JP2561556B2 - Positive electrode active material for lithium secondary battery - Google Patents

Positive electrode active material for lithium secondary battery

Info

Publication number
JP2561556B2
JP2561556B2 JP2221379A JP22137990A JP2561556B2 JP 2561556 B2 JP2561556 B2 JP 2561556B2 JP 2221379 A JP2221379 A JP 2221379A JP 22137990 A JP22137990 A JP 22137990A JP 2561556 B2 JP2561556 B2 JP 2561556B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2221379A
Other languages
Japanese (ja)
Other versions
JPH04106875A (en
Inventor
実 野口
健児 佐藤
敦 出町
公一 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2221379A priority Critical patent/JP2561556B2/en
Publication of JPH04106875A publication Critical patent/JPH04106875A/en
Application granted granted Critical
Publication of JP2561556B2 publication Critical patent/JP2561556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウムまたはリチウム合金を負極活物質
とするリチウム二次電池用正極活物質に関する。
TECHNICAL FIELD The present invention relates to a positive electrode active material for a lithium secondary battery, which uses lithium or a lithium alloy as a negative electrode active material.

〔従来の技術〕[Conventional technology]

従来、リチウム二次電池などの非水電解質系二次電池
の正極活物質として、例えば五酸化バナジウムおよび超
電力の低い二硫化チタンや、そのほか電子導電性が比較
的低い二酸化マンガンなどが使用されている。
Conventionally, for example, vanadium pentoxide and titanium disulfide with low superpower, and manganese dioxide with relatively low electronic conductivity are used as positive electrode active materials for non-aqueous electrolyte secondary batteries such as lithium secondary batteries. There is.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで、前述したような五酸化バナジウムおよび二
硫化チタンを正極活物質として使用した場合には、材料
コストが嵩張って電池が高価となったり、二硫化チタン
のように超電力が低くくて電池特性上も好ましくないた
め、通常、安価で良好な超電力が得られる前記二酸化マ
ンガンが汎用されている。
By the way, when vanadium pentoxide and titanium disulfide as described above are used as the positive electrode active material, the material cost becomes bulky and the battery becomes expensive, or the super power such as titanium disulfide is low and the battery is low. Since manganese dioxide is not preferable in terms of characteristics, the manganese dioxide is generally used because it is inexpensive and can obtain good superpower.

しかし、この二酸化マンガンの正極活物質は、前述し
たように電子導電性が比較的低いために、電池の内部抵
抗が高くなり、また正極での電極反応(MnO2+Li++e-
→LiMnO2)が充分に進まず、利用率が低下していた。
However, this manganese dioxide positive electrode active material has a relatively low electronic conductivity as described above, which increases the internal resistance of the battery and also causes an electrode reaction (MnO 2 + Li + + e
→ LiMnO 2 ) did not progress sufficiently and the utilization rate was decreasing.

本発明は、マンガンを含む正極の電子導電性を向上さ
せることにより、内部抵抗の低下および利用率の向上を
図ることができるリチウム二次電池用正極活物質を提供
することを目的とする。
It is an object of the present invention to provide a positive electrode active material for a lithium secondary battery, which can reduce the internal resistance and improve the utilization rate by improving the electronic conductivity of the positive electrode containing manganese.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、リチウムまたはリチウム合金を負極活物質
とするリチウム二次電池用正極活物質において、下記組
成式(I)で表され、かつMn、Co、Niの原子比が、添付
第1図に示す点A(x=0.95、y=0.05、z=0)、点
B(x=0.05、y=0.95、z=0)、点C(x=0、y
=0.95、z=0.05)、点D(x=0、y=0.66、z=0.
34)、点E(x=0.66、y=0、z=0.34)、点F(x
=0.95、y=0、z=0.05)で囲まれる範囲内(但し、
z=0である範囲、およびy=0であって、xが0.75〜
0.95、かつzが0.05〜0.25である範囲を除く)にある酸
化物であって、酸素雰囲気下で焼成されてなるリチウム
二次電池用正極活物質を提供するものである。
The present invention relates to a positive electrode active material for a lithium secondary battery, which uses lithium or a lithium alloy as a negative electrode active material, is represented by the following composition formula (I), and the atomic ratio of Mn, Co, and Ni is shown in FIG. Point A (x = 0.95, y = 0.05, z = 0), point B (x = 0.05, y = 0.95, z = 0), point C (x = 0, y)
= 0.95, z = 0.05), point D (x = 0, y = 0.66, z = 0.
34), point E (x = 0.66, y = 0, z = 0.34), point F (x
= 0.95, y = 0, z = 0.05) (however,
a range of z = 0, and y = 0, and x is 0.75 to
The present invention provides a positive electrode active material for a lithium secondary battery, which is an oxide of 0.95 and z is in the range of 0.05 to 0.25) and is sintered in an oxygen atmosphere.

LiMnxCoyNizO2 ……(I) (x+y+z=1) 本発明の正極活物質において、Mn、Co、Niの原子比
は、点A→B→C→D→E→F→Aで囲まれる範囲内
(但し、z=0である範囲、およびy=0であって、x
が0.75〜0.95、かつzが0.05〜0.25である範囲を除く)
にあり、点A〜F線上よりMnが多くなると、電気伝導度
が低下し、MnO2と同等の利用率となり、また点B〜C線
上よりCoが多くなると、サイクル安定性が著しく劣化
し、さらに点D〜E線上よりNiが多くなると放電容量が
著しく低下するため、いずれも好ましくない。
LiMn x Co y Ni z O 2 (I) (x + y + z = 1) In the positive electrode active material of the present invention, the atomic ratio of Mn, Co, and Ni is A → B → C → D → E → F → A. Within a range surrounded by (where z = 0, and y = 0, x
Except 0.75 to 0.95 and z is 0.05 to 0.25)
In addition, when Mn is larger than on the points A to F, the electrical conductivity is lowered and the utilization rate is the same as that of MnO 2, and when Co is larger than on the points B to C, the cycle stability is significantly deteriorated. Further, when the amount of Ni is larger than that on the lines D to E, the discharge capacity is remarkably reduced, which is not preferable.

本発明では、前記点A〜Fの範囲(但し、z=0であ
る範囲、およびy=0であって、xが0.75〜0.95、かつ
zが0.05〜0.25である範囲を除く)の原子比の酸化物を
使用することでマンガンを含む正極の電子導電性を向上
させることができ、これによりリチウム二次電池の内部
抵抗の低下および利用率の向上を図ることができる。
In the present invention, the atomic ratio of the range of points A to F (excluding the range where z = 0 and the range where y = 0 and x is 0.75 to 0.95 and z is 0.05 to 0.25) The use of the oxide can improve the electronic conductivity of the positive electrode containing manganese, which can reduce the internal resistance and improve the utilization rate of the lithium secondary battery.

この正極活物質を用いて正極を作製する場合、正極活
物質の粒径は必ずしも制限されないが、平均粒径が5μ
m以下のものを用いることにより高性能の正極を作るこ
とができる。この場合、これらの粉末に対し、アセチレ
ンブラックなどの導電剤やフッ素樹脂粉末などの結着剤
などを添加混合し、有機溶剤で混錬りし、ロールで圧延
し、乾燥するなどの方法により正極を作製することがで
きる。なお、導電剤の混合量は、正極活物質100重量部
に対し5〜50重量部、特に7〜10重量部とすることがで
き、本発明にあってはその正極活物質の導電性が良好で
あるため、導電剤使用量を少なくすることができる。ま
た、結着剤の配合量は前記正極活物質100重量部に対し
て5〜10重量部とすることが好ましい。
When a positive electrode is manufactured using this positive electrode active material, the particle size of the positive electrode active material is not necessarily limited, but the average particle size is 5 μm.
A high-performance positive electrode can be produced by using a resin having a thickness of m or less. In this case, to these powders, a conductive agent such as acetylene black or a binder such as fluororesin powder is added and mixed, kneaded with an organic solvent, rolled with a roll, and dried by a method such as a positive electrode. Can be produced. The conductive agent may be mixed in an amount of 5 to 50 parts by weight, particularly 7 to 10 parts by weight, based on 100 parts by weight of the positive electrode active material. In the present invention, the conductivity of the positive electrode active material is good. Therefore, the amount of conductive agent used can be reduced. Further, the compounding amount of the binder is preferably 5 to 10 parts by weight with respect to 100 parts by weight of the positive electrode active material.

本発明の正極活物質は、例えば炭酸リチウム、炭酸マ
ンガンおよび炭酸コバルトの混合物中にエタノールなど
の有機溶媒を加えて、ボールミルなどの粉砕手段で粉砕
し、乾燥後、酸素雰囲気下で温度750〜950℃で2〜6時
間程度焼成し、さらに前記有機溶媒を加えてボールミル
で粉砕し、乾燥することによって製造することができ
る。
The positive electrode active material of the present invention, for example, an organic solvent such as ethanol is added to a mixture of lithium carbonate, manganese carbonate and cobalt carbonate, crushed by a crushing means such as a ball mill, and after drying, a temperature of 750 to 950 in an oxygen atmosphere. It can be produced by firing at 2 ° C. for about 2 to 6 hours, further adding the organic solvent, pulverizing with a ball mill, and drying.

なお、本発明の正極活物質を用いた二次電池に使用す
る非水系の電解質としては、正極活物質および負極活物
質に対して化学的に安定であり、かつリチウムイオンが
正極活物質と電気化学反応をするために移動できる非水
物質であればどのようなものでも使用でき、特にカチオ
ンとアニオンとの組み合わせによりなる化合物であっ
て、カチオンとしてはLi+、またアニオンの例としてはP
F6 -、AsF6 -、SbF6 -のようなVa族元素のハロゲン族元素
のハロゲン化物アニオン、I-(I3 -)、Br-、Cl-のよう
なハロゲンアニオン、ClO4 -のような過塩素酸アニオ
ン、HF2 -、CF3SO3 -、SCN-などのアニオンを有する化合
物などを挙げることができるが、必ずしもこれらのアニ
オンに限定されるものではない。このようなカチオン、
アニオンをもつ電解質の具体例としては、LiPF6、LiAsF
6、LiSbF6、LiBF4、LiClO4、LiI、LiBr、LiCl、LiAlC
l4、LiHF2、LiSCN、LiSO3CF3などが挙げられる。
The non-aqueous electrolyte used in the secondary battery using the positive electrode active material of the present invention is chemically stable with respect to the positive electrode active material and the negative electrode active material, and the lithium ions are electrically stable with the positive electrode active material. Any non-aqueous substance that can move in order to undergo a chemical reaction can be used, in particular, a compound composed of a combination of a cation and an anion, such as Li + as a cation and P as an example of an anion.
F 6 -, AsF 6 -, SbF 6 - halide anion of halogen group elements Va group element, such as, I - (I 3 -) , Br -, Cl - halogen anion such as, ClO 4 - like a perchlorate anion, HF 2 -, CF 3 SO 3 -, SCN - and the like can be mentioned compounds having an anion such as, but not necessarily limited to these anions. Such a cation,
Specific examples of electrolytes having anions include LiPF 6 and LiAsF
6 , LiSbF 6 , LiBF 4 , LiClO 4 , LiI, LiBr, LiCl, LiAlC
l 4 , LiHF 2 , LiSCN, LiSO 3 CF 3 and the like.

これらのうちでは、特にLiPF6、LiAsF6、LiBF4、LiCl
O4、LiSbF6、LiSO3CF3が好ましい。
Among these, especially LiPF 6 , LiAsF 6 , LiBF 4 , LiCl
O 4 , LiSbF 6 and LiSO 3 CF 3 are preferred.

なお、この非水電解質は、通常、溶媒により溶解され
た状態で使用され、この場合、溶媒は特に限定されない
が、比較的極性の大きい溶媒が良好に用いられる。具体
的には、プロピレンカーボネート、エチレンカーボネー
ト、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、ジオキソラン、ジオキサン、ジメトキシエタン、ジ
エチレングリコールジメチルエーテルなどのグライム
類、r−ブチロラクタンなどのラクトン類、トリエチル
ホスフェートなどのリン酸エステル類、ホウ酸トリエチ
ルなどのホウ酸エステル類、スルホラン、ジメチルスル
ホキシドなどの硫黄化合物、アセトニトリルなどのニト
リル類、ジメチルホルムアミド、ジメチルアセトアミド
などのアミド類、硫酸ジメチル、ニトロメタン、ニトロ
ベンゼン、ジクロロエタンなどの1種または2種以上の
混合物を挙げることができる。これらのうちでは、特に
エチレンカーボネート、プロピレンカーボネート、ブチ
レンカーボネート、テトラヒドロフラン、2−メチルテ
トラヒドロフラン、ジメトキシエタン、ジオキソランお
よびγ−ブチロラクトンから選ばれた1種または2種以
上の混合溶媒が好適である。
The non-aqueous electrolyte is usually used in a state of being dissolved in a solvent. In this case, the solvent is not particularly limited, but a solvent having a relatively large polarity is preferably used. Specifically, propylene carbonate, ethylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, dioxane, dimethoxyethane, glymes such as diethylene glycol dimethyl ether, lactones such as r-butyrolactan, phosphate esters such as triethyl phosphate, boro One or more of boric acid esters such as triethyl acid, sulfur compounds such as sulfolane and dimethylsulfoxide, nitriles such as acetonitrile, amides such as dimethylformamide and dimethylacetamide, dimethyl sulfate, nitromethane, nitrobenzene and dichloroethane. Can be mentioned. Of these, one or a mixture of two or more selected from ethylene carbonate, propylene carbonate, butylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, dioxolane and γ-butyrolactone is particularly preferable.

さらに、この非水電解質としては、上記非水電解質を
例えばポリエチレンオキサイド、ポリプロピレンオキサ
イド、ポリエチレンオキサイドのイソシアネート架橋
体、エチレンオキサイドオリゴマーを側鎖に持つホスフ
ァゼンポリマーなどの重合体に含浸させた有機固体電解
質、Li3N、LiBCl4などの無機イオン誘導体、Li4SiO4、L
i3BO3などのリチウムガラスなどの無機固体電解質を用
いることもできる。
Further, as the non-aqueous electrolyte, the non-aqueous electrolyte is, for example, polyethylene oxide, polypropylene oxide, an isocyanate cross-linked product of polyethylene oxide, an organic solid electrolyte impregnated with a polymer such as a phosphazene polymer having an ethylene oxide oligomer in the side chain, Inorganic ion derivatives such as Li 3 N and LiBCl 4 , Li 4 SiO 4 , L
It is also possible to use an inorganic solid electrolyte such as lithium glass such as i 3 BO 3 .

本発明の正極活物質を使用したリチウム二次電池を図
面を参照してさらに詳細に説明する。
A lithium secondary battery using the positive electrode active material of the present invention will be described in more detail with reference to the drawings.

すなわち、本発明の正極活物質を使用したリチウム二
次電池は、第2図に示すように開口部10aが負極蓋板20
で密封されたボタン形の正極ケース10内を微細孔を有す
るセパレータ30で区画し、区画された正極側空間内に正
極集電体40を正極ケース10側に配置した正極50が収納さ
れる一方、負極側空間内に負極集電体60を負極蓋板20側
に配置した負極70が収納されたものである。
That is, in the lithium secondary battery using the positive electrode active material of the present invention, the opening 10a has the negative electrode cover plate 20 as shown in FIG.
The inside of the button-shaped positive electrode case 10 sealed with is partitioned by the separator 30 having fine holes, and the positive electrode 50 in which the positive electrode current collector 40 is arranged on the positive electrode case 10 side is housed in the partitioned positive electrode side space. The negative electrode 70 in which the negative electrode current collector 60 is arranged on the negative electrode cover plate 20 side is housed in the negative electrode side space.

前記負極70に使用される負極活物質としては、例えば
リチウムまたはリチウムを吸蔵、放出可能なリチウム合
金が用いられる。この場合、リチウム合金としては、リ
チウムを含むII a、II b、III a、IV a、V a族の金属ま
たはその2種以上の合金が使用可能であるが、特にリチ
ウムを含むAl、In、Sn、Pb、Bi、Cd、Znまたはこれらの
2種以上の合金が好ましい。
As the negative electrode active material used for the negative electrode 70, for example, lithium or a lithium alloy capable of absorbing and releasing lithium is used. In this case, as the lithium alloy, a lithium-containing IIa, IIb, IIIa, IVa, Va group metal or an alloy of two or more thereof can be used, but particularly lithium-containing Al, In, Sn, Pb, Bi, Cd, Zn or an alloy of two or more of these is preferable.

前記セパレータ30としては、多孔質で電解液を通した
り含んだりすることのできる、例えばポリテトラフルオ
ロエチレン、ポリプロピレンやポリエチレンなどの合成
樹脂製の不織布および編布などを使用することができ
る。
As the separator 30, for example, a non-woven fabric or knitted fabric made of a synthetic resin such as polytetrafluoroethylene, polypropylene or polyethylene, which is porous and capable of passing or containing an electrolytic solution, can be used.

なお、符号80は、正極ケース10の内周面に周設されて
負極蓋板20を絶縁支持するポリエチレン製の絶縁パッキ
ンである。
Reference numeral 80 is a polyethylene insulating packing that is provided around the inner peripheral surface of the positive electrode case 10 and insulates and supports the negative electrode cover plate 20.

〔実施例〕〔Example〕

以下、本発明の実施例を説明するが、本発明は必ずし
もこの実施例に限定されない。
Hereinafter, an example of the present invention will be described, but the present invention is not necessarily limited to this example.

比較例1 原子比でLi:Mn:Co=1:0.5:0.5になるようにLi2CO3、M
nCO3、CoCO3を秤量し、これに25重量%のエタノールを
加えてボールミルで2時間混合し、そののちこれを乾燥
し、酸素雰囲気中において750℃で2時間の熱処理を行
ない、次にまた50重量%のエタノールを加えてからボー
ルミルにて12時間粉砕することで粉末の正極活物質 (LiMn1/2Co1/2O2)を得た。
Comparative Example 1 Li 2 CO 3 , M so that the atomic ratio is Li: Mn: Co = 1: 0.5: 0.5.
nCO 3 and CoCO 3 were weighed, 25 wt% of ethanol was added and mixed in a ball mill for 2 hours, then dried, and heat-treated in an oxygen atmosphere at 750 ° C. for 2 hours, and then again. 50% by weight of ethanol was added, followed by pulverizing for 12 hours with a ball mill to obtain a powdered positive electrode active material (LiMn 1/2 Co 1/2 O 2 ).

得られた正極活物質は、第3図のグラフの線イに示す
ように、後述する実施例1よりもバルク内のキャリア濃
度が低く、その結果、実施例1ほどの高伝導率は得られ
なかった。また、正極の電子導電性についても実施例1
よりも劣るものであり、リチウム二次電池の内部抵抗が
より高くなり、実施例1ほどの利用率は得られなかった この正極活物質100重量部に、導電剤としてアセチレ
ンブラックを10重量部および接着剤としてテフロンバイ
ンダーを10重量部加えて混合したのち、有機溶剤である
エタノールで混練りし、圧延ロールで約200μmに圧延
し、150℃で真空乾燥してから所定の径に打ち抜いたも
のを正極とした。
The obtained positive electrode active material has a carrier concentration in the bulk lower than that of Example 1 described later, as shown by the line a in the graph of FIG. 3, and as a result, the high conductivity of Example 1 was obtained. There wasn't. In addition, regarding the electronic conductivity of the positive electrode,
Inferior to the above, the internal resistance of the lithium secondary battery was higher, and the utilization rate as in Example 1 was not obtained. To 100 parts by weight of this positive electrode active material, 10 parts by weight of acetylene black as a conductive agent and After adding 10 parts by weight of Teflon binder as an adhesive and mixing, kneading with ethanol as an organic solvent, rolling to about 200 μm with a rolling roll, vacuum drying at 150 ° C, and punching to a specified diameter It was used as the positive electrode.

負極は、所定寸法に打ち抜いたアルミニウム板にリチ
ウムを圧着し、電解液中でアルニウム−リチウム合金化
したものを用い、またプロピレンカーボネートとジエチ
レングリコールジメチルエーテルの溶媒にLiClO4を1モ
ル/で溶媒したものを電解液として使用し、第1図に
示す電池を組み立てた。
For the negative electrode, an aluminum plate punched out to a predetermined size was pressure-bonded with lithium, and an aluminum-lithium alloy was used in the electrolytic solution. Also, a solvent of propylene carbonate and diethylene glycol dimethyl ether containing 1 mol / mol of LiClO 4 was used. The battery shown in FIG. 1 was assembled using the electrolyte.

この電池を充電放電5mAにおいて放電終止電圧2V、充
電終止電圧4Vで充放電を繰り返し、50サイクル目の放電
容量は、98Ahr/kgと実施例1ほどの高容量は得られなか
った。
This battery was repeatedly charged and discharged at a discharge end voltage of 2 V and a charge end voltage of 4 V at a charge and discharge of 5 mA, and the discharge capacity at the 50th cycle was 98 Ahr / kg, which was not as high as that of Example 1.

実施例1 正極活物質の材料として原子比でLi:Mn:Ni:Co=1:0.3
3:0.17:0.5のLi2CO3、MnCO3、CoCO3、NiCO3・Ni(OH)
・4H2Oを使用した以外は、比較例1と同様にして正極
活物質(LiMn1/3Ni1/6Co1/2O2)を得た。
Example 1 Li: Mn: Ni: Co = 1: 0.3 in atomic ratio as a material for the positive electrode active material
3: 0.17: 0.5 of Li 2 CO 3 , MnCO 3 , CoCO 3 , NiCO 3 Ni (OH)
A positive electrode active material (LiMn 1/3 Ni 1/6 Co 1/2 O 2 ) was obtained in the same manner as in Comparative Example 1 except that 2.4H 2 O was used.

得られた正極活物質は、第3図のグラフの線ロに示す
ように比較例1の場合以上にバルク内のキャリア濃度が
増加してより高い導電率が得られ、これにより正極の電
子導電性の向上がなされてリチウム二次電池のより以上
の内部抵抗の低下および利用率の向上が図れた。
The obtained positive electrode active material, as shown by the line B in the graph of FIG. As a result, the internal resistance and the utilization rate of the lithium secondary battery have been further reduced.

また、この正極活物質を使用して比較例1の場合と同
様にして電池を設けたところ、この電池の放電容量は10
3Ahr/kgと、より良好な結果が得られた。
When a battery was prepared in the same manner as in Comparative Example 1 using this positive electrode active material, the discharge capacity of this battery was 10
A better result was obtained with 3 Ahr / kg.

比較例2 正極活物質の材料として原子比でLi:Mn=1:1のLi2C
O3、MnCO3を使用した以外は、比較例1および実施例2
と同様にして正極活物質(LiMnO2)を得た。
Comparative Example 2 Li 2 C with an atomic ratio of Li: Mn = 1: 1 as a material for the positive electrode active material
Comparative Example 1 and Example 2 except that O 3 and MnCO 3 were used
A positive electrode active material (LiMnO 2 ) was obtained in the same manner as in.

得られた正極活物質は、第3図のグラフの線ハに示す
ようにバルク内のキャリア濃度が低下して低導電率しか
得られず、正極の電子導電性が悪くてリチウム二次電池
の内部抵抗が高くなり、利用率が低かった。
The obtained positive electrode active material had a low carrier concentration in the bulk as shown by the line C in the graph of FIG. 3 and only low conductivity was obtained. The internal resistance was high and the utilization rate was low.

また、この正極活物質を使用して比較例1および実施
例2の場合と同様にして電池を設けたところ、この電池
の放電容量は90Ahr/kgと低容量の結果が得られた。
Further, when a battery was provided using this positive electrode active material in the same manner as in Comparative Example 1 and Example 2, the discharge capacity of this battery was 90 Ahr / kg, which was a low capacity result.

〔発明の効果〕〔The invention's effect〕

本発明は、このようなものであるためマンガンを含む
正極の電子導電性を向上させることにより、内部抵抗の
低下および利用率の向上を図ることができるという効果
が得られる。
Since the present invention is such, by improving the electronic conductivity of the positive electrode containing manganese, it is possible to obtain an effect that the internal resistance can be reduced and the utilization rate can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のリチウム二次電池用正極活物質におけ
るMn、Co、Niの原子比を示す図、第2図は本発明のリチ
ウム二次電池用正極活物質を使用したリチウム二次電池
の一部断面図を含む正面図、第3図はリチウム二次電池
用正極活物質の導電率を示すグラフである。 50;正極
FIG. 1 is a diagram showing the atomic ratio of Mn, Co and Ni in the positive electrode active material for a lithium secondary battery of the present invention, and FIG. 2 is a lithium secondary battery using the positive electrode active material for a lithium secondary battery of the present invention. Fig. 3 is a front view including a partial sectional view of Fig. 3, and Fig. 3 is a graph showing the electrical conductivity of the positive electrode active material for a lithium secondary battery. 50; Positive electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウムまたはリチウム合金を負極活物質
とするリチウム二次電池用正極活物質において、下記組
成式(I)で表され、かつMn、Co、Niの原子比が、添付
第1図に示す点A(x=0.95、y=0.05、z=0)、点
B(x=0.05、y=0.95、z=0)、点C(x=0、y
=0.95、z=0.05)、点D(x=0、y=0.66、z=0.
34)、点E(x=0.66、y=0、z=0.34)、点F(x
=0.95、y=0、z=0.05)で囲まれる範囲内(但し、
z=0である範囲、およびy=0であって、xが0.75〜
0.95、かつzが0.05〜0.25である範囲を除く)にある酸
化物であって、酸素雰囲気下で焼成されてなるリチウム
二次電池用正極活物質。 LiMnxCoyNizO2 ……(I) (x+y+z=1)
1. A positive electrode active material for a lithium secondary battery, which uses lithium or a lithium alloy as a negative electrode active material, is represented by the following composition formula (I), and the atomic ratio of Mn, Co and Ni is shown in FIG. Point A (x = 0.95, y = 0.05, z = 0), point B (x = 0.05, y = 0.95, z = 0), point C (x = 0, y)
= 0.95, z = 0.05), point D (x = 0, y = 0.66, z = 0.
34), point E (x = 0.66, y = 0, z = 0.34), point F (x
= 0.95, y = 0, z = 0.05) (however,
a range of z = 0, and y = 0, and x is 0.75 to
A positive electrode active material for a lithium secondary battery, which is an oxide of 0.95 and z is in the range of 0.05 to 0.25) and is baked in an oxygen atmosphere. LiMn x Co y Ni z O 2 (I) (x + y + z = 1)
JP2221379A 1990-08-24 1990-08-24 Positive electrode active material for lithium secondary battery Expired - Lifetime JP2561556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2221379A JP2561556B2 (en) 1990-08-24 1990-08-24 Positive electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2221379A JP2561556B2 (en) 1990-08-24 1990-08-24 Positive electrode active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH04106875A JPH04106875A (en) 1992-04-08
JP2561556B2 true JP2561556B2 (en) 1996-12-11

Family

ID=16765863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2221379A Expired - Lifetime JP2561556B2 (en) 1990-08-24 1990-08-24 Positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2561556B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078128B2 (en) 2001-04-27 2006-07-18 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US7344802B2 (en) 2002-03-22 2008-03-18 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US7435510B2 (en) 2004-11-12 2008-10-14 Sanyo Electric Co. Nonaqueous electrolyte secondary battery
US7455932B2 (en) 2003-01-17 2008-11-25 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US7608363B2 (en) 2004-11-16 2009-10-27 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery with vinylene carbonate and divinyl sulfone containing electrolyte
US7622223B2 (en) 2004-03-29 2009-11-24 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US8253386B2 (en) 2003-09-08 2012-08-28 Sanyo Electric, Co., Ltd. Method of controlling charge and discharge of non-aqueous electrolyte secondary cell
US8343662B2 (en) 2003-08-08 2013-01-01 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3274102B2 (en) * 1999-04-05 2002-04-15 三菱化学株式会社 Flame retardant electrolyte for lithium batteries
JP5211416B2 (en) * 2001-05-17 2013-06-12 三菱化学株式会社 Layered lithium nickel manganese composite oxide
GB0117235D0 (en) * 2001-07-14 2001-09-05 Univ St Andrews Improvements in or relating to electrochemical cells
CN1263184C (en) 2001-11-20 2006-07-05 Tdk株式会社 Electrode active material, electrode, lithium ion secondary cell, method for producing electrode active material, and method for producing lithium ion secondary cell
AU2003221171A1 (en) * 2002-03-27 2003-10-08 Yuasa Corporation Active substance of positive electrode and nonaqueous electrolyte battery containing the same
WO2008088180A1 (en) * 2007-01-18 2008-07-24 Lg Chem, Ltd. Cathode active material and secondary battery comprising the same
CN101578724A (en) * 2007-01-24 2009-11-11 株式会社Lg化学 A secondary battery with improved safety
JP5341325B2 (en) 2007-07-25 2013-11-13 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5614441B2 (en) * 2012-11-07 2014-10-29 三菱化学株式会社 Layered lithium nickel manganese composite oxide
JP2014197552A (en) * 2014-06-18 2014-10-16 三菱化学株式会社 Lamellar lithium nickel manganese complex oxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139861A (en) * 1988-11-17 1990-05-29 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JPH03283356A (en) * 1990-03-30 1991-12-13 Shin Kobe Electric Mach Co Ltd Positive electrode active material for secondary battery
JPH03285262A (en) * 1990-03-30 1991-12-16 Matsushita Electric Ind Co Ltd Manufacture of positive electrode for nonaqueous electrolytic secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139861A (en) * 1988-11-17 1990-05-29 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JPH03283356A (en) * 1990-03-30 1991-12-13 Shin Kobe Electric Mach Co Ltd Positive electrode active material for secondary battery
JPH03285262A (en) * 1990-03-30 1991-12-16 Matsushita Electric Ind Co Ltd Manufacture of positive electrode for nonaqueous electrolytic secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078128B2 (en) 2001-04-27 2006-07-18 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US8241791B2 (en) 2001-04-27 2012-08-14 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US7344802B2 (en) 2002-03-22 2008-03-18 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US7455932B2 (en) 2003-01-17 2008-11-25 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US8343662B2 (en) 2003-08-08 2013-01-01 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US8253386B2 (en) 2003-09-08 2012-08-28 Sanyo Electric, Co., Ltd. Method of controlling charge and discharge of non-aqueous electrolyte secondary cell
US7622223B2 (en) 2004-03-29 2009-11-24 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US7858237B2 (en) 2004-03-29 2010-12-28 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US7435510B2 (en) 2004-11-12 2008-10-14 Sanyo Electric Co. Nonaqueous electrolyte secondary battery
US7608363B2 (en) 2004-11-16 2009-10-27 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery with vinylene carbonate and divinyl sulfone containing electrolyte

Also Published As

Publication number Publication date
JPH04106875A (en) 1992-04-08

Similar Documents

Publication Publication Date Title
JP2561556B2 (en) Positive electrode active material for lithium secondary battery
US4803137A (en) Non-aqueous electrolyte secondary cell
EP1009055B1 (en) Nonaqueous electrolyte battery and charging method therefor
US5620812A (en) Non-aqueous electrolyte secondary battery
US5013620A (en) Nonaqueous electrolyte secondary cell
EP2849266B1 (en) Nonaqueous electrolyte battery
JPH08213015A (en) Positive active material for lithium secondary battery and lithium secondary battery
US20030096163A1 (en) Non aqueous electrolyte secondary battery
JPH01258359A (en) Nonaqueous electrolyte accumulator
JP3079382B2 (en) Non-aqueous secondary battery
JPH03108261A (en) Nonaqueous solvent secondary battery
JP3032597B2 (en) Cathode materials for lithium secondary batteries
JP3393621B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JPS63307663A (en) Nonaqueous electrolyte secondary battery
WO2000033403A1 (en) Non-aqueous electrolyte secondary cell and its charging method
JPH06215770A (en) Non-aquaous electrolytic secondary battery and preparation of negative pole active material therefor
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JPH06302336A (en) Nonaqueous electrolyte secondary battery
JPH05299088A (en) Positive electrode material for lithium battery and manufacture thereof
JPH03225774A (en) Nonaqueous electrolytic secondary battery
JPH01274359A (en) Nonaqueous electrolyte secondary battery
JP4161422B2 (en) Non-aqueous electrolyte secondary battery
JPH03119656A (en) Manufacture of positive electrode active material for lithium secondary battery
JPH05225981A (en) Positive electrode material for lithium battery and manufacture thereof
JPH01186556A (en) Nonaqueous electrolyte secondary cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14

EXPY Cancellation because of completion of term