混合物とリチウム塩からなる電解液とを含むリチウム二次電池であって、前記電解液が、少なくとも1個の不飽和結合を含み且つ不動態化層を形成するためにリチウムよりも1V高い電位で前記アノードにおいて還元可能な、前記溶媒の少なくとも1種と同一種の可溶性化合物を更に含有することを特徴とするリチウム二次電池が開示されている。   Patent Document 3 discloses at least two kinds of materials including a cathode, an anode containing a carbon material having a crystallinity> 0.8, a first solvent having a high dielectric constant, and a second solvent having a low viscosity. A lithium secondary battery comprising a mixture of an aprotic organic solvent and an electrolyte comprising a lithium salt, wherein the electrolyte contains at least one unsaturated bond and forms a passivation layer to form a passivation layer Further disclosed is a lithium secondary battery further comprising a soluble compound of the same type as at least one of the solvents, which can be reduced at the anode at a potential higher by 1 V than that of the solvent.

また、特許文献4には、析出リチウムの電解液との反応やデンドライトの成長に基づく充放電サイクル特性の低下を抑制し、充放電サイクル特性を向上させることを目的に、液体急冷法により作成した非晶質金属(アルミニウム(Al)、インジウム(In)、ガリウム(Ga)、ビスマス(Bi)、ホウ素(B)、ケイ素(Si)、鉛(Pb)、スズ(Sn)、銀(Ag)、金(Au)等)板を2枚のリチウム金属板で挟み、その間に電解液を入れ、この電解液の存在下で電気化学的に合金化した構成の負極と、この負極を用いたリチウム二次電池が開示されている。   Moreover, in patent document 4, it produced by the liquid quenching method for the purpose of suppressing the fall of the charge / discharge cycle characteristic based on the reaction with the electrolyte solution of deposited lithium and the growth of dendrite, and improving a charge / discharge cycle characteristic. Amorphous metals (aluminum (Al), indium (In), gallium (Ga), bismuth (Bi), boron (B), silicon (Si), lead (Pb), tin (Sn), silver (Ag), A negative electrode having a structure in which a gold (Au) plate is sandwiched between two lithium metal plates, an electrolyte is put between them, and electrochemically alloyed in the presence of the electrolyte, and lithium A secondary battery is disclosed.

また、特許文献5には、充電過程でのデンドライトの成長を抑制し、充放電特性を改善し、かつ、テープ状の成形体への量産性を向上させることを目的に、Li−X合金(XはAl、In、Sn、Ga、亜鉛(Zn)の群から選ばれた少なくとも一種を表わす。)のXの重量比が0.1〜30重量%になるように成分調整した後、鋳造し、押し出し、最後に打ち抜き加工してなるリチウム二次電池用負極活物質が開示されている。   Patent Document 5 discloses a Li-X alloy (for the purpose of suppressing dendrite growth in the charging process, improving charge / discharge characteristics, and improving mass productivity of a tape-shaped molded body. X is at least one selected from the group consisting of Al, In, Sn, Ga, and zinc (Zn).) The components are adjusted so that the weight ratio of X is 0.1 to 30% by weight, and then cast. , A negative electrode active material for a lithium secondary battery, which is extruded and finally punched.

また、特許文献6には、サイクル寿命特性を向上させることを目的に、Snに常温で液体となる微量の金属(GaまたはGa−In合金)が固定されている固溶体合金からなる負極活物質と、これを含んだ負極と、この負極を用いたリチウム二次電池が開示されている。   Patent Document 6 discloses a negative electrode active material made of a solid solution alloy in which a small amount of metal (Ga or Ga—In alloy) that is liquid at room temperature is fixed to Sn for the purpose of improving cycle life characteristics. In addition, a negative electrode including the negative electrode and a lithium secondary battery using the negative electrode are disclosed.

しかしながら、上記特許文献1〜6に開示された技術には以下のような問題点が存在する。   However, the techniques disclosed in Patent Documents 1 to 6 have the following problems.

すなわち、特許文献1から3に記載されたような負極であれば、Liのデンドライトの生成は防止できるものの、いずれも負極に層状からなる炭素電極が使用されるため、充放電の繰り返しにより炭素電極に体積変化が起こる。この炭素電極に起こる体積変化は、充電−放電プロセス中に、層状からなる炭素電極で起こるLiイオンの挿入と脱離に起因するものである。また、この炭素電極に起こる体積変化により、炭素電極の剥離が発生する。また、このLiイオンの挿入と脱離により、炭素電極に著しい膨張と収縮が生じるため、負極としての機械的団結性も緩む。これにより、負極のインピーダンスも増大し、リチウム二次電池の容量の漸進的低下を引き起こす。現状のリチウム二次電池では、100%の放電深度で約500回の充放電を行い、容量保存率は80%程度である。   That is, if it is a negative electrode as described in patent documents 1 to 3, although generation of Li dendrite can be prevented, a carbon electrode having a layered structure is used for the negative electrode. Volume change occurs. The volume change that occurs in the carbon electrode is due to the insertion and desorption of Li ions that occur in the layered carbon electrode during the charge-discharge process. Moreover, peeling of the carbon electrode occurs due to the volume change occurring in the carbon electrode. In addition, the insertion and desorption of Li ions cause significant expansion and contraction of the carbon electrode, so that the mechanical integrity as a negative electrode is relaxed. As a result, the impedance of the negative electrode also increases, causing a gradual decrease in the capacity of the lithium secondary battery. The current lithium secondary battery is charged and discharged about 500 times at a discharge depth of 100%, and the capacity storage rate is about 80%.

また、特許文献4に記載の負極の構成は、2枚のリチウム金属板で挟まれた非晶質金属板が結晶構造を呈しないため、充電時のリチウムの電気化学的合金化反応が速くなるというものの所詮非晶質金属板も固体であるため、固体内へのLi原子の拡散速度より固体表面での金属リチウムの電着速度の方が速く、充電時のLiのデンドライトの生成の抑制効果が十分でない。   Moreover, since the structure of the negative electrode described in Patent Document 4 does not exhibit a crystal structure of an amorphous metal plate sandwiched between two lithium metal plates, the electrochemical alloying reaction of lithium during charging is accelerated. However, since the amorphous metal plate is also solid, the electrodeposition rate of metallic lithium on the solid surface is faster than the diffusion rate of Li atoms in the solid, and the effect of suppressing the formation of Li dendrite during charging Is not enough.

また、特許文献5に記載のリチウム二次電池用負極活物質は、従来の純粋リチウムを使用する場合に比べて充電時のデンドライトの生成は多少抑制されるものの、充放電を繰り返すと固体である前記負極活物質の粒界部が優先的に腐食して負極活物質が欠落し、性能が劣化する。   Further, the negative electrode active material for a lithium secondary battery described in Patent Document 5 is solid when repeated charge / discharge, although generation of dendrites during charging is somewhat suppressed as compared with the case of using conventional pure lithium. The grain boundary part of the negative electrode active material is preferentially corroded, the negative electrode active material is lost, and the performance deteriorates.

また、特許文献6に記載のリチウム二次電池用負極活物質は、固溶体合金であるため、固体内へのLi原子の拡散速度より固体表面での金属リチウムの電着速度の方が速く、充電時のLiのデンドライトの生成の抑制効果が十分でない。また、負極を構成するための活物質にするために、上記合金を製造した後、粉砕しなければならないといった煩雑さを伴う。
特開平8−45545号公報 特表2003−534636号公報 特開2004−31366号公報 特開昭63−13267号公報 特開平4−253159号公報 特開2007−214127号公報
Moreover, since the negative electrode active material for lithium secondary batteries described in Patent Document 6 is a solid solution alloy, the electrodeposition rate of metallic lithium on the solid surface is faster than the diffusion rate of Li atoms in the solid, and charging is performed. The effect of suppressing the formation of Li dendrite at the time is not sufficient. Moreover, in order to use as an active material for constituting a negative electrode, it is complicated that the alloy must be pulverized after being manufactured.
JP-A-8-45545 Special table 2003-534636 gazette JP 2004-31366 A JP-A 63-13267 JP-A-4-253159 JP 2007-214127 A

本発明の目的は、充電時にデンドライトの生成がなく、かつ、充放電時に損傷が起こらない二次電池用負極活物質およびそれを用いた二次電池を提供することにある。   The objective of this invention is providing the secondary battery using the negative electrode active material for secondary batteries which does not produce | generate a dendrite at the time of charge, and does not produce damage at the time of charging / discharging.

請求項1に記載の発明は、スズをX%(質量%の意味、以下同じ)、ガリウムをY%含有した金属と、標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素と、を有した二次電池用負極活物質であって、前記金属は下記式(1)〜(3)を満たし、前記標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素の合計量は前記金属基準で38%以下(ただし、0%を含まない)であることを特徴とする二次電池用負極活物質である。
X≦12.5 … (1)
87.5≦Y≦100 … (2)
Y=100−X … (3)
The invention according to claim 1 is at least one selected from the group consisting of a metal containing X% tin (meaning mass%, hereinafter the same), Y% gallium and a metal element whose standard electrode potential is lower than gallium. A negative electrode active material for a secondary battery having a seed metal element, wherein the metal satisfies the following formulas (1) to (3), and the standard electrode potential is selected from the group consisting of metal elements lower than gallium The total amount of the at least one metal element is 38% or less (excluding 0%) based on the metal, and is a secondary battery negative electrode active material.
X ≦ 12.5 (1)
87.5 ≦ Y ≦ 100 (2)
Y = 100−X (3)

請求項2に記載の発明は、前記標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素が、アルミニウム、亜鉛またはリチウムの少なくともいずれか1種である請求項1に記載の二次電池用負極活物質である。   According to a second aspect of the present invention, at least one metal element selected from the group consisting of metal elements whose standard electrode potential is lower than that of gallium is at least one of aluminum, zinc, and lithium. The negative electrode active material for secondary batteries described in 1.

請求項3に記載の発明は、請求項1または2に記載の二次電池用負極活物質が収納保持された負極と、正極と、前記負極と正極間に配置されたイオン伝導性電解液とを備えた二次電池であって、前記二次電池用負極活物質中の標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素は、放電時には前記金属元素のイオンとして前記電解液内に拡散し、充電時には前記金属元素のイオンが前記二次電池用負極活物質表面で再び前記金属元素に戻り、前記二次電池用負極活物質内へ拡散するように構成されたことを特徴とする二次電池である。   The invention according to claim 3 is a negative electrode in which the negative electrode active material for a secondary battery according to claim 1 or 2 is housed and held, a positive electrode, and an ion conductive electrolyte solution disposed between the negative electrode and the positive electrode. The at least one metal element selected from the group consisting of metal elements having a standard electrode potential lower than that of gallium in the negative electrode active material for secondary batteries is a secondary battery comprising: It is configured to diffuse into the electrolyte as ions, and during charging, the ions of the metal element return to the metal element again on the surface of the negative electrode active material for the secondary battery and diffuse into the negative electrode active material for the secondary battery. It is the secondary battery characterized by being made.

請求項4に記載の発明は、前記イオン伝導性電解液が、金属イオン伝導性電解液であり、前記金属イオン伝導性電解液中の金属イオンは、前記二次電池用負極活物質中の標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素に対応していることを特徴とする請求項3に記載の二次電池である。   According to a fourth aspect of the present invention, the ion conductive electrolyte is a metal ion conductive electrolyte, and the metal ions in the metal ion conductive electrolyte are standards in the negative electrode active material for secondary batteries. 4. The secondary battery according to claim 3, wherein the secondary battery corresponds to at least one metal element selected from the group consisting of metal elements having a lower electrode potential than gallium.

本発明に係る二次電池用負極活物質は、スズをX%(質量%の意味、以下同じ)、ガリウムをY%含有した金属と、標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素と、を有した二次電池用負極活物質であって、前記金属は下記式(1)〜(3)を満たし、前記標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素の合計量は前記金属基準で38%以下(ただし、0%を含まない)である。
X≦12.5 … (1)
87.5≦Y≦100 … (2)
Y=100−X … (3)
The negative electrode active material for a secondary battery according to the present invention is selected from the group consisting of a metal containing X% tin (meaning mass%, hereinafter the same), Y% gallium and a metal element whose standard electrode potential is lower than gallium. A negative electrode active material for a secondary battery having at least one metal element, wherein the metal satisfies the following formulas (1) to (3), and the standard electrode potential is lower than that of gallium. The total amount of at least one metal element selected from the group is 38% or less (excluding 0%) based on the metal.
X ≦ 12.5 (1)
87.5 ≦ Y ≦ 100 (2)
Y = 100−X (3)

また、本発明に係る二次電池は、前記二次電池用負極活物質が収納保持された負極(詳細は後述する)と、正極(詳細は後述する)と、前記負極と正極間に配置されたイオン伝導性電解液(詳細は後述する)とを備えた二次電池であって、前記二次電池用負極活物質中の標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素は、放電時には前記金属元素のイオンとして前記電解液内に拡散し、充電時には前記金属元素のイオンが前記二次電池用負極活物質表面で再び前記金属元素に戻り、前記二次電池用負極活物質内へ拡散するように構成されている。   The secondary battery according to the present invention is disposed between a negative electrode (details will be described later), a positive electrode (details will be described later) in which the negative electrode active material for a secondary battery is accommodated and held, and between the negative electrode and the positive electrode. An ion conductive electrolyte solution (details will be described later), at least selected from the group consisting of metal elements having a standard electrode potential lower than gallium in the negative electrode active material for the secondary battery One kind of metal element diffuses into the electrolyte as ions of the metal element during discharge, and the ions of the metal element return to the metal element again on the surface of the negative electrode active material for the secondary battery during charging. It is comprised so that it may diffuse in the negative electrode active material for secondary batteries.

以上のような構成であるため、本発明は、以下のような作用効果を奏する。
1)二次電池用負極活物質自体が全体として粘性の低い状態を呈しているため、前記負極活物質を構成する標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素が、放電時にイオンとして電解液内にスムーズに拡散することができる。また、前記負極活物質自体が全体として粘性の低い状態を呈しているため、充電時には前記イオンが前記負極活物質側に移動し、前記負極活物質表面で金属として電析すると同時に再び前記負極活物質内へ素早く拡散し、前記金属元素に戻ることができる。したがって、充電時にデンドライトの生成がない。
2)二次電池用負極活物質自体がそもそも固体ではなく、全体として粘性の低い状態を呈しているため、層状をなす炭素電極のように充放電の繰り返しによるイオンの挿入と脱離に起因した膨張と収縮で電極が損傷したりすることもない。また、固体の金属のように充放電の繰り返しによる粒界部の優先的な腐食で負極活物質が欠落し、性能が劣化したりするようなこともない。このように、充放電時の負極活物質の損傷がないため、二次電池の容量の漸進的低下を引き起こすこともない。
Since it is the above structures, this invention has the following effects.
1) Since the negative electrode active material for a secondary battery itself exhibits a low viscosity state as a whole, at least one kind selected from the group consisting of metal elements whose standard electrode potential constituting the negative electrode active material is lower than gallium Metal elements can diffuse smoothly into the electrolyte as ions during discharge. In addition, since the negative electrode active material itself exhibits a low viscosity state as a whole, the ions move to the negative electrode active material side during charging and are electrodeposited as metal on the surface of the negative electrode active material. It can quickly diffuse into the material and return to the metal element. Therefore, no dendrite is generated during charging.
2) The negative electrode active material for secondary batteries is not solid in the first place, and has a low viscosity as a whole. This is caused by the insertion and desorption of ions due to repeated charge and discharge like a layered carbon electrode. The electrode is not damaged by expansion and contraction. Moreover, the negative electrode active material is not lost due to preferential corrosion of the grain boundary portion due to repeated charge and discharge as in the case of solid metal, and the performance is not deteriorated. Thus, since the negative electrode active material is not damaged during charging and discharging, the capacity of the secondary battery is not gradually reduced.

以下、本発明の実施形態についてさらに詳細に説明する。   Hereinafter, embodiments of the present invention will be described in more detail.

(本発明に係る二次電池用負極活物質およびこれを用いた二次電池の構成)
本発明に係る二次電池用負極活物質は、スズをX%(質量%の意味、以下同じ)、ガリウムをY%含有した金属と、標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素と、を有した二次電池用負極活物質であって、前記金属は下記式(1)〜(3)を満たし、前記標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素の合計量は前記金属基準で38%以下(ただし、0%を含まない)であることを特徴とする。
X≦12.5 … (1)
87.5≦Y≦100 … (2)
Y=100−X … (3)
(Negative electrode active material for secondary battery according to the present invention and configuration of secondary battery using the same)
The negative electrode active material for a secondary battery according to the present invention is selected from the group consisting of a metal containing X% tin (meaning mass%, hereinafter the same), Y% gallium and a metal element whose standard electrode potential is lower than gallium. A negative electrode active material for a secondary battery having at least one metal element, wherein the metal satisfies the following formulas (1) to (3), and the standard electrode potential is lower than that of gallium. The total amount of at least one metal element selected from the group is 38% or less (excluding 0%) based on the metal.
X ≦ 12.5 (1)
87.5 ≦ Y ≦ 100 (2)
Y = 100−X (3)

また、本発明に係る二次電池は、前記二次電池用負極活物質が収納保持された負極(詳細は後述する)と、正極(詳細は後述する)と、前記負極と正極間に配置されたイオン伝導性電解液(詳細は後述する)とを備えた二次電池であって、前記二次電池用負極活物質中の標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素は、放電時には前記金属元素のイオンとして前記電解液内に拡散し、充電時には前記金属元素のイオンが前記二次電池用負極活物質表面で再び前記金属元素に戻り、前記二次電池用負極活物質内へ拡散するように構成されたことを特徴とする。   The secondary battery according to the present invention is disposed between a negative electrode (details will be described later), a positive electrode (details will be described later) in which the negative electrode active material for a secondary battery is accommodated and held, and between the negative electrode and the positive electrode. An ion conductive electrolyte solution (details will be described later), at least selected from the group consisting of metal elements having a standard electrode potential lower than gallium in the negative electrode active material for the secondary battery One kind of metal element diffuses into the electrolyte as ions of the metal element during discharge, and the ions of the metal element return to the metal element again on the surface of the negative electrode active material for the secondary battery during charging. It is configured to diffuse into the negative electrode active material for a secondary battery.

以上のような構成であるため、本発明は、以下のような作用効果を奏する。
1)二次電池用負極活物質自体が全体として粘性の低い状態を呈しているため、前記二次電池用負極活物質を構成する標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素が、放電時にイオンとして電解液内にスムーズに拡散することができる。また、前記二次電池用負極活物質自体が全体として粘性の低い状態を呈しているため、充電時には前記イオンが前記二次電池用負極活物質側に移動し、前記二次電池用負極活物質表面で金属として電析すると同時に再び前記二次電池用負極活物質内へ素早く拡散し、前記金属元素に戻ることができる。したがって、充電時にデンドライトの生成がない。
2)二次電池用負極活物質自体がそもそも固体ではなく、全体として粘性の低い状態を呈しているため、層状をなす炭素電極のように充放電の繰り返しによるイオンの挿入と脱離に起因した膨張と収縮で電極が損傷したりすることもない。また、固体の金属のように充放電の繰り返しによる粒界部の優先的な腐食で二次電池用負極活物質が欠落し、性能が劣化したりするようなこともない。このように、充放電時の二次電池用負極活物質の損傷がないため、二次電池の容量の漸進的低下を引き起こすこともない。
Since it is the above structures, this invention has the following effects.
1) Since the negative electrode active material for a secondary battery itself exhibits a low viscosity state as a whole, the standard electrode potential constituting the negative electrode active material for the secondary battery was selected from the group consisting of metal elements lower than gallium. At least one metal element can smoothly diffuse into the electrolyte as ions during discharge. In addition, since the secondary battery negative electrode active material itself exhibits a low viscosity state as a whole, during charging, the ions move to the secondary battery negative electrode active material side, and the secondary battery negative electrode active material At the same time as electrodeposition as metal on the surface, it can quickly diffuse again into the negative electrode active material for secondary battery and return to the metal element. Therefore, no dendrite is generated during charging.
2) The negative electrode active material for secondary batteries is not solid in the first place, and has a low viscosity as a whole. This is caused by the insertion and desorption of ions due to repeated charge and discharge like a layered carbon electrode. The electrode is not damaged by expansion and contraction. Moreover, the negative electrode active material for a secondary battery is not lost due to preferential corrosion of the grain boundary portion due to repeated charge and discharge as in the case of a solid metal, and the performance is not deteriorated. Thus, since the negative electrode active material for secondary batteries is not damaged during charging and discharging, the capacity of the secondary battery is not gradually reduced.

以下に、上記構成に至った理由について詳述する。   Hereinafter, the reason for the above configuration will be described in detail.

本発明者は、如何にしたら充電時にデンドライトの生成がなく、かつ、充放電時に損傷が起こらない二次電池用負極活物質およびそれを用いた二次電池を実現できるのか、鋭意研究を行った。その結果、これまで二次電池用負極としては、固体の金属や層状をなす炭素電極といった所謂固体状のものを使用するのが技術常識とされていたが、当業者においても想到し得ない粘性の低い状態の二次電池用負極活物質を見出し、これを用いることで上記目的を達成することができた。上記目的を達成できたポイントとしては、主に以下の2点があると考えている。
1)二次電池用負極として、固体状のもので問題があるのであれば、あえて粘性の低い状態を呈するものを使用すれば一気に解決できるのではないかと考えたことである。そして、充放電に際して可逆的に、かつ、スムーズに負極内と電解液の間を往復可能でありそうな金属元素を含んだ粘性の低い状態を呈する二次電池用負極活物質を探索し、上記構成のような二次電池用負極活物質を見出せたことである。
2)上記構成のような二次電池用負極活物質を用いて、二次電池として組み立て、基本実験を行った結果、所定の電圧電流特性を示したことより、意図していたように上記金属元素が放電時にイオンとして電解液内にスムーズに拡散できることが証明された。また、充電時にデンドライトの生成がなかったことより、充電時には前記イオンが前記二次電池用負極活物質側に移動し、前記二次電池用負極活物質表面で金属として電析すると同時に前記二次電池用負極活物質内へ素早く拡散し、再び前記金属元素に戻れることが証明された。また、充放電の繰り返しによる前記二次電池用負極活物質の損傷が認められないことより、予想したように粘性の低い状態を呈する二次電池用負極活物質であるがゆえに、前記イオンの出入りがあっても自由に変形できることが証明された。
The present inventor conducted earnest research on how to realize a negative electrode active material for a secondary battery that does not generate dendrites during charging and that does not cause damage during charging and discharging, and a secondary battery using the same. . As a result, it has been common knowledge in the art to use so-called solid materials such as solid metal and layered carbon electrodes as the negative electrode for secondary batteries, but viscosity that cannot be conceived by those skilled in the art. The negative electrode active material for secondary batteries in a low state was found, and by using this, the above object could be achieved. The following two points are considered to be the main points that have achieved the above objective.
1) If there is a problem with a solid-state negative electrode for a secondary battery, it was thought that it could be solved at once by using a material having a low viscosity. Then, in search of a negative electrode active material for a secondary battery that exhibits a low-viscosity state including a metal element that is likely to be reciprocally and smoothly reciprocated between the inside of the negative electrode and the electrolyte during charging and discharging, It is that the negative electrode active material for secondary batteries like a structure was discovered.
2) As a result of assembling as a secondary battery using a negative electrode active material for a secondary battery having the above-described configuration and conducting a basic experiment, it showed predetermined voltage-current characteristics. It was proved that the elements can smoothly diffuse into the electrolyte as ions during discharge. Further, since no dendrite was generated during charging, the ions moved to the negative electrode active material side for the secondary battery during charging, and were electrodeposited as metal on the surface of the negative electrode active material for the secondary battery. It has been proved that it can quickly diffuse into the negative electrode active material for batteries and return to the metal element again. In addition, since the negative electrode active material for the secondary battery is not damaged due to repeated charge and discharge, the negative electrode active material for the secondary battery exhibits a low viscosity state as expected. Even if there is, it was proved that it can be transformed freely.

以下に、本発明を詳細に説明する。   The present invention is described in detail below.

Sn(標準電極電位:−0.1375V)をX%(質量%の意味、以下同じ)、Ga(標準電極電位:−0.56V)をY%含有した金属と、標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素と、を有した二次電池用負極活物質であって、前記金属が下記式(1)〜(3)を満たし、前記標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素の合計量が前記金属基準で38%以下(ただし、0%を含まない)である二次電池用負極活物質は、粘性の低い状態を呈する。
X≦12.5 … (1)
87.5≦Y≦100 … (2)
Y=100−X … (3)
A metal containing Sn (standard electrode potential: −0.1375 V) X% (meaning mass%, the same applies hereinafter) and Ga (standard electrode potential: −0.56 V) Y%, and the standard electrode potential is lower than gallium A negative electrode active material for a secondary battery having at least one metal element selected from the group consisting of metal elements, wherein the metal satisfies the following formulas (1) to (3), and the standard electrode potential: Wherein the total amount of at least one metal element selected from the group consisting of metal elements lower than gallium is 38% or less (excluding 0%) based on the metal, It exhibits a low viscosity state.
X ≦ 12.5 (1)
87.5 ≦ Y ≦ 100 (2)
Y = 100−X (3)

また、標準電極電位がGaより低い金属元素からなる群から選ばれた少なくとも1種の金属元素としては、Al、Zn、Li、マグネシウム(Mg)、Si、Ti、ランタン(La)、セリウム(Ce)が利用可能である。好ましくは、Al、ZnまたはLiの少なくともいずれか1種である。これらの金属元素は、充放電に際して可逆的に負極内と電解液の間を往復可能であり、放電時にはイオンとして電解液内にスムーズに拡散し、充電時には前記イオンが前記二次電池用負極活物質側に移動し、前記二次電池用負極活物質表面で金属として電析すると同時に前記二次電池用負極活物質内へ素早く拡散し、再び前記金属元素に戻る。   Further, at least one metal element selected from the group consisting of metal elements whose standard electrode potential is lower than Ga is Al, Zn, Li, magnesium (Mg), Si, Ti, lanthanum (La), cerium (Ce). ) Is available. Preferably, at least one of Al, Zn, and Li is used. These metal elements can reversibly reciprocate between the negative electrode and the electrolyte during charge and discharge, and smoothly diffuse into the electrolyte as ions during discharge. It moves to the material side, and is electrodeposited as a metal on the surface of the negative electrode active material for secondary battery. At the same time, it quickly diffuses into the negative electrode active material for secondary battery and returns to the metal element again.

次に、上記二次電池用負極活物質(例えばSn−Ga−Li、Sn−Ga−Al)を二次電池に用いた場合の負極側での放電・充電反応をそれぞれ下記式(4)〜(7)に示す。
放電反応 Sn−Ga−Li → (Sn−Ga)+Li+e ・・・(4)
充電反応 (Sn−Ga)+Li+e → Sn−Ga−Li ・・・(5)
(4)式に示すように、放電時には二次電池用負極活物質(Sn−Ga−Li)内のGaよりも卑なLiが酸化され、イオンとして電解液内に溶出し、拡散する。また、(5)式に示すように、充電時には電解液内のLiイオンが二次電池用負極活物質側に移動し、二次電池用負極活物質表面で還元され、二次電池用負極活物質内へ素早く拡散し、再びSn−Ga−Liとなり、二次電池用負極活物質の表面にLi金属がデンドライトを生成するようなこともない。
放電反応 Sn−Ga−Al → (Sn−Ga)+Al3++3e ・・・
(6)
充電反応 (Sn−Ga)+Al3++3e → Sn−Ga−Al ・・・
(7)
通常、Alは表面が酸化皮膜によって覆われているため、負極として用いても、放電時にイオンとして電解液内にスムーズに溶出しない。また、充電時には従来技術のLiを負極に用いた場合ようにAl金属が電着しデンドライトを生成する懸念があるため、一般に使用されることはなかった。しかし、本発明の二次電池用負極活物質(Sn−Ga−Al)を用いた場合は、上記懸念は払拭され、本発明の二次電池用負極活物質(Sn−Ga−Li)を用いた場合と同様に、良好な放電・充電反応が行われる。すなわち、(6)式に示すように、放電時には二次電池用負極活物質(Sn−Ga−Al)内のGaよりも卑なAlが酸化され、イオンとして電解液内に溶出し、拡散する。また、(7)式に示すように、充電時には電解液内のAlイオンが二次電池用負極活物質側に移動し、二次電池用負極活物質表面で還元され、二次電池用負極活物質内へ素早く拡散し、再びSn−Ga−Alとなり、二次電池用負極活物質の表面にAl金属が電着しデンドライトを生成するようなこともない。
Next, the discharge / charge reaction on the negative electrode side when the negative electrode active material for secondary battery (for example, Sn-Ga-Li, Sn-Ga-Al) is used for the secondary battery is represented by the following formulas (4) to (4) to Shown in (7).
Discharge reaction Sn-Ga-Li → (Sn-Ga) + Li + + e (4)
Charging reaction (Sn—Ga) + Li + + e → Sn—Ga—Li (5)
As shown in the formula (4), Li which is lower than Ga in the secondary battery negative electrode active material (Sn—Ga—Li) is oxidized at the time of discharging, and is eluted and diffused into the electrolyte as ions. Further, as shown in the equation (5), during charging, Li ions in the electrolytic solution move to the secondary battery negative electrode active material side and are reduced on the surface of the secondary battery negative electrode active material, so that the secondary battery negative electrode active material is activated. It quickly diffuses into the material, becomes Sn-Ga-Li again, and Li metal does not generate dendrites on the surface of the negative electrode active material for secondary batteries.
Discharge reaction Sn-Ga-Al → (Sn -Ga) + Al 3+ + 3e - ···
(6)
Charging reaction (Sn—Ga) + Al 3+ + 3e → Sn—Ga—Al
(7)
Usually, since the surface of Al is covered with an oxide film, even if it is used as a negative electrode, it does not elute smoothly into the electrolyte as ions during discharge. Further, since there is a concern that Al metal is electrodeposited and dendrite is generated as in the case where Li of the prior art is used for the negative electrode at the time of charging, it has not been generally used. However, when the negative electrode active material (Sn—Ga—Al) for secondary batteries of the present invention is used, the above concerns are eliminated, and the negative electrode active material (Sn—Ga—Li) for secondary batteries of the present invention is used. As in the case of the discharge, a good discharge / charge reaction is performed. That is, as shown in the formula (6), Al that is lower than Ga in the secondary battery negative electrode active material (Sn—Ga—Al) is oxidized during the discharge, and is eluted and diffused into the electrolyte as ions. . In addition, as shown in the equation (7), during charging, the Al ions in the electrolyte move to the secondary battery negative electrode active material side and are reduced on the surface of the secondary battery negative electrode active material, so that the secondary battery negative electrode active material is activated. It quickly diffuses into the material, becomes Sn-Ga-Al again, and Al metal is not electrodeposited on the surface of the negative electrode active material for secondary batteries, and dendrite is not generated.

また、本発明の二次電池用負極活物質(Sn−Ga−Zn)を用いた場合も、本発明の二次電池用負極活物質(Sn−Ga−Al)を用いた場合と同様に、上記懸念は払拭され、良好な放電・充電反応が行われる。また、本発明の二次電池用負極活物質を構成する標準電極電位がGaより低い金属元素としては、必ずしもAl、Zn、Li等を単独で含有している必要はなく、二次電池用負極活物質を構成する標準電極電位がGaより低い金属元素からなる群から選ばれた少なくとも1種の金属元素の合計量として、上記所定量を満足しさえすればよい。また、前記金属元素として、例えばAlとZnを含み、かつ、Znの含有量をAlの含有量に比べて少量だけ含むように構成しておけば、Alをすべて使い尽くしてしまっても、二次電池の残量が行き成りゼロとはならず、AlとZnとの発生電圧の差から残量があと僅かであることを使用者に知らせ、かつ、所定時間だけはZnにより電流が供給し続けられるという特有の作用効果も有する。   Further, when the negative electrode active material for secondary battery (Sn—Ga—Zn) of the present invention is used, similarly to the case of using the negative electrode active material for secondary battery of the present invention (Sn—Ga—Al), The above concerns are eliminated, and a good discharge / charge reaction is performed. Further, the metal element having a standard electrode potential lower than Ga constituting the negative electrode active material for a secondary battery of the present invention does not necessarily contain Al, Zn, Li, etc. alone, and the negative electrode for a secondary battery It is only necessary to satisfy the predetermined amount as the total amount of at least one metal element selected from the group consisting of metal elements having a standard electrode potential lower than Ga constituting the active material. Further, if the metal element includes, for example, Al and Zn and the Zn content is small in comparison with the Al content, even if all the Al is used up, The remaining battery level does not become zero and the user is informed that the remaining battery level is very low due to the difference in the generated voltage between Al and Zn, and the current is supplied by Zn only for a predetermined time. It also has a unique effect of being able to continue.

また、スズとガリウムを含有した金属におけるスズの含有量を12.5質量%以下に限定したのは、スズ含有量が12.5質量%を超えると、本発明の技術思想の中核をなす二次電池用負極活物質が粘性の低い状態を呈するという条件を満足できなくなるためである。すなわち、充電時にデンドライトの生成がなく、かつ、充放電時に損傷が起こらない二次電池用負極活物質を提供するという本発明の目的を達成できなくなるためである。また、二次電池用負極活物質を構成する標準電極電位がGaより低い金属元素からなる群から選ばれた少なくとも1種の金属元素の合計量を38%以下とするのは、スズ含有量に限界が設けられるのと同様に、本発明の技術思想の中核をなす二次電池用負極活物質が粘性の低い状態を呈するという条件を満足させ、これにより充放電に際して前記金属元素を負極内と電解液の間を可逆的に、かつ、スムーズに往復可能ならしめるためである。このような二次電池用負極活物質は、Ga単体またはSnとGaを所定の配合割合で含有した金属と、このGa単体または金属基準で、標準電極電位がGaより低い金属元素からなる群から選ばれた少なくとも1種の金属元素を所定量加え、約30℃〜約100℃で攪拌混合することで容易に製造できる組成物である。   In addition, the content of tin in the metal containing tin and gallium is limited to 12.5% by mass or less when the tin content exceeds 12.5% by mass, which is the core of the technical idea of the present invention. This is because the negative electrode active material for the secondary battery cannot satisfy the condition that it exhibits a low viscosity state. That is, the object of the present invention, which is to provide a negative electrode active material for a secondary battery that does not generate dendrite during charging and does not cause damage during charging and discharging, cannot be achieved. In addition, the total content of at least one metal element selected from the group consisting of metal elements having a standard electrode potential lower than Ga constituting the negative electrode active material for secondary batteries is set to 38% or less in the tin content. In the same way that the limit is provided, the condition that the negative electrode active material for a secondary battery, which forms the core of the technical idea of the present invention, exhibits a low viscosity state is satisfied. This is because it is possible to reciprocate smoothly and smoothly between the electrolytes. Such a negative electrode active material for a secondary battery includes a group consisting of a single element of Ga or a metal containing Sn and Ga at a predetermined blending ratio and a metal element having a standard electrode potential lower than Ga on the basis of the single element of Ga or metal. The composition can be easily produced by adding a predetermined amount of at least one selected metal element and stirring and mixing at about 30 ° C to about 100 ° C.

上記二次電池用負極活物質は、以下に説明するような収納部に収納保持され負極を構成する。収納部は、例えば、樹脂でできた円筒体と、イオン伝導性電解液側であり、かつ、前記円筒体の一端側に接続されたイオン交換膜と、前記円筒体の他端側に接続され、密閉する集電体とから構成されている。また、前記二次電池用負極活物質は、前記イオン交換膜と前記集電体と接するように構成されている。上記負極の構成は、一例であり必ずしもこれに限定されるものではない。   The negative electrode active material for a secondary battery is housed and held in a housing portion as described below to form a negative electrode. The storage unit is, for example, a cylindrical body made of resin, an ion conductive electrolyte side, an ion exchange membrane connected to one end side of the cylindrical body, and a second end side of the cylindrical body. The current collector is hermetically sealed. Further, the negative electrode active material for a secondary battery is configured to contact the ion exchange membrane and the current collector. The configuration of the negative electrode is an example and is not necessarily limited thereto.

次に、本発明の二次電池に用いる正極について、以下に説明する。   Next, the positive electrode used for the secondary battery of the present invention will be described below.

例えば、MnO、LiCoO、V、MoO、NiOのような正極用活物質を白金(Pt)板に塗布したものを正極として用いることが可能である。また、NiOOHのような正極用活物質をニッケル(Ni)板からなる集電体に塗布したものを正極として用いることも可能である。さらに、Ce(SO水溶液が含浸された不織布と、イオン伝導性電解液側であり、かつ、前記不織布の一端側に設けられた陰イオン交換膜と、前記不織布の他端側に設けたれたPtがメッキされたチタン(Ti)板からなる集電体とから構成された正極を用いることも可能である。上記正極の構成も、ほんの一例であり、必ずしもこれに限定されるものではない。 For example, a cathode (Pt) plate coated with a positive electrode active material such as MnO 2 , LiCoO 2 , V 2 O 5 , MoO 3 , or NiO can be used as the positive electrode. Further, a positive electrode active material such as NiOOH coated on a current collector made of a nickel (Ni) plate can be used as the positive electrode. Furthermore, a non-woven fabric impregnated with an aqueous Ce (SO 4 ) 2 solution, an anion exchange membrane provided on one end side of the non-woven fabric on the ion conductive electrolyte side, and provided on the other end side of the non-woven fabric. It is also possible to use a positive electrode composed of a current collector made of a titanium (Ti) plate plated with dripped Pt. The configuration of the positive electrode is just an example and is not necessarily limited thereto.

次に、本発明の二次電池に用いるイオン伝導性電解液について、以下に説明する。   Next, the ion conductive electrolyte used for the secondary battery of the present invention will be described below.

イオン伝導性電解液は、有機溶媒や水に電解質を溶解させたものを用いることが可能である。有機溶媒としては炭酸エチレン(C)、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル等、さまざまなものを用いることができる。また、前記有機溶媒と組み合わせる電解質としては、例えば、LiClO、LiBF、LiPF、LiN(CFSO、Al(ClO、Al(BF、Al(PF3、Zn(ClO、Zn(BF、Zn(PFのようなものを用いることができる。また、水と組み合わせる電解質としては、例えば、(NHSO、KOHのようなものを用いることができる。また、例えば、二次電池用負極活物質中の標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素がLiのような場合は、イオン伝導性電解液として、CにLiClOを溶解させたような金属イオン伝導性電解液を用いるのが好ましい。二次電池用負極活物質中の標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素にAlやZnを用いる場合は、前記Liの場合のようにイオン伝導性電解液中にそれぞれ対応する金属イオンを含有させるための電解質を利用するのが好ましい。 As the ion conductive electrolytic solution, an electrolyte dissolved in an organic solvent or water can be used. Various organic solvents such as ethylene carbonate (C 3 H 4 O 3 ), propylene carbonate, butylene carbonate, dimethyl carbonate, and diethyl carbonate can be used. Examples of the electrolyte combined with the organic solvent include LiClO 4 , LiBF 4 , LiPF 6 , LiN (CF 3 SO 2 ) 2 , Al (ClO 4 ) 3 , Al (BF 4 ) 3 , and Al (PF 6 ). 3, Zn (ClO 4 ) 2 , Zn (BF 4 ) 2 , Zn (PF 6 ) 2 can be used. In addition, as the electrolyte combined with water, for example, (NH 4 ) 2 SO 4 , KOH, or the like can be used. Also, for example, when at least one metal element selected from the group consisting of metal elements whose standard electrode potential in the negative electrode active material for secondary batteries is lower than gallium is Li, as an ion conductive electrolyte, It is preferable to use a metal ion conductive electrolyte solution in which LiClO 4 is dissolved in C 3 H 4 O 3 . When Al or Zn is used for at least one metal element selected from the group consisting of metal elements having a standard electrode potential lower than that of gallium in the negative electrode active material for secondary batteries, the ionic conductivity is the same as in the case of Li. It is preferable to use an electrolyte for containing a corresponding metal ion in the electrolytic solution.

また、上記イオン伝導性電解液を、不織布に含浸させたり、ポリマー(例えば、ポリエチレンオキシド、アクリル共重合体等)に吸収させたりして、通称セパレータと呼ばれるものが構成され、このセパレータが負極と正極の間に配置される。また、例えば、水にKOHを溶解させたイオン伝導性電解液を不織布に含浸させたものをセパレータとして用いる場合は、さらに二次電池用負極活物質(例えば、Znを含有)と接する側に、H、OH、K、ZnO 2−は通過可能であるが負極活物質は通過しない膜を設ける必要がある。また、上述したような水を溶媒として用いた場合は、二次電池としての安全性が高まる。 Moreover, what is called a so-called separator is constituted by impregnating the ion conductive electrolyte into a non-woven fabric or absorbing it in a polymer (for example, polyethylene oxide, acrylic copolymer, etc.). It arrange | positions between positive electrodes. In addition, for example, when using a non-woven fabric impregnated with an ion conductive electrolyte obtained by dissolving KOH in water as a separator, on the side in contact with the negative electrode active material for secondary battery (for example, containing Zn), It is necessary to provide a film that allows H + , OH , K + , and ZnO 2 2− to pass therethrough but does not pass the negative electrode active material. Moreover, when water as mentioned above is used as a solvent, the safety | security as a secondary battery increases.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限す
るものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは全て本発明の
技術的範囲に包含される。
Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.

以下、本発明の二次電池用負極活物質およびこれを用いた二次電池の実施例について図面を参照しながら説明する。   Examples of a negative electrode active material for a secondary battery and a secondary battery using the same according to the present invention will be described below with reference to the drawings.

(実施例1)
図1は本発明の実施例1の二次電池の模式縦断面図である。図1において、1は正極外装缶、2は正極、3は負極外装缶、4は負極、5はセパレータ、6は絶縁パッキングである。
Example 1
FIG. 1 is a schematic longitudinal sectional view of a secondary battery according to Example 1 of the present invention. In FIG. 1, 1 is a positive electrode outer can, 2 is a positive electrode, 3 is a negative electrode outer can, 4 is a negative electrode, 5 is a separator, and 6 is an insulating packing.

図1において、正極2は、正極用活物質(MnOまたはLiCoO)が白金(Pt)板に塗布された構成からなる。下記表1に示す試料No.1〜9で用いた正極用活物質は、以下の通りである。

Figure 2009093943
In FIG. 1, the positive electrode 2 has a configuration in which a positive electrode active material (MnO 2 or LiCoO 2 ) is applied to a platinum (Pt) plate. Sample No. shown in Table 1 below. The positive electrode active materials used in 1 to 9 are as follows.
Figure 2009093943

発明例(試料No.1、3、5)で用いた正極用活物質…MnO
発明例(試料No.2、4、6)で用いた正極用活物質…LiCoO
比較例(試料No.7、8、9)で用いた正極用活物質…MnO
Active material for positive electrode used in invention examples (sample Nos. 1, 3, 5): MnO 2
Active material for positive electrode used in invention examples (sample Nos. 2, 4, 6) ... LiCoO 2
Active material for positive electrode used in Comparative Examples (Sample Nos. 7, 8, 9): MnO 2

図1において、負極4は、樹脂でできた円筒体4aと円筒体4aの一端側に接続された陽イオン交換膜4bと円筒体4aの他端側に接続され、密閉する集電体4cとからなる収納部とこの収納部内に収納された粘性の低い状態を呈する本発明の二次電池用負極活物質4d(詳細組成は、上記表1のNo.1〜6を参照)から構成されている。また、この二次電池用負極活物質4dは、Ga単体またはSnとGaを所定の配合割合で含有した金属と、このGa単体または金属基準でAl、ZnまたはLiを所定量加え、約30℃〜約100℃で攪拌混合して作成した組成物である。また、本発明の二次電池用負極活物質4dは、陽イオン交換膜4bと集電体4cと接するように構成されている。また、比較例No.7、8で用いた負極は、それぞれAl単体、Zn単体からなる。また、比較例No.9で用いた負極は、AlとLiの合金である。また、本実施例においては、負極4の構成要素として、陽イオン交換膜4bを用いた例について説明したが、適宜省略することも可能である。   In FIG. 1, a negative electrode 4 includes a cylindrical body 4a made of resin, a cation exchange membrane 4b connected to one end side of the cylindrical body 4a, and a current collector 4c connected to the other end side of the cylindrical body 4a and sealed. And a negative electrode active material 4d for a secondary battery of the present invention that exhibits a low-viscosity state housed in the housing portion (see Nos. 1 to 6 in Table 1 above for the detailed composition). Yes. In addition, the negative electrode active material 4d for the secondary battery includes a simple substance of Ga or a metal containing Sn and Ga in a predetermined mixing ratio, and a predetermined amount of Al, Zn, or Li based on the simple substance of Ga or a metal reference, and is about 30 ° C. A composition prepared by stirring and mixing at about 100 ° C. Further, the negative electrode active material 4d for the secondary battery of the present invention is configured to contact the cation exchange membrane 4b and the current collector 4c. Comparative Example No. The negative electrodes used in 7 and 8 are made of Al alone and Zn alone, respectively. Comparative Example No. The negative electrode used in 9 is an alloy of Al and Li. In the present embodiment, an example in which the cation exchange membrane 4b is used as a constituent element of the negative electrode 4 has been described, but may be omitted as appropriate.

図1において、セパレータ5は、イオン伝導性電解液とこのイオン伝導性電解液が含浸される不織布とから構成されている。上記表1に示す試料No.1〜9で用いたイオン伝導性電解液(有機溶媒と電解質から構成される)は、以下の通りであり、各電解質は有機溶媒に対してそれぞれ1g/L(Lはリットルの意味)になるように50℃で溶解した。
発明例(試料No.1、2)で用いた有機溶媒と電解質
…C、Al(ClO
発明例(試料No.3、4)で用いた有機溶媒と電解質
…C、Zn(ClO
発明例(試料No.5、6)で用いた有機溶媒と電解質
…C、LiClO
比較例(試料No.7)で用いた有機溶媒と電解質
…C、Al(ClO
比較例(試料No.8)で用いた有機溶媒と電解質
…C、Zn(ClO
比較例(試料No.9)で用いた有機溶媒と電解質
…C、LiClO
In FIG. 1, the separator 5 is comprised from the ion conductive electrolyte and the nonwoven fabric impregnated with this ion conductive electrolyte. Sample No. shown in Table 1 above. The ion-conducting electrolyte solution (consisting of an organic solvent and an electrolyte) used in 1 to 9 is as follows, and each electrolyte is 1 g / L (L means liter) with respect to the organic solvent. Was dissolved at 50 ° C.
Organic solvents and electrolytes used in the inventive examples (Sample Nos. 1 and 2)
... C 3 H 4 O 3 , Al (ClO 4 ) 3
Organic solvents and electrolytes used in Invention Examples (Sample Nos. 3 and 4)
... C 3 H 4 O 3 , Zn (ClO 4 ) 2
Organic solvent and electrolyte used in invention examples (sample Nos. 5 and 6)
... C 3 H 4 O 3 , LiClO 4
Organic solvent and electrolyte used in Comparative Example (Sample No. 7)
... C 3 H 4 O 3 , Al (ClO 4 ) 3
Organic solvent and electrolyte used in Comparative Example (Sample No. 8)
... C 3 H 4 O 3 , Zn (ClO 4 ) 2
Organic solvent and electrolyte used in Comparative Example (Sample No. 9)
... C 3 H 4 O 3 , LiClO 4

以上のような構成で組み立てられた試料No.1〜9の二次電池において、まず発生電圧と電流を測定した。その結果、発明例(試料No.1〜6)においては、1.0〜1.7Vの電圧が発生し、0.3〜0.5mA/cmの電流が流れた(上記表1参照)。比較例(試料No.7、8)においては、測定開始時には電圧が観測されたが、すぐに電圧が低下し、測定不能となった。これは、負極表面の酸化皮膜等が導通を妨げたためと考えられる。比較例(試料No.9)では、3.0Vの電圧が発生し、0.5mA/cmの電流が流れた(上記表1参照)。 Sample No. assembled in the above-described configuration. In the secondary batteries 1 to 9, first, the generated voltage and current were measured. As a result, in the inventive examples (Sample Nos. 1 to 6), a voltage of 1.0 to 1.7 V was generated, and a current of 0.3 to 0.5 mA / cm 2 flowed (see Table 1 above). . In the comparative examples (Sample Nos. 7 and 8), a voltage was observed at the start of measurement, but the voltage immediately dropped and measurement was impossible. This is presumably because the oxide film on the negative electrode surface hinders conduction. In the comparative example (Sample No. 9), a voltage of 3.0 V was generated, and a current of 0.5 mA / cm 2 flowed (see Table 1 above).

次に、上記試料No.1〜9の二次電池について、充電時(4Vで5時間充電後)の負極表面へのデンドライトの生成の有無および充放電時の電極の損傷の有無を確認した。その結果、発明例(試料No.1〜6)と比較例(試料No.7、8)においては、デンドライトの生成は認められなかったが、比較例(試料No.9)では、デンドライトの生成が認められた(上記表1参照)。また、発明例(試料No.1〜6)と比較例(試料No.7、8)では、充放電時の電極の損傷も認められなかったが、比較例(試料No.9)では、損傷が認められた。   Next, the sample No. Regarding the secondary batteries 1 to 9, whether or not dendrite was generated on the negative electrode surface during charging (after charging for 5 hours at 4 V) and whether or not the electrodes were damaged during charging and discharging were confirmed. As a result, in the invention examples (sample Nos. 1 to 6) and the comparative examples (sample Nos. 7 and 8), generation of dendrite was not observed, but in the comparative example (sample No. 9), generation of dendrite. (See Table 1 above). Moreover, although damage of the electrode at the time of charging / discharging was not recognized in invention example (sample No. 1-6) and comparative example (sample No. 7, 8), in comparative example (sample No. 9), it was damaged. Was recognized.

(実施例2)
図2は本発明の実施例2の二次電池の模式縦断面図である。本実施例において、実施例1と同一の構成要素については、同一の番号を付与して詳細な説明は省略し、異なる部分のみ詳述する。図2において、7は正極であり、正極7はPtがメッキされたチタン(Ti)板からなる集電体7aとCe(SO水溶液が含浸された不織布7bと陰イオン交換膜7cとから構成されている。Ce(SO水溶液は、電解質Ce(SOが水に対して2g/L溶解したものである。また、この陰イオン交換膜7cは、SO は通過できるがCe4+は通過できない構造となっている。下記表2に示す発明例(試料No.10、11)と比較例(試料No.12)ともに、上記正極7の構成を用いている。

Figure 2009093943
(Example 2)
FIG. 2 is a schematic longitudinal sectional view of a secondary battery according to Example 2 of the present invention. In the present embodiment, the same constituent elements as those in the first embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and only different portions are described in detail. In FIG. 2, 7 is a positive electrode, and the positive electrode 7 includes a current collector 7a made of a titanium (Ti) plate plated with Pt, a non-woven fabric 7b impregnated with a Ce (SO 4 ) 2 aqueous solution, and an anion exchange membrane 7c. It is composed of The Ce (SO 4 ) 2 aqueous solution is obtained by dissolving 2 g / L of the electrolyte Ce (SO 4 ) 2 in water. Further, the anion exchange membrane. 7c, SO 4 over can pass but has a structure in which Ce 4+ can not pass through. The configuration of the positive electrode 7 is used for both the inventive examples (Sample Nos. 10 and 11) and the comparative example (Sample No. 12) shown in Table 2 below.
Figure 2009093943

負極4は、発明例(試料No.10、11)に関しては、実施例1と同一(但し、詳細組成は、上記表2を参照)であるが、比較例(試料No.12)に関してはZn単体からなる。また、本実施例においても、実施例1と同様に、負極4の構成要素として、陽イオン交換膜4bを用いた例について説明したが、適宜省略することも可能である。   The negative electrode 4 is the same as that of Example 1 with respect to the inventive examples (sample Nos. 10 and 11) (however, the detailed composition is shown in Table 2 above), but the comparative example (sample No. 12) is Zn. It consists of a simple substance. Also in the present embodiment, as in the first embodiment, the example in which the cation exchange membrane 4b is used as the constituent element of the negative electrode 4 has been described, but may be omitted as appropriate.

また、セパレータ5は、実施例1と同様にイオン伝導性電解液とこのイオン伝導性電解液が含浸される不織布とから構成されている。但し、イオン伝導性電解液として、(NHSO水溶液を用いている。この(NHSO水溶液は、電解質(NHSOが水に対して2g/L溶解したものである。 Moreover, the separator 5 is comprised similarly to Example 1 from the ion conductive electrolyte and the nonwoven fabric impregnated with this ion conductive electrolyte. However, an aqueous solution of (NH 4 ) 2 SO 4 is used as the ion conductive electrolyte. This (NH 4 ) 2 SO 4 aqueous solution is obtained by dissolving 2 g / L of the electrolyte (NH 4 ) 2 SO 4 in water.

以上のような構成で組み立てられた試料No.10〜12の二次電池において、まず発生電圧と電流を測定した。その結果、発明例(試料No.10、11)においては、それぞれ2.0、2.2Vの電圧が発生し、0.3、0.4mA/cmの電流が流れた(上記表2参照)。比較例(試料No.12)では、1.8Vの電圧が発生し、0.3mA/cmの電流が流れた(上記表2参照)。 Sample No. assembled in the above-described configuration. In 10 to 12 secondary batteries, first, the generated voltage and current were measured. As a result, in the inventive examples (Sample Nos. 10 and 11), voltages of 2.0 and 2.2 V were generated, respectively, and currents of 0.3 and 0.4 mA / cm 2 flowed (see Table 2 above). ). In the comparative example (Sample No. 12), a voltage of 1.8 V was generated, and a current of 0.3 mA / cm 2 flowed (see Table 2 above).

次に、上記試料No.10〜12の二次電池について、充電時(2.5Vで5時間充電後)の負極表面へのデンドライトの生成の有無および充放電時の電極の損傷の有無を確認した。その結果、発明例(試料No.10、11)においては、デンドライトの生成は認められなかったが、比較例(試料No.12)では、デンドライトの生成が認められた(上記表2参照)。また、発明例(試料No.10、11)では、充放電時の電極の損傷も認められず、比較例(試料No.12)でも、損傷は認められなかった。   Next, the sample No. About the secondary battery of 10-12, the presence or absence of the generation | occurrence | production of the dendrite to the negative electrode surface at the time of charge (after charging for 5 hours at 2.5V), and the presence or absence of the damage of the electrode at the time of charging / discharging were confirmed. As a result, in the invention examples (samples No. 10 and 11), no dendrite formation was observed, but in the comparative example (sample No. 12), dendrite formation was observed (see Table 2 above). Further, in the inventive examples (Sample Nos. 10 and 11), no damage to the electrodes during charging and discharging was observed, and no damage was observed in the comparative example (Sample No. 12).

(実施例3)
図3は本発明の実施例3の二次電池の模式縦断面図である。本実施例において、実施例1と同一の構成要素については、同一の番号を付与して詳細な説明は省略し、異なる部分のみ詳述する。図3において、8は正極であり、正極8は正極用活物質NiOOHがニッケル(Ni)板からなる集電体に塗布されたものを正極としている。下記表3に示す発明例(試料No.13)においては、上記正極8の構成を用いている。

Figure 2009093943
(Example 3)
FIG. 3 is a schematic longitudinal sectional view of a secondary battery according to Example 3 of the present invention. In the present embodiment, the same constituent elements as those in the first embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and only different portions are described in detail. In FIG. 3, 8 is a positive electrode, and the positive electrode 8 is a positive electrode in which a positive electrode active material NiOOH is applied to a current collector made of a nickel (Ni) plate. In the invention example (sample No. 13) shown in Table 3 below, the configuration of the positive electrode 8 is used.
Figure 2009093943

負極4に関しては、基本的には、実施例1と同一(但し、詳細組成は、上記表3を参照)であるが、後述するようなセパレータ9を用いる場合は、負極4の構成要素として陽イオン交換膜4bは不要である。   The negative electrode 4 is basically the same as in Example 1 (however, the detailed composition is shown in Table 3 above). However, when a separator 9 as described later is used, a positive electrode is used as a component of the negative electrode 4. The ion exchange membrane 4b is unnecessary.

また、セパレータ9は、イオン伝導性電解液が含浸される不織布9aと細孔を有した膜9bから構成されている。但し、イオン伝導性電解液として、20質量%KOH水溶液を用いている。膜9bは負極4と不織布9aとの間に設けられている。また、本実施例のように二次電池用負極活物質4cとして、Znを含有する場合は、膜9bはH、OH、K、ZnO 2−は通過可能であるが負極活物質は通過しない構造となっている。 The separator 9 is composed of a nonwoven fabric 9a impregnated with an ion conductive electrolyte and a membrane 9b having pores. However, 20 mass% KOH aqueous solution is used as the ion conductive electrolyte. The film 9b is provided between the negative electrode 4 and the nonwoven fabric 9a. Moreover, when Zn is contained as the negative electrode active material 4c for the secondary battery as in this embodiment, the film 9b can pass H + , OH , K + , and ZnO 2 2− , but the negative electrode active material. Has a structure that does not pass.

以上のような構成で組み立てられた試料No.13の二次電池において、まず発生電圧と電流を測定した。その結果、発明例(試料No.13)においては、それぞれ1.5Vの電圧が発生し、0.3mA/cmの電流が流れた(上記表3参照)。 Sample No. assembled in the above-described configuration. In 13 secondary batteries, first, generated voltage and current were measured. As a result, in the inventive example (Sample No. 13), a voltage of 1.5 V was generated, and a current of 0.3 mA / cm 2 flowed (see Table 3 above).

次に、上記試料No.13の二次電池について、充電時(2.5Vで5時間充電後)の負極表面へのデンドライトの生成の有無および充放電時の電極の損傷の有無を確認した。その結果、発明例(試料No.13)においては、デンドライトの生成は認められなかった(上記表3参照)。また、発明例(試料No.13)では、充放電時の電極の損傷も認められなかった。   Next, the sample No. For No. 13 secondary battery, the presence or absence of dendrite generation on the negative electrode surface during charging (after charging for 5 hours at 2.5 V) and the presence or absence of electrode damage during charging and discharging were confirmed. As a result, in the invention example (sample No. 13), generation of dendrite was not observed (see Table 3 above). Moreover, in the example of an invention (sample No. 13), the damage of the electrode at the time of charging / discharging was not recognized.

本発明の実施例1の二次電池の模式縦断面図である。It is a model longitudinal cross-sectional view of the secondary battery of Example 1 of this invention. 本発明の実施例2の二次電池の模式縦断面図である。It is a model longitudinal cross-sectional view of the secondary battery of Example 2 of this invention. 本発明の実施例3の二次電池の模式縦断面図である。It is a model longitudinal cross-sectional view of the secondary battery of Example 3 of this invention.

符号の説明Explanation of symbols

1 正極外装缶
2、7、8 正極
3 負極外装缶
4 負極
4a 円筒体
4b 陽イオン交換膜
4c、7a 集電体
4d 二次電池用負極活物質
5、9 セパレータ
6 絶縁パッキング
7b、9a 不織布
7c 陰イオン交換膜
9b 細孔を有した膜
DESCRIPTION OF SYMBOLS 1 Positive electrode outer can 2, 7, 8 Positive electrode 3 Negative electrode outer can 4 Negative electrode 4a Cylindrical body 4b Cation exchange membrane 4c, 7a Current collector 4d Negative electrode active material for secondary batteries 5, 9 Separator 6 Insulation packing 7b, 9a Nonwoven fabric 7c Anion exchange membrane 9b Membrane with pores

Claims (4)

スズをX%(質量%の意味、以下同じ)、ガリウムをY%含有した金属と、標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素と、を有した二次電池用負極活物質であって、前記金属は下記式(1)〜(3)を満たし、前記標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素の合計量は前記金属基準で38%以下(ただし、0%を含まない)であることを特徴とする二次電池用負極活物質。
X≦12.5 … (1)
87.5≦Y≦100 … (2)
Y=100−X … (3)
It had a metal containing X% tin (meaning of mass%, the same shall apply hereinafter) and Y% gallium, and at least one metal element selected from the group consisting of metal elements having a standard electrode potential lower than that of gallium. A negative electrode active material for a secondary battery, wherein the metal satisfies the following formulas (1) to (3), and the standard electrode potential is at least one metal element selected from the group consisting of metal elements lower than gallium. The total amount is 38% or less (excluding 0%) based on the metal, wherein the negative electrode active material for a secondary battery.
X ≦ 12.5 (1)
87.5 ≦ Y ≦ 100 (2)
Y = 100−X (3)
前記標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素は、アルミニウム、亜鉛またはリチウムの少なくともいずれか1種である請求項1に記載の二次電池用負極活物質。   2. The negative electrode active for secondary battery according to claim 1, wherein at least one metal element selected from the group consisting of metal elements having a standard electrode potential lower than that of gallium is at least one of aluminum, zinc, and lithium. material. 請求項1または2に記載の二次電池用負極活物質が収納保持された負極と、正極と、前記負極と正極間に配置されたイオン伝導性電解液とを備えた二次電池であって、前記二次電池用負極活物質中の標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素は、放電時には前記金属元素のイオンとして前記電解液内に拡散し、充電時には前記金属元素のイオンが前記二次電池用負極活物質表面で再び前記金属元素に戻り、前記二次電池用負極活物質内へ拡散するように構成されたことを特徴とする二次電池。   A secondary battery comprising: a negative electrode in which the negative electrode active material for a secondary battery according to claim 1 is housed and held; a positive electrode; and an ion conductive electrolyte disposed between the negative electrode and the positive electrode. At least one metal element selected from the group consisting of metal elements having a standard electrode potential lower than gallium in the negative electrode active material for secondary batteries diffuses into the electrolyte as ions of the metal element during discharge. In addition, the secondary electrode is configured such that, during charging, ions of the metal element return to the metal element again on the surface of the negative electrode active material for the secondary battery and diffuse into the negative electrode active material for the secondary battery. battery. 前記イオン伝導性電解液は、金属イオン伝導性電解液であり、前記金属イオン伝導性電解液中の金属イオンは、前記二次電池用負極活物質中の標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素に対応していることを特徴とする請求項3に記載の二次電池。   The ion conductive electrolyte is a metal ion conductive electrolyte, and the metal ions in the metal ion conductive electrolyte are from metal elements whose standard electrode potential in the negative electrode active material for secondary batteries is lower than gallium. The secondary battery according to claim 3, wherein the secondary battery corresponds to at least one metal element selected from the group consisting of:
JP2007264195A 2007-10-10 2007-10-10 Negative electrode active material for secondary battery and secondary battery using the same Active JP5329066B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007264195A JP5329066B2 (en) 2007-10-10 2007-10-10 Negative electrode active material for secondary battery and secondary battery using the same
PCT/JP2008/068494 WO2009048146A1 (en) 2007-10-10 2008-10-10 Negative electrode active material for rechargeable battery, rechargeble battery using the negative electrode active material, and air rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007264195A JP5329066B2 (en) 2007-10-10 2007-10-10 Negative electrode active material for secondary battery and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2009093943A true JP2009093943A (en) 2009-04-30
JP5329066B2 JP5329066B2 (en) 2013-10-30

Family

ID=40665728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007264195A Active JP5329066B2 (en) 2007-10-10 2007-10-10 Negative electrode active material for secondary battery and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5329066B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198495A (en) * 2010-03-17 2011-10-06 Toyota Motor Corp Gallium battery
WO2017073075A1 (en) * 2015-10-30 2017-05-04 Sharp Kabushiki Kaisha Metal-ion rechargeable cell or battery
JP2018066034A (en) * 2016-10-18 2018-04-26 株式会社コベルコ科研 Metal mixture for hydrogen generation and hydrogen generation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192731A (en) * 1993-11-19 1995-07-28 Dowa Mining Co Ltd Negative active material using ga as main component and secondary battery using this active material
JPH0992277A (en) * 1995-09-21 1997-04-04 Dowa Mining Co Ltd Negative active material for secondary battery, electrode and secondary battery using it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192731A (en) * 1993-11-19 1995-07-28 Dowa Mining Co Ltd Negative active material using ga as main component and secondary battery using this active material
JPH0992277A (en) * 1995-09-21 1997-04-04 Dowa Mining Co Ltd Negative active material for secondary battery, electrode and secondary battery using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198495A (en) * 2010-03-17 2011-10-06 Toyota Motor Corp Gallium battery
WO2017073075A1 (en) * 2015-10-30 2017-05-04 Sharp Kabushiki Kaisha Metal-ion rechargeable cell or battery
JP2018066034A (en) * 2016-10-18 2018-04-26 株式会社コベルコ科研 Metal mixture for hydrogen generation and hydrogen generation method

Also Published As

Publication number Publication date
JP5329066B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
CN100463281C (en) Battery
CN101872860B (en) Positive electrode active material, method for manufacturing positive electrode active material and nonaqueous electrolyte battery
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
US9705130B2 (en) Antimony-based anode on aluminum current collector
JP4400019B2 (en) Non-aqueous electrolyte battery and method for producing the same
JPH07176322A (en) Electrolytic solution for li secondary battery
US8685564B2 (en) Active material for rechargeable battery
JPH07176323A (en) Electrolytic solution and negative electrode for li secondary battery
US20200220223A1 (en) Ionic liquid electrolytes for high voltage battery application
US20200083556A1 (en) Battery, battery pack, and uninterruptible power supply
JP2008059765A (en) Nonaqueous secondary battery
KR20190084862A (en) Aqueous electrolyte solution, and aqueous lithium ion secondary battery
CN101232088A (en) Battery
EP0139756B1 (en) Rechargeable electrochemical apparatus and negative pole therefor
EP4053938A1 (en) Negative electrode for lithium secondary battery, method for manufacturing same, and lithium secondary battery using same
JP5329066B2 (en) Negative electrode active material for secondary battery and secondary battery using the same
KR102560652B1 (en) Negative electrode for lithium secondary battery, method of preparing the saem, and lithium secondary battery using the same
JP2014041767A (en) Negative electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
JP5342188B2 (en) Negative electrode active material for secondary battery and secondary battery using the same
KR102282912B1 (en) Anode, secondary battery including the same, and manufacturing method thereof
KR20230080868A (en) Zinc metal anode for aqueous secondary battery, preparation method thereof and aqueous secondary battery comprising the zinc metal anode
JPH06310125A (en) Negative electrode for lithium secondary battery
JP3202880B2 (en) Crystalline lithium metal, method for producing the same, and lithium secondary battery
JP2010102861A (en) Negative electrode for secondary battery, and secondary battery using the same
KR102282911B1 (en) Sencondary battery, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5329066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150