JPH07176323A - Electrolytic solution and negative electrode for li secondary battery - Google Patents

Electrolytic solution and negative electrode for li secondary battery

Info

Publication number
JPH07176323A
JPH07176323A JP5346212A JP34621293A JPH07176323A JP H07176323 A JPH07176323 A JP H07176323A JP 5346212 A JP5346212 A JP 5346212A JP 34621293 A JP34621293 A JP 34621293A JP H07176323 A JPH07176323 A JP H07176323A
Authority
JP
Japan
Prior art keywords
negative electrode
electrolytic solution
secondary battery
lithium
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5346212A
Other languages
Japanese (ja)
Inventor
Shuji Kubota
修司 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP5346212A priority Critical patent/JPH07176323A/en
Publication of JPH07176323A publication Critical patent/JPH07176323A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide an electrolytic solution and a negative electrode capable of forming a Li secondary battery excellent in the charge/discharge efficiency, discharge capacity, and charge/discharge cycle life and rarely generating LiOH on the surface of the negative electrode. CONSTITUTION:Carbon dioxide is dissolved in an electrolytic solution dissolved with lithium salt in a nonaqueous solvent. The surface is coated with lithium carbonate 2. Even when Li ion-conductive lithium carbonate 2 is generated or exists on the surface of the negative electrode and moisture exists in the electrolyte, the inhibition of the battery reaction due to the generation or existence of LiOH can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負極表面に水酸化リチ
ウムが生成しにくくて充放電効率、放電容量、充放電の
サイクル寿命等に優れるLi二次電池を形成できる電解
液及び負極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic solution and a negative electrode capable of forming a Li secondary battery which is less likely to generate lithium hydroxide on the negative electrode surface and is excellent in charge / discharge efficiency, discharge capacity, charge / discharge cycle life and the like.

【0002】[0002]

【従来の技術】従来、Li二次電池の形成に用いる電解
液としては、有機溶媒等の非水溶媒にリチウム塩を溶解
させたものが知られていた。しかしながら、充放電の繰
返しで充放電効率が低下し、放電容量も低下して充放電
のサイクル寿命に乏しい問題点があった。またリチウム
やリチウム合金を負極に用いた場合には表面にデンドラ
イトが生成、成長しやすく電池機能の著しい低下やセパ
レータ(電解液層)貫通による正・負極間の短絡を生じ
させる問題点があり、炭素系負極の場合にもその負極性
能の低下が著しい問題点があった。
2. Description of the Related Art Conventionally, as an electrolytic solution used for forming a Li secondary battery, a solution in which a lithium salt is dissolved in a non-aqueous solvent such as an organic solvent has been known. However, there have been problems that charge and discharge efficiency is lowered by repeated charge and discharge, the discharge capacity is lowered, and the charge and discharge cycle life is poor. In addition, when lithium or a lithium alloy is used for the negative electrode, there are problems that dendrites are easily generated on the surface and easily grow, resulting in a significant decrease in battery function and a short circuit between the positive and negative electrodes due to penetration of the separator (electrolyte layer) Even in the case of a carbon-based negative electrode, there is a problem that the negative electrode performance is significantly deteriorated.

【0003】本発明者は、前記の問題点を克服するため
に鋭意研究を重ねるなかで、かかる充放電効率の低下等
の問題は負極にLiOH等が生成するためであることを
究明した。すなわちリチウムやリチウム合金系、又はリ
チウムを層間にインターカレートするようにした炭素系
等の負極表面にLiOHやLi2Oが生成し、しかもLiイ
オン伝導性のLi2OよりもLiイオンを伝導しないLiO
Hが圧倒的に生成して負極表面での充放電を阻害し、リ
チウムやリチウム合金系負極の場合にはLiOHの生成
で充放電が阻害されない表面部分に電流が集中してデン
ドライトが生成、成長しやすくなり、炭素系負極の場合
にはLiOHの生成による負極容量の減少でインターカ
レートできないLiイオンが電極表面に電析することを
究明した。さらにLiOH等の生成は、リチウムないし
そのイオンが電解液中に存在する微量の水、通常20〜
50ppm程度の水と下式(イ)、(ロ)の如く反応する
ためであることも究明した。 (イ) 2Li+2H2O=2LiOH+H2 (ロ) 2Li+H2O =Li2O+H2
The inventors of the present invention have made extensive studies to overcome the above-mentioned problems, and have found out that the problems such as the decrease in charge / discharge efficiency are due to the generation of LiOH and the like in the negative electrode. That is, LiOH or Li 2 O is generated on the surface of a negative electrode such as lithium, a lithium alloy system, or a carbon system in which lithium is intercalated between layers, and Li ions are conducted more than Li 2 O having Li ion conductivity. Not LiO
H is overwhelmingly generated and inhibits charge / discharge on the surface of the negative electrode, and in the case of lithium or lithium alloy type negative electrode, current is concentrated on the surface portion where charge / discharge is not inhibited by generation of LiOH and dendrite is generated and grown. In the case of a carbon-based negative electrode, it was found that Li ions, which cannot be intercalated, are electrodeposited on the electrode surface due to the decrease in the negative electrode capacity due to the formation of LiOH. Further, the production of LiOH or the like is carried out with a trace amount of water in which lithium or its ions are present in the electrolytic solution, usually 20 to
It was also clarified that it was due to a reaction with about 50 ppm of water as shown in the following formulas (a) and (b). (B) 2Li + 2H 2 O = 2LiOH + H 2 ( b) 2Li + H 2 O = Li 2 O + H 2

【0004】[0004]

【発明が解決しようとする課題】従って本発明は、充放
電効率、放電容量、充放電のサイクル寿命等に優れるL
i二次電池を形成できる、負極表面にLiOHが生成しに
くい電解液と負極を得ることを目的とする。
Therefore, the present invention is excellent in charge / discharge efficiency, discharge capacity, charge / discharge cycle life and the like.
The purpose of the present invention is to obtain an electrolytic solution and a negative electrode that can form a secondary battery and in which LiOH is not easily generated on the negative electrode surface.

【0005】[0005]

【課題を解決するための手段】本発明は、非水溶媒にリ
チウム塩を溶解させた電解液に、二酸化炭素を溶存させ
たことを特徴とするLi二次電池用電解液、及び表面を
炭酸リチウムで被覆してなることを特徴とするLi二次
電池用負極を提供するものである。
The present invention is characterized in that carbon dioxide is dissolved in an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent, and an electrolytic solution for a Li secondary battery, and a carbon dioxide surface The present invention provides a negative electrode for a Li secondary battery, which is characterized by being coated with lithium.

【0006】[0006]

【作用】電解液に二酸化炭素を溶存させることにより、
下式(a)、(b)で表される反応に基づいてLiOH
及びLi2OがLi2CO3へと変化し、これにより負極表
面に発生した電池反応阻害物質のLiOHのLiイオン伝
導性であるLi2CO3への変質によりその部分での充放
電も可能となって充放電効率、放電容量、充放電のサイ
クル寿命等に優れるLi二次電池を形成することができ
る。 (a) 2LiOH+CO2=Li2CO3+H2O (b) Li2O+CO2 =Li2CO3
[Function] By dissolving carbon dioxide in the electrolyte,
Based on the reaction represented by the following formulas (a) and (b), LiOH
And Li 2 O change to Li 2 CO 3 , and due to this, the battery reaction inhibitor generated on the negative electrode surface is changed to Li 2 CO 3 which is Li ion conductive of LiOH, so that charging and discharging can also be performed at that part. Thus, a Li secondary battery having excellent charge / discharge efficiency, discharge capacity, charge / discharge cycle life and the like can be formed. (A) 2LiOH + CO 2 = Li 2 CO 3 + H 2 O (b) Li 2 O + CO 2 = Li 2 CO 3

【0007】なお前記の式(a)では水を生成するが、
上記した式(イ)と前記式(a)の反応の繰返しで負極
表面での炭酸リチウムによる被覆部分が漸次増大して負
極表面の全体を被覆するに到り、これにより元の負極部
分が電解液と直接接触しなくなるので上記式(イ)のL
iOH生成反応等が停止する。
In the above formula (a), water is produced,
By repeating the reaction of the above formula (a) and the above formula (a), the portion covered with lithium carbonate on the negative electrode surface gradually increases and reaches the entire negative electrode surface, whereby the original negative electrode portion is electrolyzed. Since it does not come into direct contact with the liquid, L in the above formula (a)
The iOH generation reaction etc. stops.

【0008】前記において、電解液中の水をなくすこと
によってもLiOHの生成を防止しうることがわかる
が、上記した如く20〜50ppm程度の微量の水の存在
でLiOHは生成し、電解液中の水をかかる水準以下に
することは実質的に困難であり、また外部からの混入も
起こりうるから、本発明は電解液中の水の存在を許容す
る実用上頗る有利な意義を有する。
In the above, it is understood that the production of LiOH can be prevented by eliminating the water in the electrolytic solution. However, as described above, LiOH is produced in the presence of a trace amount of water of about 20 to 50 ppm, and the LiOH is formed in the electrolytic solution. It is practically difficult to reduce the water content to below such a level, and external contamination may occur. Therefore, the present invention has a practically advantageous advantage of allowing the presence of water in the electrolytic solution.

【0009】[0009]

【実施例】本発明の電解液は、非水溶媒にリチウム塩を
溶解させた電解液に二酸化炭素を溶存させたものであ
り、本発明の負極は表面を炭酸リチウムで被覆したもの
であって、これらはLi二次電池を形成するためのもの
である。その負極の例を図1、図2に示した。1が負
極、2が炭酸リチウムの被覆層である。図例より明らか
な如く、炭酸リチウムの被覆層は少なくとも負極の電解
液と接触する部分に設けられていればよい。
EXAMPLES The electrolytic solution of the present invention was prepared by dissolving carbon dioxide in an electrolytic solution prepared by dissolving a lithium salt in a non-aqueous solvent, and the negative electrode of the present invention had a surface coated with lithium carbonate. , These are for forming a Li secondary battery. Examples of the negative electrode are shown in FIGS. Reference numeral 1 is a negative electrode, and 2 is a lithium carbonate coating layer. As is clear from the illustrated example, the lithium carbonate coating layer may be provided at least in a portion of the negative electrode which is in contact with the electrolytic solution.

【0010】電解液における非水溶媒としては、リチウ
ム塩を解離する、水でない適宜な溶媒を用いうる。その
例としては、エチレンカーボネート、プロピレンカーボ
ネート、スルホラン、γ−ブチロラクトン、ジメチルカ
ーボネート、ジエチルカーボネート、蟻酸メチル、酢酸
メチル、1,2−ジメトキシエタン、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン等を1種又は2種以
上用いたものなどがあげられる。
As the non-aqueous solvent in the electrolytic solution, a suitable non-water solvent that dissociates the lithium salt can be used. Examples thereof include ethylene carbonate, propylene carbonate, sulfolane, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, methyl formate, methyl acetate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, and the like, or two or more thereof. Examples include those used.

【0011】リチウム塩としては、Li(錯)イオンを
解離する適宜なリチウム化合物を用いうる。その例とし
ては、LiPF6、LiBF4、LiClO4、LiCF3
3、LiAsF6、LiAlCl4、LiIなどがあげられ
る。リチウム塩の使用量は、非水溶媒1リットルあたり
0.1〜3モルが一般的であるが、これに限定されず目
的とする電池性能等に応じて適宜に決定してよい。
As the lithium salt, an appropriate lithium compound capable of dissociating Li (complex) ions can be used. Examples include LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 S.
O 3 , LiAsF 6 , LiAlCl 4 , LiI and the like can be mentioned. The amount of the lithium salt used is generally 0.1 to 3 mol per liter of the non-aqueous solvent, but is not limited to this and may be appropriately determined depending on the desired battery performance and the like.

【0012】二酸化炭素の溶存は、例えば電解液に炭酸
ガスをバブリングする方式や電解液に炭酸ガスを接触さ
せて圧力を加える方式などの適宜な方式にて行うことが
できる。溶存させる量は少なくとも、電解液中の水との
反応で生成するLiOH等をLi2CO3に変化させうる
量、ないし負極の必要面積を被覆するのに要するLi2
3を生成させうる量である。一般には、電解液中に二
酸化炭素が残存しても支障がないことから過剰量の二酸
化炭素が溶存させられる。
Dissolution of carbon dioxide can be carried out by an appropriate method such as a method of bubbling carbon dioxide gas to the electrolytic solution or a method of bringing carbon dioxide gas into contact with the electrolytic solution to apply pressure. The amount to be dissolved is at least an amount capable of converting LiOH or the like produced by the reaction with water in the electrolytic solution into Li 2 CO 3 , or Li 2 C required to cover the required area of the negative electrode.
It is an amount that can generate O 3 . Generally, even if carbon dioxide remains in the electrolytic solution, there is no problem, and therefore an excessive amount of carbon dioxide is dissolved.

【0013】電解液の形成は、例えば所定量のリチウム
塩を溶解させた非水溶媒に二酸化炭素を溶存させる方式
や、二酸化炭素を溶存させた非水溶媒にリチウム塩を溶
解させる方式などにより行うことができる。その場合、
必要に応じ2−メチルフラン、チオフェン、ピロール、
クラウンエーテル等のデンドライト成長抑制剤や、1,
4−ジシアノブタン、1,4−ジシアノ−2−ブテン、
サクシノニトリルの如きシアノ基含有化合物からなる電
解液分解抑制剤(充電電圧の向上)などの添加剤を配合
することもできる。電解液の形成に際しては蒸留精製し
たものを用いるなど水の含有量を可及的に少なくするこ
とが好ましい。
The electrolyte is formed by, for example, a method of dissolving carbon dioxide in a non-aqueous solvent in which a predetermined amount of lithium salt is dissolved, a method of dissolving the lithium salt in a non-aqueous solvent in which carbon dioxide is dissolved, or the like. be able to. In that case,
2-methylfuran, thiophene, pyrrole, if necessary
Dendritic growth inhibitors such as crown ether,
4-dicyanobutane, 1,4-dicyano-2-butene,
Additives such as an electrolytic solution decomposition inhibitor (improvement of charging voltage) composed of a cyano group-containing compound such as succinonitrile can also be blended. When forming the electrolytic solution, it is preferable to reduce the content of water as much as possible, for example, by using the one purified by distillation.

【0014】本発明の電解液は、Li二次電池を形成す
るためのものであるが、形成するLi二次電池について
はかかる電解液を用いる点を除いて特に限定はない。従
って正極や負極等の形成材について特に限定はないし、
また電池形態等についても特に限定はない。電解液は、
形成目的の電池形態等に応じてそのまま用いる方式や、
支持体に保持させた方式などの適宜な方式で用いること
ができる。
The electrolytic solution of the present invention is for forming a Li secondary battery, but the Li secondary battery to be formed is not particularly limited except that such an electrolytic solution is used. Therefore, there is no particular limitation on the forming material such as the positive electrode and the negative electrode,
Further, there is no particular limitation on the battery form or the like. The electrolyte is
A method that is used as it is according to the form of the battery for which it is formed,
It can be used in an appropriate method such as a method of holding it on a support.

【0015】ちなみに正極としては、例えばMnO2
LiCoO2、LiwCo1-x-yxy2+z(ただし、Mは
1種又は2種以上の遷移金属、wは0<w≦2、xは0
≦x<1、yは0<y<1、zは−1≦z≦4であ
る。)、あるいはLiないしLi・Coのリン酸塩及び/
又はCoないしLi・Coの酸化物を成分として1モルの
Liあたり0.1モル以上のCoと0.2モル以上のPを
含有するもの等を活物質とするものなどがあげられる。
Incidentally, as the positive electrode, for example, MnO 2 ,
LiCoO 2 , Li w Co 1-xy M x P y O 2 + z (where M is one or more transition metals, w is 0 <w ≦ 2, and x is 0).
≦ x <1, y is 0 <y <1, and z is −1 ≦ z ≦ 4. ), Or Li or Li · Co phosphate and /
Alternatively, the active material may be, for example, an oxide containing Co or Li · Co and containing 0.1 mol or more of Co and 0.2 mol or more of P per 1 mol of Li as an active material.

【0016】また負極としては、例えばリチウムやリチ
ウム合金からなる電極やリチウムを層間にインターカレ
ートするようにした炭素系電極などがあげられる。リチ
ウム合金としては、例えばLiとAl、Mg、Pb、Sn、
In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Sr等の
金属やCとの2元又は3元以上の適宜な合金を用いるこ
とができる。また必要に応じてSi、Cd、Zn、La等を
添加したものなどや、LiとPbの合金にLa等を添加し
て機械的特性を改善したものなども用いうる。
Examples of the negative electrode include an electrode made of lithium or a lithium alloy and a carbon-based electrode in which lithium is intercalated between layers. Examples of lithium alloys include Li and Al, Mg, Pb, Sn,
Appropriate binary or ternary or more alloys with metals such as In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, and Sr, and C can be used. If necessary, Si, Cd, Zn, La or the like may be added, or an alloy of Li and Pb may be added with La or the like to improve mechanical properties.

【0017】さらにコイン型やボタン型の電池、あるい
はテープ状物の正・負極を巻回した形態の電池などを形
成する場合に、正・負極間に介在させるセパレータの形
成も例えばポリプロピレン等からなる多孔性ポリマーフ
ィルムやガラスフィルター、あるいはゲル状物質等に電
解液を含浸させたり、充填する方式などの従来に準じた
適宜な方式で行うことができる。
Further, when forming a coin-type or button-type battery, or a battery in which positive and negative electrodes are wound with a tape-like material, the separator interposed between the positive and negative electrodes is also made of polypropylene or the like. It can be carried out by an appropriate method according to a conventional method such as a method of impregnating or filling a porous polymer film, a glass filter, or a gel-like substance with an electrolytic solution.

【0018】なおテープ状の正・負極は、例えば活物質
を必要に応じてアセチレンブラックやケッチェンブラッ
ク等の導電材料及びポリテトラフルオロエチレンやポリ
エチレン、ポリオレフィンオキシドやポリビニルアルコ
ール、あるいは固体電解質等の結着剤と共にキャスティ
ング方式や圧縮成形方式、ロール成形方式などの適宜な
方式で成形する方式などにより形成することができる。
またかかる正・負極を、集電体テープに半田付け、ろう
付け、超音波溶接、スポット溶接、バインダ樹脂による
塗布付着等の適宜な方式で接着して用いることもでき
る。
The tape-shaped positive and negative electrodes may be made of a conductive material such as acetylene black or Ketjen black, and polytetrafluoroethylene, polyethylene, polyolefin oxide, polyvinyl alcohol, or a solid electrolyte as necessary. It can be formed by an appropriate method such as a casting method, a compression molding method, or a roll molding method together with the binder.
The positive and negative electrodes may be bonded to a current collector tape by an appropriate method such as soldering, brazing, ultrasonic welding, spot welding, coating with a binder resin, or the like.

【0019】前記の集電体テープとしては、例えば銅、
アルミニウム、銀、ニッケルなどの導電性テープが用い
られる。かかる集電体テープは、例えばニッケルや鉄な
どのリチウムと反応しにくい導体又は/及び銀、銅、亜
鉛、マグネシウム、アルミニウム、カルシウム、バリウ
ム、ビスマス、インジウム、鉛、白金、パラジウム、ス
ズなどの液体リチウムと親和性の導体で被覆されていて
もよい。
Examples of the current collector tape include copper,
A conductive tape made of aluminum, silver, nickel or the like is used. Such a current collector tape is, for example, a conductor that is difficult to react with lithium such as nickel or iron or / and a liquid such as silver, copper, zinc, magnesium, aluminum, calcium, barium, bismuth, indium, lead, platinum, palladium, tin. It may be covered with a conductor having an affinity with lithium.

【0020】なお前記において、本発明の表面を炭酸リ
チウムで被覆してなる負極を予め形成してそれをLi二
次電池の負極とする場合には、二酸化炭素を溶存しない
電解液も用いうる。かかる負極の形成は、例えば上記し
た二酸化炭素溶存電解液使用のLi二次電池に準じた系
で負極をメッキ処理する方式などにより行うことがで
き、その被覆厚は10〜1000Å程度が通例である
が、これに限定されない。
In the above, when a negative electrode having the surface of the present invention coated with lithium carbonate is formed in advance and used as the negative electrode of a Li secondary battery, an electrolytic solution in which carbon dioxide is not dissolved may be used. The negative electrode can be formed by, for example, a method of plating the negative electrode with a system according to the Li secondary battery using the carbon dioxide-dissolved electrolyte described above, and the coating thickness thereof is usually about 10 to 1000Å. However, it is not limited to this.

【0021】形成したLi二次電池に対する充電は、一
定電流を連続して通電する方式やパルス電源を用いてパ
ルス電流を供給する方式などの適宜な方式にて行うこと
ができる。パルス電流による充電方式では、通電・停止
が繰り返されるため濃度変化が抑制されてデンドライト
がより成長しにくい利点がある。
The Li secondary battery thus formed can be charged by an appropriate method such as a method of continuously supplying a constant current or a method of supplying a pulse current using a pulse power source. The charging method using a pulse current has the advantage that dendrites are more difficult to grow because the concentration change is suppressed because energization / stopping is repeated.

【0022】実施例1 蒸留精製したエチレンカーボネートとジメチルカーボネ
ートの50/50(体積比)混合溶媒に80℃で24時
間真空乾燥処理したLiBF4を1モル/lの濃度で溶解
させ、そのカールフィッシャー水分計による測定で20
ppm以下の溶液に100mlに、水分量が0.1ppm以下の
高純度の炭酸ガスを100ml/分の流量で1時間バブリ
ングして(室温)炭酸ガスを溶存させ、電解液を得た。
Example 1 LiBF 4 vacuum-dried at 80 ° C. for 24 hours in a 50/50 (volume ratio) mixed solvent of distilled and purified ethylene carbonate and dimethyl carbonate was dissolved at a concentration of 1 mol / l, and its Karl Fischer was dissolved. 20 by measurement with a moisture meter
High-purity carbon dioxide gas having a water content of 0.1 ppm or less was bubbled into a 100 ppm or less solution at a flow rate of 100 ml / min for 1 hour (room temperature) to dissolve the carbon dioxide gas to obtain an electrolytic solution.

【0023】前記の電解液を厚さ及び直径が25μmの
多孔性ポリプロピレンフィルムに含浸させてセパレータ
を形成し、そのセパレータの上下に正極と負極を配置し
てコイン型のLi二次電池セルを形成した。
A porous polypropylene film having a thickness and a diameter of 25 μm is impregnated with the electrolytic solution to form a separator, and a positive electrode and a negative electrode are arranged above and below the separator to form a coin-type Li secondary battery cell. did.

【0024】なお前記において正極は、炭酸リチウムと
塩基性炭酸コバルトとリン酸含有率85%のリン酸水溶
液をLi:Co:P=1:0.5:0.5の原子比で混合
し、それをアルミナ製坩堝に入れて900℃で24時間
加熱処理し、リチウムのリン酸塩とリチウム・コバルト
のリン酸塩とコバルト酸化物の混合物(活物質)を形成
し、それをボールミルで粉砕して粒径20μm以下の粉
末とし、その粉末8重量部、アセチレンブラック1重量
部及びポリフッ化ビニリデン1重量部を混合してその1
00mgをニッケルメッシュ上にプレス成形し、直径2
0mmの円板状正極としたものであり、負極は厚さ0.2
mmの金属リチウムシートを直径20mmに打ち抜きその片
面にニッケルメッシュを圧着して円板状負極としたもの
である。
In the above-mentioned positive electrode, lithium carbonate, basic cobalt carbonate and an aqueous phosphoric acid solution having a phosphoric acid content of 85% are mixed at an atomic ratio of Li: Co: P = 1: 0.5: 0.5, It is put in an alumina crucible and heat-treated at 900 ° C. for 24 hours to form a mixture of lithium phosphate, lithium cobalt phosphate and cobalt oxide (active material), which is crushed by a ball mill. Powder having a particle size of 20 μm or less, and mixed with 8 parts by weight of the powder, 1 part by weight of acetylene black and 1 part by weight of polyvinylidene fluoride
Press molding of 00mg onto nickel mesh, diameter 2
It is a disk-shaped positive electrode with a thickness of 0 mm, and the negative electrode has a thickness of 0.2.
A metal lithium sheet having a diameter of 20 mm is punched out to have a diameter of 20 mm, and a nickel mesh is press-bonded to one surface of the sheet to form a disk-shaped negative electrode.

【0025】実施例2 炭酸ガスを溶存しない電解液を用いて実施例1に準じL
i二次電池セルを形成し、そのセル内に実施例1と同じ
炭酸ガスを満たして3atmの圧力を加え、炭酸ガス溶存
の電解液からなるLi二次電池セルを得た。
Example 2 In accordance with Example 1 using an electrolyte solution in which carbon dioxide gas was not dissolved, L
An i secondary battery cell was formed, and the same carbon dioxide gas as in Example 1 was filled in the cell and a pressure of 3 atm was applied to obtain a Li secondary battery cell composed of an electrolytic solution in which carbon dioxide gas was dissolved.

【0026】比較例 炭酸ガスを溶存しない電解液を用いたほかは実施例1に
準じてLi二次電池セルを形成した。
Comparative Example A Li secondary battery cell was formed in the same manner as in Example 1 except that an electrolytic solution in which carbon dioxide gas was not dissolved was used.

【0027】評価試験 実施例、比較例で得たLi二次電池セルに充放電電流
0.5mA、充電電圧4.2V、放電電圧3.0Vの条
件で充放電を繰り返してサイクル特性を調べ、その結果
を表1に示した。なお表1では、実施例1の場合の1サ
イクル目を100とし、これを基準に他の場合を評価し
た。
Evaluation test: The Li secondary battery cells obtained in Examples and Comparative Examples were repeatedly charged and discharged under the conditions of a charge / discharge current of 0.5 mA, a charge voltage of 4.2 V and a discharge voltage of 3.0 V to examine the cycle characteristics. The results are shown in Table 1. In Table 1, the first cycle of Example 1 was set to 100, and other cases were evaluated based on this.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】本発明によれば、Liイオン伝導性の炭
酸リチウムが負極表面に生成ないし存在して電解液中に
水分が存在してもLiOHの生成ないし存続による電池
反応の阻害を防止でき、充放電効率、放電容量、充放電
のサイクル寿命等に優れるLi二次電池を形成すること
ができる。
According to the present invention, even if Li ion conductive lithium carbonate is produced or present on the surface of the negative electrode and water is present in the electrolytic solution, the inhibition of the battery reaction due to the production or persistence of LiOH can be prevented. It is possible to form a Li secondary battery having excellent charge / discharge efficiency, discharge capacity, charge / discharge cycle life and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】負極の実施例を示した断面図FIG. 1 is a cross-sectional view showing an example of a negative electrode.

【図2】他の負極の実施例を示した断面図FIG. 2 is a sectional view showing an example of another negative electrode.

【符号の説明】[Explanation of symbols]

1:負極 2:炭酸リチウムの被覆層 1: Negative electrode 2: Lithium carbonate coating layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非水溶媒にリチウム塩を溶解させた電解
液に、二酸化炭素を溶存させたことを特徴とするLi二
次電池用電解液。
1. An electrolytic solution for a Li secondary battery, wherein carbon dioxide is dissolved in an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent.
【請求項2】 表面を炭酸リチウムで被覆してなること
を特徴とするLi二次電池用負極。
2. A negative electrode for a Li secondary battery, the surface of which is coated with lithium carbonate.
JP5346212A 1993-12-21 1993-12-21 Electrolytic solution and negative electrode for li secondary battery Pending JPH07176323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5346212A JPH07176323A (en) 1993-12-21 1993-12-21 Electrolytic solution and negative electrode for li secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5346212A JPH07176323A (en) 1993-12-21 1993-12-21 Electrolytic solution and negative electrode for li secondary battery

Publications (1)

Publication Number Publication Date
JPH07176323A true JPH07176323A (en) 1995-07-14

Family

ID=18381872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5346212A Pending JPH07176323A (en) 1993-12-21 1993-12-21 Electrolytic solution and negative electrode for li secondary battery

Country Status (1)

Country Link
JP (1) JPH07176323A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006568A1 (en) * 1995-08-03 1997-02-20 Arthur D. Little, Inc. Electrochemical cell and electrochemical process within a carbon dioxide environment
JPH10275633A (en) * 1997-01-28 1998-10-13 Mitsubishi Electric Corp Lithium ion secondary battery
JPH10302836A (en) * 1997-03-06 1998-11-13 Mitsubishi Chem Corp Battery having adjusted electrode interface
JP2001266893A (en) * 2000-03-23 2001-09-28 Matsushita Battery Industrial Co Ltd Non-aqueous electrolytic solution secondary battery
WO2004109839A1 (en) 2003-06-09 2004-12-16 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
WO2004114453A1 (en) * 2003-06-19 2004-12-29 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
EP1562251A2 (en) 2004-02-04 2005-08-10 Samsung SDI Co., Ltd. Organic electrolytic solution and lithium battery using the same
JP2005268016A (en) * 2004-03-18 2005-09-29 Sanyo Electric Co Ltd Manufacturing method of lithium secondary battery
US7078132B2 (en) 2003-10-29 2006-07-18 Samsung Sdi Co., Ltd. Lithium battery having effective performance
JP2006196435A (en) * 2004-12-17 2006-07-27 Sanyo Electric Co Ltd Lithium secondary battery
KR100623476B1 (en) * 2003-07-11 2006-09-19 주식회사 엘지화학 Lithium ion battery using a thin layer coating
JP2007510270A (en) * 2004-01-15 2007-04-19 エルジー・ケム・リミテッド Electrochemical device comprising an aliphatic nitrile compound
US7241536B2 (en) 2001-05-11 2007-07-10 Samsung Sdi Co., Ltd Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN100359748C (en) * 2003-06-19 2008-01-02 三洋电机株式会社 Lithium secondary battery and method for producing same
KR100824048B1 (en) * 2006-11-01 2008-04-22 고려대학교 산학협력단 An anode for lithium battery, a method for preparing the anode and a lithium battery employing the same
US7425388B2 (en) 2002-09-06 2008-09-16 Samsung Sdi Co., Ltd. Electrolyte for a lithium battery and a lithium battery comprising the same
US7592102B1 (en) 2008-05-21 2009-09-22 Samsung Sdi Co., Ltd. Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
JP2009266825A (en) * 2002-07-15 2009-11-12 Ube Ind Ltd Nonaqueous electrolyte and lithium battery using it
US7691537B2 (en) 2005-07-07 2010-04-06 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and a lithium secondary battery including the same
WO2010098645A2 (en) 2009-02-27 2010-09-02 주식회사 엘지화학 Electrolyte, and secondary battery comprising same
US7943257B2 (en) 2001-12-21 2011-05-17 Samsung Sdi Co., Ltd. Electrolyte solvent and rechargeable lithium battery
US8252465B2 (en) 2001-01-19 2012-08-28 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2013539905A (en) * 2010-11-30 2013-10-28 エルジー・ケム・リミテッド Lithium secondary battery
JP2013543232A (en) * 2010-11-30 2013-11-28 エルジー・ケム・リミテッド Lithium secondary battery
US8940434B2 (en) 2012-11-13 2015-01-27 Samsung Sdi Co., Ltd. Electrolyte additive and electrolyte and lithium rechargeable battery including same
JP2015507316A (en) * 2011-12-01 2015-03-05 ナノスケール コンポーネンツ,インコーポレイテッド Method for alkalizing a negative electrode
JP2015146314A (en) * 2010-11-30 2015-08-13 エルジー・ケム・リミテッド lithium secondary battery
KR20170021335A (en) 2014-07-02 2017-02-27 샌트랄 글래스 컴퍼니 리미티드 Ionic complex, electrolyte for nonaqueous electrolyte battery, nonaqueous electrolyte battery and ionic complex synthesis method
KR20180109520A (en) * 2017-03-28 2018-10-08 서울대학교산학협력단 Electrolyte for lithium secondary battery and secondary battery comprising the same
US10128491B2 (en) 2011-12-01 2018-11-13 Nanoscale Components, Inc. Method for alkaliating electrodes
US10186733B2 (en) 2015-01-23 2019-01-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
KR20190024104A (en) 2017-08-31 2019-03-08 (주)코이즈 Elctrolyte for secondary battery and lithium secondary battery or hybrid capacitor comprising thereof
KR20190024105A (en) 2017-08-31 2019-03-08 (주)코이즈 Electrolyte for secondary battery and lithium secondary battery or hybrid capacitor comprising thereof
KR20190099196A (en) * 2016-10-17 2019-08-26 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Protected anodes and how to make and use them
US10454139B2 (en) 2015-01-23 2019-10-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
KR20200127374A (en) 2019-05-02 2020-11-11 한밭대학교 산학협력단 Electrolyte additives for secondary battery, electrolyte comprising the same and lithiumsecondary battery comprising the electrolyte
US11380879B2 (en) 2017-07-10 2022-07-05 Nanoscale Components, Inc. Method for forming an SEI layer on an anode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134567A (en) * 1983-01-20 1984-08-02 Matsushita Electric Ind Co Ltd Organic electrolytic battery
JPH02168562A (en) * 1988-12-20 1990-06-28 Sanyo Electric Co Ltd Manufacture of organic electrolyte battery
JPH04349366A (en) * 1991-05-27 1992-12-03 Fuji Photo Film Co Ltd Lithium secondary battery
JPH06124700A (en) * 1992-10-08 1994-05-06 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic solution secondary battery and manufacturing method thereof
JPH06140077A (en) * 1992-09-11 1994-05-20 Mitsubishi Electric Corp Electrochemical element, lithium secondary battery and set battery and manufacture thereof
JPH06150975A (en) * 1992-11-04 1994-05-31 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134567A (en) * 1983-01-20 1984-08-02 Matsushita Electric Ind Co Ltd Organic electrolytic battery
JPH02168562A (en) * 1988-12-20 1990-06-28 Sanyo Electric Co Ltd Manufacture of organic electrolyte battery
JPH04349366A (en) * 1991-05-27 1992-12-03 Fuji Photo Film Co Ltd Lithium secondary battery
JPH06140077A (en) * 1992-09-11 1994-05-20 Mitsubishi Electric Corp Electrochemical element, lithium secondary battery and set battery and manufacture thereof
JPH06124700A (en) * 1992-10-08 1994-05-06 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic solution secondary battery and manufacturing method thereof
JPH06150975A (en) * 1992-11-04 1994-05-31 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolyte secondary battery

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006568A1 (en) * 1995-08-03 1997-02-20 Arthur D. Little, Inc. Electrochemical cell and electrochemical process within a carbon dioxide environment
JPH10275633A (en) * 1997-01-28 1998-10-13 Mitsubishi Electric Corp Lithium ion secondary battery
JPH10302836A (en) * 1997-03-06 1998-11-13 Mitsubishi Chem Corp Battery having adjusted electrode interface
JP2001266893A (en) * 2000-03-23 2001-09-28 Matsushita Battery Industrial Co Ltd Non-aqueous electrolytic solution secondary battery
US8252465B2 (en) 2001-01-19 2012-08-28 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
US7241536B2 (en) 2001-05-11 2007-07-10 Samsung Sdi Co., Ltd Electrolyte for lithium secondary battery and lithium secondary battery comprising same
US7255966B2 (en) 2001-05-11 2007-08-14 Samsung Sdi Co., Ltd Electrolyte for lithium secondary battery and lithium secondary battery comprising same
US7943257B2 (en) 2001-12-21 2011-05-17 Samsung Sdi Co., Ltd. Electrolyte solvent and rechargeable lithium battery
US10050307B2 (en) 2002-07-15 2018-08-14 Ube Industries, Ltd. Non-aqueous electrolytic solution and lithium battery
US9742033B2 (en) 2002-07-15 2017-08-22 Ube Industries, Ltd. Non-aqueous electrolytic solution and lithium battery
JP2014150070A (en) * 2002-07-15 2014-08-21 Ube Ind Ltd Nonaqueous electrolyte and lithium battery using the same
JP2009266825A (en) * 2002-07-15 2009-11-12 Ube Ind Ltd Nonaqueous electrolyte and lithium battery using it
US7425388B2 (en) 2002-09-06 2008-09-16 Samsung Sdi Co., Ltd. Electrolyte for a lithium battery and a lithium battery comprising the same
US8609279B2 (en) 2003-06-09 2013-12-17 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
WO2004109839A1 (en) 2003-06-09 2004-12-16 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
US8211569B2 (en) 2003-06-19 2012-07-03 Sanyo Electric Co., Ltd. Lithium secondary battery including a negative electrode which is a sintered layer of silicon particles and/or silicon alloy particles and a nonaqueous electrolyte containing carbon dioxide dissolved therein and method for producing same
WO2004114453A1 (en) * 2003-06-19 2004-12-29 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
CN100359748C (en) * 2003-06-19 2008-01-02 三洋电机株式会社 Lithium secondary battery and method for producing same
KR100623476B1 (en) * 2003-07-11 2006-09-19 주식회사 엘지화학 Lithium ion battery using a thin layer coating
US7078132B2 (en) 2003-10-29 2006-07-18 Samsung Sdi Co., Ltd. Lithium battery having effective performance
JP2007510270A (en) * 2004-01-15 2007-04-19 エルジー・ケム・リミテッド Electrochemical device comprising an aliphatic nitrile compound
JP2011222528A (en) * 2004-01-15 2011-11-04 Lg Chem Ltd Method for manufacturing positive electrode for lithium secondary battery
US7514182B2 (en) 2004-02-04 2009-04-07 Samsung Sdi Co., Ltd. Organic electrolytic solution and lithium battery using the same
EP1562251A2 (en) 2004-02-04 2005-08-10 Samsung SDI Co., Ltd. Organic electrolytic solution and lithium battery using the same
JP2005268016A (en) * 2004-03-18 2005-09-29 Sanyo Electric Co Ltd Manufacturing method of lithium secondary battery
JP2006196435A (en) * 2004-12-17 2006-07-27 Sanyo Electric Co Ltd Lithium secondary battery
US7691537B2 (en) 2005-07-07 2010-04-06 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and a lithium secondary battery including the same
KR100824048B1 (en) * 2006-11-01 2008-04-22 고려대학교 산학협력단 An anode for lithium battery, a method for preparing the anode and a lithium battery employing the same
US7879499B2 (en) 2008-05-21 2011-02-01 Samsung Sdi Co., Ltd. Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
US7592102B1 (en) 2008-05-21 2009-09-22 Samsung Sdi Co., Ltd. Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
WO2010098645A2 (en) 2009-02-27 2010-09-02 주식회사 엘지화학 Electrolyte, and secondary battery comprising same
JP2013539905A (en) * 2010-11-30 2013-10-28 エルジー・ケム・リミテッド Lithium secondary battery
JP2013543232A (en) * 2010-11-30 2013-11-28 エルジー・ケム・リミテッド Lithium secondary battery
JP2015146314A (en) * 2010-11-30 2015-08-13 エルジー・ケム・リミテッド lithium secondary battery
JP2015507316A (en) * 2011-12-01 2015-03-05 ナノスケール コンポーネンツ,インコーポレイテッド Method for alkalizing a negative electrode
JP2018026358A (en) * 2011-12-01 2018-02-15 ナノスケール コンポーネンツ,インコーポレイテッド Method for alkaliating anodes
US9598789B2 (en) 2011-12-01 2017-03-21 Nanoscale Components, Inc. Method for alkaliating anodes
US10128491B2 (en) 2011-12-01 2018-11-13 Nanoscale Components, Inc. Method for alkaliating electrodes
US8940434B2 (en) 2012-11-13 2015-01-27 Samsung Sdi Co., Ltd. Electrolyte additive and electrolyte and lithium rechargeable battery including same
US10424794B2 (en) 2014-07-02 2019-09-24 Central Glass Co., Ltd. Ionic complex, electrolyte for nonaqueous electrolyte battery, nonaqueous electrolyte battery and ionic complex synthesis method
KR20170021335A (en) 2014-07-02 2017-02-27 샌트랄 글래스 컴퍼니 리미티드 Ionic complex, electrolyte for nonaqueous electrolyte battery, nonaqueous electrolyte battery and ionic complex synthesis method
US10186733B2 (en) 2015-01-23 2019-01-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
US10454139B2 (en) 2015-01-23 2019-10-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
JP2019536200A (en) * 2016-10-17 2019-12-12 ザ・ボード・オブ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・イリノイThe Board Of Trustees Of The University Of Illinois Protective anode and method for producing protective anode and method for using protective anode
KR20190099196A (en) * 2016-10-17 2019-08-26 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Protected anodes and how to make and use them
CN110178254A (en) * 2016-10-17 2019-08-27 伊利诺伊大学受托管理委员会 Protected anode with and production and preparation method thereof
KR20180109520A (en) * 2017-03-28 2018-10-08 서울대학교산학협력단 Electrolyte for lithium secondary battery and secondary battery comprising the same
US11380879B2 (en) 2017-07-10 2022-07-05 Nanoscale Components, Inc. Method for forming an SEI layer on an anode
KR20190024105A (en) 2017-08-31 2019-03-08 (주)코이즈 Electrolyte for secondary battery and lithium secondary battery or hybrid capacitor comprising thereof
KR20190024104A (en) 2017-08-31 2019-03-08 (주)코이즈 Elctrolyte for secondary battery and lithium secondary battery or hybrid capacitor comprising thereof
KR20200127374A (en) 2019-05-02 2020-11-11 한밭대학교 산학협력단 Electrolyte additives for secondary battery, electrolyte comprising the same and lithiumsecondary battery comprising the electrolyte

Similar Documents

Publication Publication Date Title
JPH07176323A (en) Electrolytic solution and negative electrode for li secondary battery
JPH07176322A (en) Electrolytic solution for li secondary battery
US9252429B2 (en) Electrode additives coated with electro conductive material and lithium secondary comprising the same
US5753389A (en) Organic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US4002492A (en) Rechargeable lithium-aluminum anode
US7282295B2 (en) Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
JP2000215897A (en) Lithium secondary battery
JP4352719B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM ION SECONDARY BATTERY AND LITHIUM ION SECONDARY BATTERY USING THE SAME
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
JP3755506B2 (en) Anode material for secondary battery and secondary battery using the same
EP0714144A1 (en) Cathode for lithium secondary battery and production method for the same
US7097938B2 (en) Negative electrode material and battery using the same
JP4265169B2 (en) Secondary battery electrolyte and secondary battery using the same
JPH08180853A (en) Separator and lithium secondary battery
JPH07245099A (en) Negative electrode for nonaqueous electrolyte type lithium secondary battery
JP3158981B2 (en) Manufacturing method of non-aqueous lithium battery
JPH07282846A (en) Nonaqueous electrolytic battery
JPH09171829A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2001202999A (en) Charge and discharge method for nonaqueous electrolytic secondary battery
WO2021241028A1 (en) Lithium secondary cell and non-aqueous electrolyte used for same
JPH0424828B2 (en)
JPH07282845A (en) Nonaqueous electrolytic secondary battery
EP0144429B1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JP3890388B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery