JPH02162649A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JPH02162649A
JPH02162649A JP63317285A JP31728588A JPH02162649A JP H02162649 A JPH02162649 A JP H02162649A JP 63317285 A JP63317285 A JP 63317285A JP 31728588 A JP31728588 A JP 31728588A JP H02162649 A JPH02162649 A JP H02162649A
Authority
JP
Japan
Prior art keywords
lead
negative
active agent
positive
surface active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63317285A
Other languages
Japanese (ja)
Inventor
Toshihiro Inoue
利弘 井上
Satomi Tsuchiya
土屋 里美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63317285A priority Critical patent/JPH02162649A/en
Publication of JPH02162649A publication Critical patent/JPH02162649A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enhance charging efficiency of positive and negative active materials by containing a surface active agent of perfluorosulfonate and an aromatic compound having a mercapto group in a lead-acid battery suitable for car engine starting, portable appliances, and disaster prevention. CONSTITUTION:A surface active agent of perfluorosulfonate represented by CaF2n+1SO3M (M shows an alkali metal), or a mixture of the surface active agent and an aromatic compound having a mercapto group (-SH) is contained in a lead-acid battery. The utilization of positive and negative active materials is thereby increased and the hydrogen overvoltage of a negative plate is decreased to enhance charging efficiency even in voltage controlled charging. The battery consists of positive and negative plates, a separator made of fine fibers, and an electrolyte comprising sulfuric acid having a specific gravity of 1.32. Potassium perfluorooctanesulfonate and 2-mercaptobenzimidazole are used as the surface active agent.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自動車のエンジン始動用として用いられる鉛蓄
電池並びにポータプル機器、防災用等に用いられる密閉
形鉛蓄電池その他船蓄電池全般に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to lead-acid batteries used for starting automobile engines, sealed lead-acid batteries used for porta-pull equipment, disaster prevention, and other marine batteries in general.

従来の技術 従来、この種の鉛蓄電池は自動車のエンジン始動用、ポ
ータプル機器用等に用いられてきたにもかかわらず、0
℃以下の低温時における放電容量が常温の場合と比べて
小さく、冬期あるいは寒冷地でのエンジン始動用性能の
向上が望まれていた。また、ポータプル機器の使用にあ
たっても。
Conventional technology Although lead-acid batteries of this type have been used for starting automobile engines, portable devices, etc.,
The discharge capacity at low temperatures below ℃ is smaller than that at room temperature, and it has been desired to improve engine starting performance in winter or in cold regions. Also, when using portable equipment.

冬期に戸外で用いられるようなポータプルビデオムービ
ー用電池等では、低温時の放電容量の低下の改良が望ま
れていた。この要望に対し、従来は低温時における充電
効率の向上に努力がはられれてきている。たとえば、定
電圧充電時においては低温充電時の充電制御電圧を常温
に比べて高くし、充電制御電圧に−25〜30 my/
 deg、セル程度の負の温度特性をもたせ、充電不足
となるのを補い、低温時の充電効率を向上させる工夫が
なされていた。
In batteries for portable video movies and the like that are used outdoors in the winter, it has been desired to improve the reduction in discharge capacity at low temperatures. In response to this demand, efforts have been made to improve charging efficiency at low temperatures. For example, during constant voltage charging, the charge control voltage during low-temperature charging is set higher than that at room temperature, and the charge control voltage is increased by -25 to 30 my/min.
It has been devised to provide negative temperature characteristics similar to deg and cells to compensate for insufficient charging and improve charging efficiency at low temperatures.

発明が解決しようとする課題 しかし、上記のような従来からの構成では、電池を充電
する際の雰囲気温度を検知するために。
Problems to be Solved by the Invention However, in the conventional configuration as described above, it is difficult to detect the ambient temperature when charging a battery.

充電器にサーミスタ等の感温素子を設けなければならず
、充電器設計上の制約が大きかった。
The charger had to be equipped with a temperature sensing element such as a thermistor, which placed significant restrictions on the charger design.

本発明の目的は上記のような問題点を解決し、充電器の
改善によらず、鉛蓄電池自身の充電効率の向上をはかり
、低温時の放電時間の増大をもたらそうとするものであ
る。
The purpose of the present invention is to solve the above-mentioned problems, to improve the charging efficiency of the lead-acid battery itself without improving the charger, and to increase the discharge time at low temperatures. .

課題を解決するための手段 本発明は上記目的を達成するために、鉛蓄電池におイテ
、C,F、、、、So、M (Mはアルカリ金属)で示
されるパーフルオロスルホン酸塩の界面活性剤を単独で
含むか、または、この界面活性剤とメルカプト基(−S
H)を有する芳香族化合物とを同時に含む芳香族化合物
との両者を同時に電池内に有する鉛蓄電池とした。
Means for Solving the Problems In order to achieve the above objects, the present invention provides lead-acid batteries with interfaces of perfluorosulfonates represented by C, F, ..., So, M (M is an alkali metal). Contains a surfactant alone or combines this surfactant with a mercapto group (-S
A lead-acid battery containing both an aromatic compound having H) and an aromatic compound containing the compound at the same time was prepared.

作用 鉛蓄電池においては、充電時に発生する酸素ガスが正掻
板内に生じ、その一部は、活物質粒子の形成する細孔内
に残ることが認められる。また、密閉形の鉛蓄電池にお
いては、正極で発生した酸素ガスが負極で吸収、硫酸鉛
化するため、負極活物質粒子の形成する細孔内にもその
一部がガス溜りとして残っている。これらのいわゆる電
解液との濡れ性の良くない活物質粒子は、その表面に電
荷を有することが難しいため、電池の充放電反応の効率
が低下することになる。
In a working lead-acid battery, it is recognized that oxygen gas generated during charging is generated in the positive plate, and a portion of it remains in the pores formed by the active material particles. Further, in a sealed lead-acid battery, oxygen gas generated at the positive electrode is absorbed by the negative electrode and converted into lead sulfate, so that a portion of the oxygen gas remains as gas pockets within the pores formed by the negative electrode active material particles. These so-called active material particles having poor wettability with an electrolytic solution have difficulty in having an electric charge on their surfaces, resulting in a decrease in the efficiency of the charge/discharge reaction of the battery.

電池内の硫酸酸性の電解液中で安定に機能し、二酸化鉛
のような強力な酸化剤の存在下においても比較的安定な
、パーフルオロスルホン酸塩からなる界面活性剤を電解
液中に含む場合、活物質粒子の形成する0、01〜1μ
m程度の細孔内の電解液の濡れ性の向上に寄与し、電池
の放電容量の増大ならびに充電効率の向上に作用する。
The electrolyte contains a surfactant made of perfluorosulfonate, which functions stably in the sulfuric acid acidic electrolyte in the battery and is relatively stable even in the presence of strong oxidizing agents such as lead dioxide. In this case, the active material particles form 0.01~1μ
It contributes to improving the wettability of the electrolytic solution in the pores of about m size, and works to increase the discharge capacity of the battery and improve the charging efficiency.

また、この種の界面活性剤は、それ自身単独で機能する
が、同時にメルカプト基を有する芳香族化合物を有する
場合、その効果は促進される。界面活性剤によって電解
液と活物質の濡れ性が向上し、同時に上記芳香族化合物
の化学吸着ならびに物理吸着が促進されることになる。
Further, although this type of surfactant functions by itself, its effect is enhanced when it also contains an aromatic compound having a mercapto group. The surfactant improves the wettability between the electrolytic solution and the active material, and at the same time promotes chemical adsorption and physical adsorption of the aromatic compound.

たとえば、メルカプト基を有する化合物は、鉛蓄電池に
おける硫酸酸性の電解液中で、プロトンと反応してカチ
オンを生じると考えられる。
For example, it is thought that a compound having a mercapto group reacts with protons to generate cations in a sulfuric acid acidic electrolyte in a lead-acid battery.

RS H+ t(” ;ピRS H2R:アルキル基こ
こで生じたカチオンは正極(カソード)に吸着し、水素
発生反応を減少させ、負極板上での水素過電圧を小さく
することができると考えられる。
RS H+ t(''; pyRS H2R: alkyl group It is thought that the cation generated here is adsorbed to the positive electrode (cathode), reducing the hydrogen generation reaction and reducing the hydrogen overvoltage on the negative electrode plate.

すなわち、カチオンによる物理吸着によって、極板表面
は負の電荷をもつので、負極(アノード)での反応に影
響しないままH+の放電反応を促進させることができる
ため、電池の放電反応の進行には何ら障害とならない。
In other words, the surface of the electrode plate has a negative charge due to physical adsorption by cations, so it is possible to promote the H+ discharge reaction without affecting the reaction at the negative electrode (anode). There is no obstacle.

一方、十分に吸着がおこれば、二重層を通しての電荷の
移動が妨げられ、充電時に負極板の電位を貴にすること
ができる。しかも、これらの作用は、界面活性剤により
、電解液の濡れ性が改善された場合に効果が大きい。
On the other hand, if adsorption occurs sufficiently, the movement of charges through the double layer is hindered, and the potential of the negative electrode plate can be made noble during charging. Moreover, these effects are more effective when the wettability of the electrolyte is improved by the surfactant.

上記のように、負極板の充電時の分極を小さくできるた
め、電圧制御方法による充電においては、負極板の過電
圧が小さくなった分だけ充電制御電圧を低くしても同様
の充電効率が期待できる。また、従来と同様に、充電制
御電圧に負の温度特性をもたせた場合には、充電効率の
向上をはかることができる。
As mentioned above, since the polarization of the negative plate during charging can be reduced, when charging using the voltage control method, the same charging efficiency can be expected even if the charging control voltage is lowered by the amount that the overvoltage of the negative plate is reduced. . Further, as in the conventional case, when the charging control voltage has a negative temperature characteristic, charging efficiency can be improved.

また、芳香族化合物としてのメルカプタンの解離により
、カチオンを生じやすくするため、電解液中に解離しや
すいアルカリ金属塩の存在する場合、上記効果は相乗さ
れる。
Further, since cations are easily generated by dissociation of mercaptan as an aromatic compound, the above effects are synergized when an alkali metal salt that is easily dissociated is present in the electrolytic solution.

上記のように鉛蓄電池内にパーフルオロスルホン酸塩の
界面活性剤を単独で含むか、あるいはこの界面活性剤と
メルカプト基を有する芳香族化合物を同時に含むことに
より、これらの化合物の電解液の濡れ性向上と、物理吸
着、化学吸着の作用を向上させることができる。
As mentioned above, by including a perfluorosulfonate surfactant alone in a lead-acid battery, or by simultaneously including this surfactant and an aromatic compound having a mercapto group, wetting of the electrolyte of these compounds can be improved. It can improve the physical adsorption and chemisorption effects.

すなわち、これらの作用により、鉛蓄電池の正負活物質
の利用率の向上をはかると共に、負極板の水素過電圧を
小さくすることができる。このため、従来の電圧制御に
よる充電方法においても、充電効率の向上をはかること
ができる。
That is, by these effects, it is possible to improve the utilization rate of the positive and negative active materials of the lead-acid battery and to reduce the hydrogen overvoltage of the negative electrode plate. Therefore, even in the conventional charging method using voltage control, charging efficiency can be improved.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

正負極板と、微細なガラス繊維からなるセパレータを組
み合せ、電圧12V、10時間率容量2 A l−1の
密閉形鉛蓄電池を作成した。電解液には比重1.32の
希硫酸を用いた。電池内には08F 17303K (
パーフルオロ・オクタンスルホン酸カリウム)を界面活
性剤として添加し、実施例lとして2−メルカプトベン
ズイミダゾール(2MBり、実施例2として2−メルカ
プトピリジン(2MP)を用い、実施例3として2−メ
ルカプトベンズオキサゾール(2MBO)を添加した。
A sealed lead-acid battery with a voltage of 12 V and a 10 hour rate capacity of 2 A l-1 was prepared by combining positive and negative electrode plates and a separator made of fine glass fiber. Dilute sulfuric acid with a specific gravity of 1.32 was used as the electrolyte. Inside the battery is 08F 17303K (
Potassium perfluoro-octanesulfonate) was added as a surfactant, 2-mercaptobenzimidazole (2MB) was added as Example 1, 2-mercaptopyridine (2MP) was used as Example 2, and 2-mercaptobenzimidazole (2MP) was used as Example 3. Benzoxazole (2MBO) was added.

これらの芳香族化合物は、希硫酸に溶けに(いため、あ
らかじめ熱水に溶解させ、冷却の後に希硫酸を調製する
方法によった。また、2MBIについては、添加量を変
化させると共に、ペースト練合時の練液に溶解、添加す
る方法にもよった。また、これらにはいずれもアルカリ
金属塩としてのN a 2 S Osを0.06g/A
h添加した。
These aromatic compounds were dissolved in dilute sulfuric acid (because they were difficult to dissolve in dilute sulfuric acid), we used a method in which they were dissolved in hot water in advance and diluted sulfuric acid was prepared after cooling. It also depends on the method of dissolving and adding to the mixing solution during mixing.Also, in each of these, 0.06 g/A of Na 2 S Os as an alkali metal salt was added.
h was added.

充電効率の結果を第1図、第2図に示す。充電効率は、
0℃雰囲気中での充放電により求めた。
The results of charging efficiency are shown in FIGS. 1 and 2. The charging efficiency is
It was determined by charging and discharging in a 0°C atmosphere.

放電は0.8への定電流にて終止電圧+0.5Vまで放
電した時の放電電気量を、充電は0.8A。
Discharging is the amount of electricity discharged when discharging to a final voltage of +0.5V at a constant current of 0.8A, and charging is 0.8A.

/14.7Vの定電圧、定電流方法により2時間充電し
た時の電気量を示した。
The amount of electricity when charged for 2 hours using a constant voltage and constant current method of /14.7V is shown.

試験は、放電1 (放電電気量:Q、)、充電(電気量
: Qc)、放電2(放電電気量:Q2)の順に行ない
、Q、/Q、とQc/Q、の比によって充電効率とした
。これらの比率がいずれも100%をこえた場合、充電
効率が優れていることになる。
The test was conducted in the order of discharge 1 (discharged electricity amount: Q,), charge (discharged electricity amount: Qc), and discharge 2 (discharged electricity amount: Q2), and the charging efficiency was determined by the ratio of Q, /Q, and Qc/Q. And so. If both of these ratios exceed 100%, the charging efficiency is excellent.

図面より明らかなように、いずれも本発明によるパーフ
ルオロスルホン酸塩の界面活性剤を単独で用いるか、ま
た、芳香族化合物と同時に用いるかによって、充電効率
の向上がみられ、Na、SO4の添加により、さらに向
上した。
As is clear from the drawings, charging efficiency is improved depending on whether the perfluorosulfonate surfactant according to the present invention is used alone or simultaneously with an aromatic compound, Further improvement was achieved by adding

また、添加量が少ないとその効果はみられなくなり、ま
た多いと次のような不都合が生じた。界面活性剤の添加
が多いと電解液が発泡し好ましくない。また、メルカプ
タンが多いと、電解液の電導度が低下し好ましくない。
Further, if the amount added is small, the effect will not be seen, and if the amount added is large, the following problems will occur. If too much surfactant is added, the electrolyte will foam, which is not preferable. Furthermore, if the amount of mercaptan is too large, the conductivity of the electrolytic solution decreases, which is not preferable.

界面活性剤と2MB1、Nag SO4をそれぞれ0.
001 g/Ah、0.0028/Ah、0.06g/
Ah添加した時の0.IcA定電流充電カーブを第3図
に示す。
surfactant, 2MB1, and Nag SO4 at 0.0% each.
001 g/Ah, 0.0028/Ah, 0.06g/
0.0 when Ah is added. The IcA constant current charging curve is shown in FIG.

(A)は本発明の場合、(B)は従来例を示し、充電電
圧の差は、負極板の電位に依存していることが測定から
も明らかである。
(A) shows the case of the present invention, and (B) shows the conventional example, and it is clear from measurements that the difference in charging voltage depends on the potential of the negative electrode plate.

発明の効果 上記のように、本発明によれば鉛蓄電池内にパーフルオ
ロスルホン酸塩の界面活性剤を単独で含むか、またメル
カプト基を有する芳香族化合物と同時に添加することに
より、正負極活物質の充電効率の向上がみられる。さら
にアルカリ金属塩を添加することにより、充電効率がよ
り向上する。
Effects of the Invention As described above, according to the present invention, by including a perfluorosulfonate surfactant alone in a lead-acid battery or adding it simultaneously with an aromatic compound having a mercapto group, the positive and negative electrodes can be activated. There is an improvement in the charging efficiency of the material. Further, by adding an alkali metal salt, charging efficiency is further improved.

このようにすることにより、低温雰囲気下での負極活物
質の効率向上による電池の放電時間の増加、活物質の利
用率向上が可能となり、鉛蓄電池の容量増加、あるいは
軽量化に寄与するところが大きい。
By doing this, it is possible to increase the battery discharge time and improve the utilization rate of the active material by improving the efficiency of the negative electrode active material in a low-temperature atmosphere, which greatly contributes to increasing the capacity and reducing the weight of lead-acid batteries. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は充電効率を示す図、第3図は0、IC
AC型定電流充電時電電圧を示す図である。
Figures 1 and 2 are diagrams showing charging efficiency, Figure 3 is 0, IC
It is a figure which shows the electric voltage at the time of AC type constant current charging.

Claims (2)

【特許請求の範囲】[Claims] (1)C_nF_2_n_+_1SO_3M(Mはアル
カリ金属)で示されるパーフルオロスルホン酸塩の界面
活性剤を電池内に有することを特徴とする鉛蓄電池。
(1) A lead-acid battery characterized by having a perfluorosulfonate surfactant represented by C_nF_2_n_+_1SO_3M (M is an alkali metal) in the battery.
(2)メルカプト基(−SH)を有する芳香族化合物を
有する請求項1記載の鉛蓄電池。
(2) The lead-acid battery according to claim 1, comprising an aromatic compound having a mercapto group (-SH).
JP63317285A 1988-12-15 1988-12-15 Lead-acid battery Pending JPH02162649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63317285A JPH02162649A (en) 1988-12-15 1988-12-15 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63317285A JPH02162649A (en) 1988-12-15 1988-12-15 Lead-acid battery

Publications (1)

Publication Number Publication Date
JPH02162649A true JPH02162649A (en) 1990-06-22

Family

ID=18086526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63317285A Pending JPH02162649A (en) 1988-12-15 1988-12-15 Lead-acid battery

Country Status (1)

Country Link
JP (1) JPH02162649A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006961A3 (en) * 1993-09-03 1995-04-06 Valence Technology Inc Solid electrochemical cell of improved capacity and cycling capability having surfactant in vanadium oxide cathode mixture
FR2734408A1 (en) * 1995-05-19 1996-11-22 Europ Accumulateurs A process for the redn. of residual charge current in a gas re-combination accumulator
WO2017138045A1 (en) * 2016-02-09 2017-08-17 Hitachi Chemical Company, Ltd. Negative electrode and electrolytic solution for lead-acid battery, method for manufacturing the same, and lead-acid battery comprising said negative electrode or electrolytic solution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006961A3 (en) * 1993-09-03 1995-04-06 Valence Technology Inc Solid electrochemical cell of improved capacity and cycling capability having surfactant in vanadium oxide cathode mixture
FR2734408A1 (en) * 1995-05-19 1996-11-22 Europ Accumulateurs A process for the redn. of residual charge current in a gas re-combination accumulator
WO2017138045A1 (en) * 2016-02-09 2017-08-17 Hitachi Chemical Company, Ltd. Negative electrode and electrolytic solution for lead-acid battery, method for manufacturing the same, and lead-acid battery comprising said negative electrode or electrolytic solution
WO2017138038A1 (en) * 2016-02-09 2017-08-17 Hitachi Chemical Company, Ltd. Negative electrode for lead-acid battery, lead-acid battery, and method for manufacturing a negative electrode for lead-acid battery

Similar Documents

Publication Publication Date Title
Li et al. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc‐ion batteries
WO2019174161A1 (en) Solid-state composite lithium metal negative electrode
WO2019114205A1 (en) Mxene-metal composite material and preparation method therefor
CN102569771B (en) SnO2-Li4Ti5O12 composite electrode material and preparation method thereof
CN111276678A (en) Single-layer graphene coated FeS2Preparation method and application of carbon nanotube material
CN113429616A (en) Preparation method and application of hygroscopic double-layer gel polymer electrolyte
JP2003036882A (en) Sealed type lead storage battery
CN108470949A (en) A kind of lead-acid accumulator is with high-efficiency activated dose and preparation method thereof
CN108448073A (en) Lithium ion battery C@TiO2Composite negative pole material and preparation method thereof
JP2548573B2 (en) Electrolyte for lithium battery
JPH02162649A (en) Lead-acid battery
CN110416524A (en) Polythiophene/silicon/graphite composite material, negative electrode material and preparation method and application
CN112242570A (en) Application of mixture of carbon material and ionic bromide and aqueous zinc-bromine double-ion battery
CN109768234A (en) A kind of cobalt doped strontium titanates/graphene composite material, preparation method and application
CN102340042B (en) A kind of solar-energy photo-voltaic cell
CN112952216B (en) Oxygen ion conduction type metal-metal oxide molten salt secondary battery and preparation method thereof
CN115249792A (en) Positive electrode lithium supplement material, preparation method thereof, positive plate and secondary battery
CN115149117A (en) Additive of aqueous battery electrolyte and application thereof
CN103904309A (en) Solid solution material containing nickel titanium manganese and preparation method thereof
CN108063271A (en) A kind of half flow battery
CN108598393B (en) Lithium ion battery anode material and preparation method thereof
JP2004327299A (en) Sealed lead-acid storage battery
JPH0275156A (en) Cd-containing powder and negative electrode material for alkaline storage battery
JPH02162658A (en) Lead-acid battery
JPS63152868A (en) Lead-acid battery