JPS62176048A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPS62176048A
JPS62176048A JP61038245A JP3824586A JPS62176048A JP S62176048 A JPS62176048 A JP S62176048A JP 61038245 A JP61038245 A JP 61038245A JP 3824586 A JP3824586 A JP 3824586A JP S62176048 A JPS62176048 A JP S62176048A
Authority
JP
Japan
Prior art keywords
negative electrode
alloy
secondary battery
cycle
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61038245A
Other languages
Japanese (ja)
Inventor
Tadaaki Miyazaki
忠昭 宮崎
Kinya Suzuki
欽也 鈴木
Shinichi Toyosawa
真一 豊澤
Takashi Kitamura
隆 北村
Tadashi Nakajima
正 中島
Takahiro Kawagoe
隆博 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Publication of JPS62176048A publication Critical patent/JPS62176048A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase coulomb efficiency and to improve cycle performance to increase cycle life by using an Al-In alloy as a negative material. CONSTITUTION:An Al-In alloy is used in a negative electrode. This negative electrode is combined with a positive electrode which is rechargeable and a nonaqueous electrolyte containing an alkali metal ion to amnufacture a secon dary battery. Thereby, the negative electrode has coulomb efficiency near a theroretical value and the cycle performance is improved to sufficiency display the capabiltiy of various types of positive electrodes, and a drop in performance caused by the negative electrode is eliminated to increase the cycle life even in the repeating of high capacity charge-discharge.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高エネルギー密度で充放電寿命が長く。[Detailed description of the invention] Industrial applications The present invention has high energy density and long charge/discharge life.

しかも作業性が良好で安定性、信頼性に優れた充放電可
能な非水電解液二次電池に関する。
Moreover, the present invention relates to a chargeable/dischargeable non-aqueous electrolyte secondary battery that has good workability, excellent stability, and reliability.

丈米勿技生 従来より、リチウムなどのアルカリ金属を負極とする二
次電池としては、二硫化チタン(T x S z )を
はじめとする各種の層間化合物、ポリアセチレン等の導
電性高分子物質などを正極活物質として用い、電解質と
して過塩素酸リチウム(LiCQ 04)などをプロピ
レンカーボネート等の有機溶媒に溶解した二次電池の開
発が活発に行われている。
Traditionally, secondary batteries using alkali metals such as lithium as negative electrodes have been made using various interlayer compounds such as titanium disulfide (T x S z ), conductive polymer materials such as polyacetylene, etc. A secondary battery is being actively developed in which LiCQ 04 is used as a positive electrode active material and lithium perchlorate (LiCQ 04) is dissolved in an organic solvent such as propylene carbonate as an electrolyte.

これらの二次電池の特徴は負極にリチウム又はリチウム
合金等を用いるため、電池電圧が高く、高エネルギー密
度の二次電池となり得ることである。
These secondary batteries are characterized by the use of lithium, lithium alloy, or the like for the negative electrode, so they can have high battery voltage and high energy density.

発明が 決しようとする問題点 しかしながら、この種の二次電池は、現在実用化されて
いる例がまだ極めて少ない。その主な理由は、充放電回
数(サイクル)寿命が短いこと、充放電効率(クーロン
効率)が低いことなどによるものであり、これは負極の
劣化が大きな原因である。即ち、リチウムを負極として
用いる場合、充電時に電解液中のリチウムイオンがリチ
ウム負極板上に析出する時に均質に析出させることが難
かしく、デンドライト(樹枝状)のリチウムが発生し、
正極・負極間のセパレータを貫通して短絡させたり、リ
チウムが微粒状に析出し、脱落するなどの現象が起き、
サイクル寿命を著しく低下させるためである。
Problems to be Solved by the Invention However, there are still very few examples of this type of secondary battery being put into practical use. The main reasons for this are a short charging/discharging cycle life and a low charging/discharging efficiency (coulombic efficiency), which is largely due to deterioration of the negative electrode. That is, when lithium is used as a negative electrode, when lithium ions in the electrolyte are deposited on the lithium negative electrode plate during charging, it is difficult to deposit homogeneously, and dendrite (dendritic) lithium is generated.
Phenomena such as penetrating the separator between the positive and negative electrodes and causing a short circuit, or lithium depositing in fine particles and falling off, may occur.
This is because the cycle life is significantly reduced.

このため、このような負極の欠点を改良する目的で、従
来から各種の方法が提案されているが、これらの提案も
いまだ種々の問題を有する。例えば、リチウムとアルミ
ニウム、銀、鉛などとの合金を負極に用いる提案がなさ
れているが、リチウム−アルミニウム合金の場合は、デ
ンドライトの発生は見られないものの、充放電を繰り返
すと電極(負極)の微粒化、崩壊が生じること、合金α
相のリチウム拡散速度が小さいためクーロン効率が不満
足であることなどの欠点を有する6また、リチウム−鉛
合金は充放電の繰り返しによる電極の崩壊がリチウム−
アルミニウム合金以上に激しい上、低リチウム濃度の合
金ではクーロン効率も悪い等の問題を有し、リチウム−
銀合金は電気化学的な合金形成速度が小さく、微少電流
領域でしか使用し得ないという問題がある。
For this reason, various methods have been proposed in the past for the purpose of improving the drawbacks of such negative electrodes, but these proposals still have various problems. For example, proposals have been made to use alloys of lithium, aluminum, silver, lead, etc. as negative electrodes, but in the case of lithium-aluminum alloys, although dendrite formation is not observed, repeated charging and discharging will cause the electrode (negative electrode) to Atomization and collapse of alloy α
Lithium-lead alloys have drawbacks such as unsatisfactory coulombic efficiency due to the low lithium diffusion rate in the phase6.Also, lithium-lead alloys have the disadvantage that the electrode collapses due to repeated charging and discharging.
In addition to being more aggressive than aluminum alloys, alloys with low lithium concentrations also have problems such as poor coulombic efficiency.
Silver alloys have a problem in that they have a low electrochemical alloy formation rate and can only be used in a micro current range.

更に最近、錫、鉛、ビスマス、カドミウムを主成分とす
る合金を負極に用いることも提案されている(特開昭5
9−163755〜163759゜163761号)が
、これらはアルミニウムや鉛の合金に比べて充放電の繰
り返しによる微粒化現象は改善されるものの、クーロン
効率はリチウム−アルミニウム合金と同等又はこれを若
干土建る程度で、高容量、長寿命の二次電池負極として
はまだ十分に満足し得るものではない。
Furthermore, it has recently been proposed to use an alloy containing tin, lead, bismuth, and cadmium as main components for the negative electrode (Japanese Patent Laid-Open No.
9-163755 to 163759゜163761), although the atomization phenomenon caused by repeated charging and discharging is improved compared to aluminum and lead alloys, the coulombic efficiency is equivalent to or slightly higher than that of lithium-aluminum alloys. However, it is still not fully satisfactory as a secondary battery negative electrode with high capacity and long life.

このように従来の非水電解液二次電池用負極として実用
上満足できるものは少なく、従ってアルカリ金属の吸蔵
量が大きく、クーロン効率が高く、サイクル寿命の長い
負極材料の開発が望まれる。
As described above, there are few conventional negative electrodes for nonaqueous electrolyte secondary batteries that are practically satisfactory, and it is therefore desired to develop negative electrode materials that have a large amount of alkali metal storage, high Coulombic efficiency, and long cycle life.

本発明は上記事情に鑑みなされたもので、高エネルギー
密度で、充放電のサイクル寿命が長く、しかも作業性(
圧延性)が良好で、信頼性の高い非水電解液二次電池を
提供することを目的とする。
The present invention was developed in view of the above circumstances, and has a high energy density, a long charge/discharge cycle life, and is easy to work with.
The purpose of the present invention is to provide a highly reliable non-aqueous electrolyte secondary battery with good rollability.

問題点を解決するための手 本発明は上記目的を達成するため、アルカリ金属イオン
を含む非水電解液と、再充電可能な正極と、充電時にア
ルカリ金属イオンを吸蔵し、放電時に電解液中へアルカ
リ金属イオンを放出する負極とを備えた非水電解液二次
電池において、前記負極を形成する材料としてインジウ
ムとアルミニウムとの合金を用いたものである。
In order to achieve the above object, the present invention provides a non-aqueous electrolyte containing alkali metal ions, a rechargeable positive electrode, a nonaqueous electrolyte that absorbs alkali metal ions during charging, and a non-aqueous electrolyte that absorbs alkali metal ions during discharging. In a nonaqueous electrolyte secondary battery equipped with a negative electrode that releases alkali metal ions, an alloy of indium and aluminum is used as a material forming the negative electrode.

即ち、本発明者らは、クーロン効率の向上、サイクル寿
命、特に高い充放電容量での充放電の繰り返しによるサ
イクル寿命の向上を達成し得る負極材料につき鋭意検討
を行なった結果、アルミニウムーインジウム(Afl−
In)合金が、後述する実験例に示したように、高い容
量で充放電の繰り返しを行なった場合でもクーロン効率
が高く、しかも繰り返しによる容量及びクーロン効率の
低下が少なく、従ってAQ−In合金がアルカリ金属イ
オン吸蔵、放呂能力が優秀で優れた負極特性を示し、非
水電解液二次電池用の負極材料として非常に良好な性質
を有することを見い出した。そして、実際にこの人α−
In合金による負極を再充電可能な正極とアルカリ金属
イオンを含む電解液と組み合せて二次電池を構成し、充
放電を繰り返したところ、前記目的を達成し得る非常に
良好な性能が得られることを知見した。
That is, the present inventors have conducted intensive studies on negative electrode materials that can improve coulombic efficiency and cycle life, especially through repeated charging and discharging at high charge/discharge capacity. Afl-
As shown in the experimental examples described below, the AQ-In alloy has a high coulombic efficiency even when repeated charging and discharging at a high capacity, and the decrease in capacity and coulombic efficiency due to repetition is small. It has been found that the material has excellent alkali metal ion occlusion and release capabilities, exhibits excellent negative electrode properties, and has very good properties as a negative electrode material for non-aqueous electrolyte secondary batteries. And actually this person α-
When a secondary battery is constructed by combining a negative electrode made of an In alloy with a rechargeable positive electrode and an electrolytic solution containing alkali metal ions and repeatedly charged and discharged, very good performance that can achieve the above objectives is obtained. I found out.

また、二次電池は、通常、その負極電圧が標準水素電極
対比−3v程度の高電位で、充放電回数が1000回以
上といった苛酷な条件下で使用されるが、こうした条件
下で使用すると、電解液に用いた溶媒の多くは、負極表
面で還元反応を起して分解するなどして劣化し、二次電
池のサイクル寿命やクーロン効率等の電池性能に悪影響
を及ぼすことが生じる場合があるが、上述した負極材料
を使用する場合に非水電解液を構成する溶媒としてプロ
ピレンカーボネートと、ジメトキシエタン。
In addition, secondary batteries are normally used under harsh conditions, with the negative electrode voltage being as high as -3V compared to standard hydrogen electrodes, and being charged and discharged more than 1000 times. Many of the solvents used in the electrolyte cause reduction reactions and decomposition on the surface of the negative electrode, resulting in deterioration, which can have a negative impact on battery performance such as the cycle life and Coulombic efficiency of secondary batteries. However, when using the above-mentioned negative electrode material, propylene carbonate and dimethoxyethane are used as solvents constituting the non-aqueous electrolyte.

テトラヒドロフラン及びγ−ブチロラクトンから選ばれ
た1種又は2種以上との混合溶媒を用いると、これらの
溶媒に劣化がほとんど観察されず。
When a mixed solvent with one or more selected from tetrahydrofuran and γ-butyrolactone is used, almost no deterioration is observed in these solvents.

また、サイクル寿命やクーロン効率等の電池性能もより
一層良好なものとなり、従来になく実用に耐え得る画期
的な電池性能が得られることを知見し、本発明を完成す
るに至ったものである。
Furthermore, we discovered that battery performance such as cycle life and coulombic efficiency would be even better, and that we could obtain revolutionary battery performance that could withstand practical use than ever before, which led us to complete the present invention. be.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明に係る二次電池は、上述したようにアルミニウム
ーインジウム(AQ−In)合金を負極材料として負極
を構成し、これを再充電可能な正極及びアルカリ金属イ
オンを含む非水電解質と組み合せて二次電池を製造する
ものである。
As described above, the secondary battery according to the present invention comprises a negative electrode made of an aluminum-indium (AQ-In) alloy as a negative electrode material, which is combined with a rechargeable positive electrode and a non-aqueous electrolyte containing alkali metal ions. The company manufactures secondary batteries.

ここで、本発明に用いられるAQ−In合金組成は必ず
しも制限されないが、アルミニウムを20〜95モル%
、特に30〜80モル%含むものが好適である。
Here, the AQ-In alloy composition used in the present invention is not necessarily limited, but may contain 20 to 95 mol% of aluminum.
In particular, those containing 30 to 80 mol% are preferable.

このAQ−In合金を用いて負極を形成する場合、Al
2−In合金を圧延したシート状に形成してもよく、或
いはAQ−In合金粉末を適当なバインダーで成型して
もよく、負極の形態に特に制限はない。なお、A Q 
−I n合金は圧延性に優れ、シートの成型性が良好で
あるため、シート状の負極を形成する場合に作業性が良
いものである。また、AQ−In合金粉末の成型体など
のようにAQ−In合金を連通気孔を有する多孔体化し
て用いることは、負極の表面積が増大するので好ましい
When forming a negative electrode using this AQ-In alloy, Al
The negative electrode may be formed into a rolled sheet of 2-In alloy, or AQ-In alloy powder may be molded with a suitable binder, and there are no particular restrictions on the form of the negative electrode. In addition, AQ
-In alloy has excellent rollability and good sheet formability, so it has good workability when forming a sheet-like negative electrode. Further, it is preferable to use the AQ-In alloy in a porous body having continuous pores, such as a molded body of AQ-In alloy powder, since this increases the surface area of the negative electrode.

本発明の二次電池の正極に用いる物質は特に制限されず
、その目的等に応じて適宜選択、使用することができる
。例示すると、TiO□、Cr20.。
The material used for the positive electrode of the secondary battery of the present invention is not particularly limited, and can be appropriately selected and used depending on the purpose. For example, TiO□, Cr20. .

V2O9,V、O□、、MnO2,Cub、Mob。V2O9,V,O□,,MnO2,Cub,Mob.

Cu 5 Vz Ota等の金属酸化物、TiS2.F
eS。
Metal oxides such as Cu 5 Vz Ota, TiS2. F
eS.

Cu Co S 4. M o S 、等の金属硫化物
、NbSe3.VSe2等の金属セレン化物などが挙げ
られる。また、ポリアセチレン、ポリベンゼン、ポリパ
ラフェニレン、ポリアニリン、ポリトリフェニルアミン
、ポリ(ジブトキシフェニレン)、ポリフェニレンビニ
レン等のベンゼン及びその誘導体のポリマー、ポリピリ
ジン、ポリキノリン、ポリチオフェン、ポリフラン、ポ
リピロール、アントラセンやナフタリン等のへテロ又は
多核芳香族化合物のポリマー等の有機導電性高分子材料
も正極材料として好適に用いることができる。
Cu Co S 4. Metal sulfides such as M o S, NbSe3. Examples include metal selenides such as VSe2. In addition, polymers of benzene and its derivatives such as polyacetylene, polybenzene, polyparaphenylene, polyaniline, polytriphenylamine, poly(dibutoxyphenylene), polyphenylene vinylene, polypyridine, polyquinoline, polythiophene, polyfuran, polypyrrole, anthracene, naphthalene, etc. Organic conductive polymer materials such as polymers of hetero or polynuclear aromatic compounds can also be suitably used as positive electrode materials.

本発明に係る二次電池を構成する電解質は、アニオンと
カチオンの組合せよりなる化合物であって、アニオンの
例としてはPF、−,5bFG−。
The electrolyte constituting the secondary battery according to the present invention is a compound consisting of a combination of an anion and a cation, and examples of the anion are PF, -, and 5bFG-.

AsF、−,5bCQ、−の如きVA族元素のハロゲン
化物アニオン、BF4−、AQCQ、−の如きHA族元
素のハロゲン化物アニオン、  I−(I3−)t B
r−tCQ−の如きハロゲンアニオン、CQ O4−の
如き過塩素酸アニオン、HF2−、CF、So、−。
Halide anions of group VA elements such as AsF, -, 5bCQ, -, halide anions of group HA elements such as BF4-, AQCQ, -, I-(I3-)t B
Halogen anions such as r-tCQ-, perchlorate anions such as CQ O4-, HF2-, CF, So, -.

5CN−、So”−、H3O4−等を挙げることができ
るが、必ずしもこれらのアニオンに限定されるものでは
ない。また、カチオンとしてはLL”。
Examples include 5CN-, So"-, H3O4-, but are not necessarily limited to these anions. Also, the cation is LL".

Na”、に+の如きアルカリ金属イオン、Mg”wCa
”、Ba”+の如きアルカリ土類金属イオンのほかZn
”、AQ3+なども挙げられ、更にR4N+(Rは水素
又は炭化水素残基を示す)の如き第°4級アンモニウム
イオン等を挙げることができるが、必ずしもこれらのカ
チオンに限定されるものではない。
Alkali metal ions such as Na'', ni+, Mg''wCa
In addition to alkaline earth metal ions such as ", Ba"+, Zn
", AQ3+, and the like, and further examples include quaternary ammonium ions such as R4N+ (R represents hydrogen or a hydrocarbon residue), but the cations are not necessarily limited to these cations.

このようなアニオン、カチオンをもつ電解質の具体例と
しては、LiPFG、Li5bF、、LiAsF、。
Specific examples of electrolytes having such anions and cations include LiPFG, Li5bF, and LiAsF.

LiCQ O,、LiI 、LiBr、LiCQ 、N
aP FG。
LiCQ O,, LiI, LiBr, LiCQ, N
aP FG.

Na5bFs、NaAsF5.NaCQ O,、NaI
 、KP FG。
Na5bFs, NaAsF5. NaCQ O,, NaI
, KP FG.

K 5bFat  KAsF、、KCQ O4,LiB
 F、。
K 5bFat KAsF,, KCQ O4, LiB
F.

L z A Q CQ 4 y  L iHF 21 
 L x S CN + Z n S O4tZ n 
Iz、Z n B r’2t  A O2(S 04)
z*  A Q CQitAQBr、、AQl、、KS
CN、Li503CF、。
L z A Q CQ 4 y L iHF 21
L x S CN + Z n S O4tZ n
Iz, Z n B r'2t A O2 (S 04)
z* A Q CQitAQBr,,AQl,,KS
CN, Li503CF,.

(n  C4Ht)4NAsF6.(n  C4H7)
4NPF@。
(n C4Ht)4NAsF6. (n C4H7)
4NPF@.

(n −C4Ht)4 N CQ O,、(n −C,
H,)、N B F4゜(C2H,)4NCQO4,(
n−C4H,)4NI等が挙げられる。これらのうちで
は、特にLiCQ O4゜LiBF、及びLiP F、
等が好適である。
(n -C4Ht)4 N CQ O,, (n -C,
H,),N B F4゜(C2H,)4NCQO4,(
Examples include n-C4H, )4NI, and the like. Among these, LiCQO4°LiBF and LiPF,
etc. are suitable.

なお、上記化合物は通常溶媒により溶解された状態で使
用され、この場合溶媒は特に限定はされないが、比較的
極性の大きい溶媒が好適に用いられる。具体的には、プ
ロピレンカーボネート。
Note that the above-mentioned compound is usually used in a state dissolved in a solvent, and in this case, the solvent is not particularly limited, but a relatively highly polar solvent is preferably used. Specifically, propylene carbonate.

エチレンカーボネート、テトラヒドロフラン。Ethylene carbonate, tetrahydrofuran.

2−メチルテトラヒドロフラン、ジオキソラン。2-Methyltetrahydrofuran, dioxolane.

ジオキサン、ジメトキシエタン、ジエチレングリコール
ジメチルエーテル等のグライム類、γ−ブチロラクトン
等のラクトン類、トリエチルフォスフェート等のリン酸
エステル類、ホウ酸トリエチル等のホウ酸エステル類、
スルホラン、ジメチルスルホキシド等の硫黄化合物、ア
セトニトリル等のニトリル類、ジメチルホルムアミド、
ジメチルアセトアミド等のアミド類、硫酸ジメチル、ニ
トロメタン、ニトロベンゼン、ジクロロエタンなどの1
種又は2種以上の混合物を挙げることができる。これら
の溶媒の中ではプロピレンカーボネートと、ジメトキシ
エタン、テトラヒドロフラン及びγ−ブチロラクトンか
ら選ばれた1種又は2種以上との混合溶媒が上述したよ
うに本発明の目的に対して好適であり、これらの混合溶
媒を用いることにより、L i B F 4等の電解質
を5モル/Q程度にも達する高濃度に溶解し得るため、
高エネルギー密度の二次電池を形成し得るという効果を
も与える。
Glymes such as dioxane, dimethoxyethane, diethylene glycol dimethyl ether, lactones such as γ-butyrolactone, phosphoric acid esters such as triethyl phosphate, boric acid esters such as triethyl borate,
Sulfur compounds such as sulfolane and dimethyl sulfoxide, nitriles such as acetonitrile, dimethylformamide,
Amides such as dimethylacetamide, dimethyl sulfate, nitromethane, nitrobenzene, dichloroethane, etc.
Mention may be made of species or mixtures of two or more species. Among these solvents, a mixed solvent of propylene carbonate and one or more selected from dimethoxyethane, tetrahydrofuran, and γ-butyrolactone is suitable for the purpose of the present invention, as described above. By using a mixed solvent, electrolytes such as L i B F 4 can be dissolved at a high concentration of about 5 mol/Q.
It also has the effect of forming a secondary battery with high energy density.

なお、上述した特定のプロピレンカーボネートとの混合
溶媒を本発明に係る非水電解液に用いる場合には、混合
溶媒に占めるプロピレンカーボネートの割合を10〜9
0容量%、特に40〜60容量%とすると、更に一層本
発明の目的に対して効果的である。
In addition, when using a mixed solvent with the above-mentioned specific propylene carbonate in the non-aqueous electrolyte according to the present invention, the proportion of propylene carbonate in the mixed solvent is 10 to 9.
Setting the content to 0% by volume, particularly 40 to 60% by volume, is even more effective for the purpose of the present invention.

本発明の二次電池は、通常正負極間に電解液を介在させ
ることにより構成されるが、この場合正負両極間に両極
の接触による電流の短絡を防ぐためセパレーターを介装
することができる。セパレーターとしては多孔質で電解
液を通したり含んだりすることのできる材料、例えばポ
リテトラフルオロエチレン、ポリプロピレンやポリエチ
レンなどの合成樹脂製の不織布、織布及び網等を使用す
ることができる。
The secondary battery of the present invention is usually constructed by interposing an electrolyte between the positive and negative electrodes, but in this case, a separator can be interposed between the positive and negative electrodes to prevent short circuiting of current due to contact between the two electrodes. As the separator, it is possible to use porous materials that allow the electrolyte to pass through or be contained therein, such as nonwoven fabrics, woven fabrics, and nets made of synthetic resins such as polytetrafluoroethylene, polypropylene, and polyethylene.

l肌立抜來 以上説明したように、本発明の二次電池は、負極材料と
して八〇 −In合金を用いたことにより、負極が理論
値に近いクーロン効率を有し、サイクル特性も良好であ
り、このため各種正極の能力を充分に発揮させることが
でき、負極の原因による電池の機能の低下の問題を可及
的になくすことができて、高い充放電容量での充放電繰
り返しでもサイクル寿命が良好となるものである。更に
、この負極材料のAQ−In合金に組合せて非水電解液
としてプロピレンカーボネートと、ジメトキシエタン、
テトラヒドロフラン及びγ−ブチロラクトンから選ばれ
た1種又は2種以上との混合溶媒を用いた場合には、溶
媒が分解などして劣化することなく、また、負極に不導
体膜を形成することなく、より一層サイクル寿命等の電
池性能に優れた二次電池の実用化を可能にするものであ
る。
As explained above, in the secondary battery of the present invention, by using the 80-In alloy as the negative electrode material, the negative electrode has a coulombic efficiency close to the theoretical value and has good cycle characteristics. This makes it possible to fully utilize the capabilities of various positive electrodes, eliminate as much as possible the problem of deterioration in battery function caused by negative electrodes, and ensure that cycles are maintained even after repeated charging and discharging at high charging and discharging capacities. This results in a good service life. Furthermore, in combination with this negative electrode material AQ-In alloy, propylene carbonate, dimethoxyethane,
When a mixed solvent with one or more selected from tetrahydrofuran and γ-butyrolactone is used, the solvent does not decompose and deteriorate, and a nonconductor film is not formed on the negative electrode. This makes it possible to put into practical use secondary batteries with even better battery performance such as cycle life.

次に実験例を示す。なお、この実験例は、AQ−In合
金の負極性能(アルカリ金属の電気化学的吸蔵放出能力
)を正極とは独立に評価するために、Afl−In合金
、AQ、In板を作用極に、リチウム金属箔を対極にし
た半電池セルを組み。
Next, an experimental example will be shown. In addition, in this experimental example, in order to evaluate the negative electrode performance (electrochemical absorption and desorption ability of alkali metal) of the AQ-In alloy independently of the positive electrode, Afl-In alloy, AQ, and an In plate were used as the working electrode. Assemble a half-cell with lithium metal foil as the opposite electrode.

作用極へのリチウムの電気化学的な吸蔵及び放出を調べ
たものである。
This study investigated the electrochemical occlusion and desorption of lithium into the working electrode.

〔実験例1〕 厚さ0.2mmで50モル%のInを含有するA Q 
−I n合金箔を19mmφに打抜いた試料を作用極と
し、18 m mφに打抜いたLL金属箔を対極に用い
、また脱水プロピレンカーボネートと脱水ジメトキシエ
タンとを容量比にて等量混合した混合溶媒中にLiBF
4の3モル/Q溶液を電解質として充分しみこませたセ
パレータを使用し、アルゴン置換されたクローブボック
ス中で第1図に示す試験セルを組んで半電池を構成した
[Experimental Example 1] A Q containing 50 mol% In with a thickness of 0.2 mm
A sample of -I n alloy foil punched to 19 mm diameter was used as the working electrode, LL metal foil punched to 18 mm diameter was used as the counter electrode, and dehydrated propylene carbonate and dehydrated dimethoxyethane were mixed in equal amounts in a volume ratio. LiBF in mixed solvent
A half cell was constructed by assembling the test cell shown in FIG. 1 in a clove box purged with argon, using a separator sufficiently impregnated with a 3 mol/Q solution of 4 as an electrolyte.

なお、第1図において、1はステンレススチール製容器
、2はテフロン製セル容器、3は作用極。
In FIG. 1, 1 is a stainless steel container, 2 is a Teflon cell container, and 3 is a working electrode.

4は対極、5はセパレータである。4 is a counter electrode, and 5 is a separator.

次に上記半電池を用い、アルゴン置換されたガラスビン
中において1mAで10時間放電して作用極へのリチウ
ムイオンの吸蔵を行ない、この時の両極間の開放端電圧
(Voc)を測定した後に、1mAで端子電圧が1.5
■になるまで充電して作用極へのリチウムイオンの放出
を行なう繰返しによる充放電試験を行なった。
Next, using the above half cell, it was discharged at 1 mA for 10 hours in an argon-substituted glass bottle to absorb lithium ions into the working electrode, and after measuring the open circuit voltage (Voc) between the two electrodes, Terminal voltage is 1.5 at 1mA
A charge/discharge test was conducted by repeatedly charging the battery until the battery reached (3) and releasing lithium ions to the working electrode.

その結果、1サイクル目のVocは0.6vであり、1
00回の充放電の繰返しに対し、容量及びクーロン効率
の低下はほとんど見られず、クーロン効率は10サイク
ル目で98.5%、50サイクル目で98%、100サ
イクル目で97.5%であった。なお、15サイクル目
に2mAで40時間としてその容量をアップする条件を
採用したが、クーロン効率は98%を示し、容量アップ
による低下は認められなかった。
As a result, the Voc in the first cycle is 0.6v, and 1
After 00 charge/discharge cycles, there was almost no decrease in capacity or coulombic efficiency, and the coulombic efficiency was 98.5% at the 10th cycle, 98% at the 50th cycle, and 97.5% at the 100th cycle. there were. In addition, although a condition was adopted in which the capacity was increased by applying 2 mA for 40 hours in the 15th cycle, the coulombic efficiency showed 98%, and no decrease was observed due to the increase in capacity.

かかる苛酷な100回に亘る充放電試験の後、半電池を
分解して作用極のA Q −I n合金状態をamした
ところ1表面の光沢が失われている以外、はとんど微粒
化は起きていないものであった。
After such a severe charge/discharge test of 100 times, the half cell was disassembled and the AQ-In alloy state of the working electrode was examined.1 Except for the loss of gloss on the surface, the particles were mostly fine. had not happened.

〔実験例2〕 実験例1の作用極と同サイズのAQ箔を作用極に用いる
以外は実験例1と同様の電池を作成し、同様の条件で充
放電試験を行なったが、80サイクル目で既にクーロン
効率が50%以下となったので試験を中止した。
[Experimental Example 2] A battery similar to Experimental Example 1 was made except that an AQ foil of the same size as the working electrode of Experimental Example 1 was used for the working electrode, and a charge/discharge test was conducted under the same conditions, but at the 80th cycle. Since the coulombic efficiency had already fallen below 50%, the test was discontinued.

上記試験の結果、1サイクル目のVocは0.3■であ
り、クーロン効率は10サイクル目で92%、50サイ
クル目で78%であった。
As a result of the above test, the Voc at the first cycle was 0.3 ■, and the coulombic efficiency was 92% at the 10th cycle and 78% at the 50th cycle.

充放電試験後の半電池を分解し、作用極のAQ金属状態
を観察したところ、微粒化していて形状をとどめていな
かった。
When the half-cell after the charge/discharge test was disassembled and the state of the AQ metal at the working electrode was observed, it was found that it had become atomized and did not retain its shape.

〔実験例3〕 電解液として脱水プロピレンカーボネートと脱水テトラ
ヒドロフランとを容量比にて等斌混合した混合溶媒中に
L i B F4を3モル/Q溶解させたものを用いた
以外は実験例1と同様の電池を作成し、同様の条件で充
放電試験を行なった。
[Experimental Example 3] Same as Experimental Example 1 except that 3 mol/Q of Li B F4 was dissolved in a mixed solvent in which dehydrated propylene carbonate and dehydrated tetrahydrofuran were mixed at equal volume ratios as the electrolyte. A similar battery was created and a charge/discharge test was conducted under the same conditions.

その結果、1サイクル目のVocは0.6Vであり、1
00回の充放電の繰返しに対し、容量及びクーロン効率
の低下はほとんど見られず、クーロン効率は10サイク
ル目で99.0%、50サイクル目も99.0%+  
100サイクル目で98゜5%であった。
As a result, Voc in the first cycle is 0.6V, and 1
After 00 charge/discharge cycles, there was almost no decrease in capacity or coulombic efficiency, and the coulombic efficiency was 99.0% at the 10th cycle and 99.0%+ at the 50th cycle.
It was 98°5% at the 100th cycle.

なお、電解液の溶媒をプロピレンカーボネートとγ−ブ
チロラクトンとの混合溶媒とした場合も同様の効果を有
していた。
Note that similar effects were obtained when a mixed solvent of propylene carbonate and γ-butyrolactone was used as the solvent of the electrolytic solution.

以下、実施例と比較例とを示し1本発明を具体的に説明
するが、本発明はこれらの実施例に制限されるものでは
ない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

〔実施例〕〔Example〕

実験例1と同様のAQ−In合金箔に予め10mAH相
当分のリチウムイオンを電気化学的に吸蔵したものを負
極に用いると共に、電解重合法により合成した18mm
φ、72■のポリアニリンを正極に用い、実験例1と同
様の電解液をセパレータ及びポリアニリン正極に充分含
浸した後、実験例1と同様の第1図に示す如き電池を構
成し。
The same AQ-In alloy foil as in Experimental Example 1, in which lithium ions equivalent to 10 mAH were electrochemically occluded, was used as the negative electrode, and a 18 mm foil synthesized by electrolytic polymerization was used.
Polyaniline with a diameter of 72 mm was used as the positive electrode, and after the separator and the polyaniline positive electrode were sufficiently impregnated with the same electrolytic solution as in Experimental Example 1, a battery as shown in FIG. 1 similar to Experimental Example 1 was constructed.

二次電池とした。It was used as a secondary battery.

この二次電池を端子電圧が2.OVになるまで放電し、
次いで端子電圧が3.2vになるまで充電を行なった。
This secondary battery has a terminal voltage of 2. Discharge until OV,
Next, charging was performed until the terminal voltage reached 3.2V.

この充放電を繰返し行ない、充放電サイクル毎の放電容
量、クーロン効率を調べた。
This charging and discharging was repeated, and the discharge capacity and coulombic efficiency were examined for each charging and discharging cycle.

充放電サイクル毎の放電容量変化の結果を第2図に示す
FIG. 2 shows the results of changes in discharge capacity for each charge/discharge cycle.

第2図の結果から、充放電サイクルが100サイクルに
達しても放電容量はほとんど変化せず、また、クーロン
効率は10oサイクル目まで98〜99%とほとんど変
化せず、本発明の効果が確認された。
From the results shown in Figure 2, the discharge capacity hardly changes even when the charge/discharge cycle reaches 100 cycles, and the coulombic efficiency hardly changes at 98-99% until the 10th cycle, confirming the effect of the present invention. It was done.

〔比較例〕[Comparative example]

実施例のAl−In合金箔の負極に代えてAQ箔の負極
を用い、正極のポリアニリン重量を70■にした以外は
実施例と同様にして二次電池を構成した。
A secondary battery was constructed in the same manner as in the example except that an AQ foil negative electrode was used in place of the Al--In alloy foil negative electrode of the example, and the polyaniline weight of the positive electrode was changed to 70 cm.

この二次電池を端子電圧が2.Ovになるまで放電し、
次いで端子電圧が3.5vになるまで充電を行なった。
This secondary battery has a terminal voltage of 2. Discharge until Ov,
Next, charging was performed until the terminal voltage reached 3.5V.

この充放電を繰返し行ない、充放電サイクル毎の放電容
量を実施例と同様に調べた。
This charging and discharging was repeated, and the discharge capacity for each charging and discharging cycle was examined in the same manner as in the examples.

充放電サイクル毎の放電容量変化の結果を同じく第2図
に示す。
The results of changes in discharge capacity for each charge/discharge cycle are also shown in FIG. 2.

その結果、55〜60サイクルで容量が初期の50%以
下となり、著しい容量変化を示した。
As a result, the capacity decreased to 50% or less of the initial capacity after 55 to 60 cycles, indicating a significant change in capacity.

ここで、この電池を分解し、それぞれ正極側はリチウム
箔を負極にした全電池、アルミニウム箔側はリチウムを
対極にした半電池を作成した。次にこの全電池を1mA
で端子電圧が2.OVになるまで放電したところ、初期
容量の40%が放電可能であった。一方、半電池の充1
?t(リチウムイオンの放出)を行なってみた結果、放
出不可能であった。従って、このことより前記電池の容
量の低下は負極の劣化のみでなく、正負極の電荷量がア
ンバランスになったためであると推察された。
Here, this battery was disassembled to create a whole battery with lithium foil as the negative electrode on the positive electrode side and a half battery with lithium as the counter electrode on the aluminum foil side. Next, connect all the batteries to 1mA
When the terminal voltage is 2. When the battery was discharged to OV, 40% of the initial capacity could be discharged. On the other hand, half battery charge 1
? t (release of lithium ions) revealed that release was not possible. Therefore, it was inferred from this that the decrease in the capacity of the battery was caused not only by the deterioration of the negative electrode but also by the unbalanced charge amount between the positive and negative electrodes.

この原因は、ポリアニリンのクーロン効率が98〜99
%であるのに対し、アルミニウム箔のそれが92〜93
%と低いために、サイクルが進むにつれてポリアニリン
側に両者のクーロン効率の差に相当する分の陰イオンが
ドープされ、蓄積していくためと考えられるが、実施例
の電池はAQ−In合金のクーロン効率がポリアニリン
のそれと同等であるため、この点からも比較例の電池の
ような容量低下がないことが認められた。
The reason for this is that the Coulombic efficiency of polyaniline is 98-99.
%, whereas that of aluminum foil is 92-93%.
This is thought to be due to the fact that as the cycle progresses, the polyaniline side is doped with anions corresponding to the difference in Coulombic efficiency between the two and accumulates. Since the coulombic efficiency was equivalent to that of polyaniline, it was confirmed that there was no decrease in capacity as in the comparative battery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のAQ−In合金の負極特性を調べるた
めに用いた試験セルの概略図、第2図は実施例、比較例
の電池の容量変化を示すグラフである。
FIG. 1 is a schematic diagram of a test cell used to examine the negative electrode characteristics of the AQ-In alloy of the present invention, and FIG. 2 is a graph showing changes in capacity of batteries of Examples and Comparative Examples.

Claims (1)

【特許請求の範囲】 1、アルカリ金属イオンを含む非水電解液と、再充電可
能な正極と、充電時にアルカリ金属イオンを吸蔵し、放
電時に電解液中へアルカリ金属イオンを放出する負極と
を備えた非水電解液二次電池において、前記負極を形成
する材料がインジウムとアルミニウムとの合金からなる
ことを特徴とする非水電解液二次電池。 2、非水電解液二次電池を構成する溶媒がプロピレンカ
ーボネートと、ジメトキシエタン、テトラヒドロフラン
及びγ−ブチロラクトンから選ばれた1種又は2種以上
との混合溶媒である特許請求の範囲第1項記載の二次電
池。
[Scope of Claims] 1. A non-aqueous electrolyte containing alkali metal ions, a rechargeable positive electrode, and a negative electrode that occludes alkali metal ions during charging and releases alkali metal ions into the electrolyte during discharge. A non-aqueous electrolyte secondary battery comprising: a material forming the negative electrode made of an alloy of indium and aluminum. 2. Claim 1, wherein the solvent constituting the nonaqueous electrolyte secondary battery is a mixed solvent of propylene carbonate and one or more selected from dimethoxyethane, tetrahydrofuran, and γ-butyrolactone. secondary battery.
JP61038245A 1985-10-04 1986-02-25 Nonaqueous electrolyte secondary battery Pending JPS62176048A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22022685 1985-10-04
JP60-220226 1985-10-04

Publications (1)

Publication Number Publication Date
JPS62176048A true JPS62176048A (en) 1987-08-01

Family

ID=16747857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61038245A Pending JPS62176048A (en) 1985-10-04 1986-02-25 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS62176048A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318070A (en) * 1987-06-19 1988-12-26 Nippon Denso Co Ltd Lithium secondary cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318070A (en) * 1987-06-19 1988-12-26 Nippon Denso Co Ltd Lithium secondary cell

Similar Documents

Publication Publication Date Title
US4803137A (en) Non-aqueous electrolyte secondary cell
US6855457B2 (en) Nonaqueous electrolyte secondary battery with a molten salt electrolyte
KR20020007996A (en) Non-aqueous electrolyte and electrochemical device comprising the same
JP2561556B2 (en) Positive electrode active material for lithium secondary battery
KR100379979B1 (en) Nonaqueous electrolyte secondary battery
JP3079382B2 (en) Non-aqueous secondary battery
JPH0520874B2 (en)
EP0810681B1 (en) Nonaqueous electrolyte secondary battery
JPS634569A (en) Nonaqueous electrolyte secondary battery
JPH08185851A (en) Electrode for battery and secondary battery using this electrode
JP2002100403A (en) Nonaqueous electrolyte and nonaqueous electrochemical device containing the same
JPS62176048A (en) Nonaqueous electrolyte secondary battery
JPS63307663A (en) Nonaqueous electrolyte secondary battery
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JP4313982B2 (en) Nonaqueous electrolyte secondary battery
JPH02172162A (en) Nonaqueous electrolyte secondary battery
JPH01274359A (en) Nonaqueous electrolyte secondary battery
JP2886331B2 (en) Lithium secondary battery
JP3032597B2 (en) Cathode materials for lithium secondary batteries
JP2991758B2 (en) Non-aqueous electrolyte for lithium secondary batteries
JPH0564429B2 (en)
JPH05299118A (en) Nonaque0us solvent for electrolyte of battery
JP3168615B2 (en) Non-aqueous electrolyte secondary battery
JPH06168714A (en) Electrode and secondary battery using thereof
JPH073795B2 (en) Organic electrolyte battery