JP2548573B2 - Electrolyte for lithium battery - Google Patents

Electrolyte for lithium battery

Info

Publication number
JP2548573B2
JP2548573B2 JP62185461A JP18546187A JP2548573B2 JP 2548573 B2 JP2548573 B2 JP 2548573B2 JP 62185461 A JP62185461 A JP 62185461A JP 18546187 A JP18546187 A JP 18546187A JP 2548573 B2 JP2548573 B2 JP 2548573B2
Authority
JP
Japan
Prior art keywords
lithium
battery
charge
discharge
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62185461A
Other languages
Japanese (ja)
Other versions
JPS6430178A (en
Inventor
敏郎 平井
準一 山木
勇 ▲吉▼松
真一 鳶島
正泰 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62185461A priority Critical patent/JP2548573B2/en
Publication of JPS6430178A publication Critical patent/JPS6430178A/en
Application granted granted Critical
Publication of JP2548573B2 publication Critical patent/JP2548573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウム電池用電解液、更に詳細にはリチ
ウム一次及び二次電池に用いる電解液の改良に関する。
TECHNICAL FIELD The present invention relates to an electrolytic solution for a lithium battery, and more specifically to improvement of an electrolytic solution used for lithium primary and secondary batteries.

〔従来の技術〕[Conventional technology]

リチウムは、標準単極電位が、−3.03V(標準水素電
極基準)と高く、還元力が極めて強く、また原子量が6.
941と小さいため、重量当りの容量密度は3.86Ah/gと大
きい。
Lithium has a high standard single electrode potential of −3.03V (standard hydrogen electrode standard), an extremely strong reducing power, and an atomic weight of 6.
Since it is as small as 941, the capacity density per weight is as large as 3.86 Ah / g.

このため、リチウムを負極活物質として用いる電池
(以下、リチウム電池と称する)は小型、高エネルギー
密度を有する電池として研究されており、既に二酸化マ
ンガン、フツ化黒鉛などを正極活物質として用いる電池
が市販されている。しかし、これら市販のリチウム電池
は一次電池であり、通常の実用に供しうる充放電可能な
リチウム二次電池は実現されていないのが現状である。
高エネルギー密度という放電特性の利点を生かしなが
ら、リチウム電池が充電も可能となれば、従来の電池系
に比較して極めて特性の優れた電池が実現することとな
り、携帯電子機器を始めとする産業界に与える効果は大
きい。
Therefore, a battery using lithium as a negative electrode active material (hereinafter referred to as a lithium battery) has been studied as a battery having a small size and a high energy density, and a battery using manganese dioxide, fluorinated graphite or the like as a positive electrode active material has already been used. It is commercially available. However, these commercially available lithium batteries are primary batteries, and the present situation is that a rechargeable lithium secondary battery that can be used for ordinary practical use has not yet been realized.
If lithium batteries can be recharged while taking advantage of the discharge characteristics of high energy density, batteries with extremely superior characteristics will be realized compared to conventional battery systems, and it will be used in industries such as portable electronic devices. It has a great effect on the world.

リチウム電池を二次化するためには、正極活物質の開
発、電解液の選択、電池構成法の改善など多くの解決す
べき問題がある。特に、電解液の選択は重要な課題であ
る。常温作動型のリチウム二次電池には、非水電解液を
用いることが実用の見地から望ましいが、電解液の導電
率は従来の電池系に用いられる水溶液系に比べ1桁も2
桁も低いという欠点があつた。このため、電池の放電利
用率向上のためには電解液の導電率向上は不可欠であ
る。同時に、二次電池に適用するためには、非水電解液
中におけるリチウムの充放電効率が高いことが要求され
るのは当然である。すなわち、リチウム二次電池に用い
る電解液は、高い導電率を有すること、高いリチウ
ム充放電効率を有すること、の二点を同時に充足する必
要がある。
In order to make a lithium battery secondary, there are many problems to be solved such as development of a positive electrode active material, selection of an electrolytic solution, and improvement of a battery construction method. In particular, the selection of the electrolytic solution is an important issue. It is desirable from the practical point of view to use a non-aqueous electrolytic solution for a lithium secondary battery that operates at room temperature, but the conductivity of the electrolytic solution is two orders of magnitude less than that of an aqueous solution system used in a conventional battery system.
There was a drawback that it was low. Therefore, it is essential to improve the conductivity of the electrolytic solution in order to improve the discharge utilization rate of the battery. At the same time, in order to apply it to the secondary battery, it is naturally required that the charge / discharge efficiency of lithium in the non-aqueous electrolyte is high. That is, the electrolytic solution used for the lithium secondary battery needs to simultaneously satisfy the two points of high conductivity and high lithium charge / discharge efficiency.

リチウム充放電効率の比較的高い電解液としては、Li
AsF6−2−メチルテトラヒドロフラン系電解液が提案さ
れている(米国特許第4118559号明細書参照)。しかし
ながら、同電解液の導電率は低く(1.5M LiAsF6で4.3×
10-3S・cm-1、25℃)、リチウム電池に用いた場合、充
放電効率が低いという欠点があつた。
As an electrolyte with relatively high lithium charge / discharge efficiency, Li
AsF 6-2-methyltetrahydrofuran-based electrolyte it has been proposed (see U.S. Pat. No. 4,118,559). However, the conductivity of the electrolyte is low (4.3M with 1.5M LiAsF 6).
(10 −3 S · cm −1 , 25 ° C.), and when used in a lithium battery, it had a drawback of low charge / discharge efficiency.

また、プロピレンカーボネートや、エチレンカーボネ
ートなどの極性二重結合を有する溶媒を用いた電解液
や、相対的に高い導電率を示すが(例えば、1.5M LiAsF
6でそれぞれ、5.3×10-3S・cm-1及び6.2×10-3S・c
m-1)、リチウムの充放電効率は低いという欠点を有す
る。
In addition, an electrolyte using a solvent having a polar double bond such as propylene carbonate or ethylene carbonate, or having a relatively high conductivity (for example, 1.5M LiAsF
6 at 5.3 × 10 -3 S ・ cm -1 and 6.2 × 10 -3 S ・ c respectively
m −1 ), lithium has a drawback of low charge and discharge efficiency.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

すなわち、現在まで導電率も高く、かつリチウムの充
放電効率の高いリチウム二次電池用電解液は実現してい
ない。
That is, up to now, an electrolyte solution for a lithium secondary battery, which has a high conductivity and a high lithium charge / discharge efficiency, has not been realized.

本発明は、このような現状にかんがみてなされたもの
であり、その目的は導電率が高く、かつリチウムの充放
電特性の優れたリチウム一次及び二次電池を製造可能と
するリチウム電池用電解液を提供することにある。
The present invention has been made in view of such a current situation, and an object thereof is an electrolyte for a lithium battery that has a high conductivity and is capable of producing a lithium primary and secondary battery having excellent charge / discharge characteristics of lithium. To provide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によるリチウム電池用電解液は、リチウム塩を
有機溶媒に溶解させたリチウム電池用電解液において、
ジカルボン酸化合物を10-3〜10-1M(mole/)の濃度範
囲で含有していることを最も主要な特徴とする。
The lithium battery electrolyte according to the present invention is a lithium battery electrolyte obtained by dissolving a lithium salt in an organic solvent,
The most main feature is that the dicarboxylic acid compound is contained in a concentration range of 10 -3 to 10 -1 M (mole /).

これによつて、従来高導電率と優れた充放電効率の両
立が困難であつたリチウム電池用電解液に対し、高い導
電率を有し、かつ優れた充放電効率を有するリチウム電
池用電解液を実現するものである。
As a result, in contrast to a lithium battery electrolyte that has conventionally been difficult to achieve both high conductivity and excellent charge / discharge efficiency, a lithium battery electrolyte having high conductivity and excellent charge / discharge efficiency. Is realized.

本発明を更に詳しく説明する。 The present invention will be described in more detail.

リチウム電池は、負極活物質がリチウムあるいはリチ
ウムイオンを放電可能にするリチウム合金であり、正極
活物質がリチウムイオンと電気化学的に可逆反応を行う
物質であり、電解液がリチウム塩を有機溶媒に溶解させ
た溶液をもつて構成されている。
In a lithium battery, the negative electrode active material is a lithium alloy capable of discharging lithium or lithium ions, the positive electrode active material is a material that electrochemically reversibly reacts with lithium ions, and the electrolyte solution uses a lithium salt as an organic solvent. It is composed of a dissolved solution.

本発明によれば、上述のような電解液において、優れ
た特性を有するものを提供することを主旨とするもので
ある。すなわち、リチウム塩を有機溶媒に溶解させた溶
液中に、10-3〜10-1Mの濃度範囲でジカルボン酸化合物
を含有させ、これをリチウム電池用電解液として用いる
ものである。
According to the present invention, it is an object of the present invention to provide an electrolytic solution as described above having excellent properties. That is, a dicarboxylic acid compound is contained in a solution in which a lithium salt is dissolved in an organic solvent in a concentration range of 10 -3 to 10 -1 M, and this is used as an electrolyte for a lithium battery.

リチウム電池に用いる電解液の導電率及びリチウムの
充放電効率を向上させるためには、リチウムから溶媒へ
の電子移動反応性の低い溶媒や、溶媒中のリチウム塩が
解離しやすく、かつリチウムイオンの移動性が大きいこ
とが必要と考えられる。本発明におけるジカルボン酸化
合物は、リチウム塩の解離やリチウムイオンの移動性を
妨げることなく、容易にリチウム負極に吸着し、リチウ
ムの充放電効率の低下要因となるリチウムと溶媒との反
応を抑制し、充放電に伴うリチウムイオンの負極上への
析出、負極から電解液中への溶出を円滑に行わせしめる
目的で添加するものである。
In order to improve the conductivity of the electrolyte used in the lithium battery and the charge / discharge efficiency of lithium, a solvent having a low electron transfer reactivity from lithium to the solvent or a lithium salt in the solvent is easily dissociated, and the lithium ion It is considered necessary to have high mobility. The dicarboxylic acid compound in the present invention is easily adsorbed on the lithium negative electrode without disturbing the dissociation of the lithium salt or the mobility of lithium ions, and suppresses the reaction between lithium and the solvent, which becomes a factor of reducing the charge / discharge efficiency of lithium. It is added for the purpose of facilitating the deposition of lithium ions on the negative electrode due to charging and discharging and the elution from the negative electrode into the electrolytic solution.

本発明に用いられるジカルボン酸化合物は、カルボキ
シル基−COOHを2個有する化合物であるが、同時に1つ
又は2つのHが、アルキル基、フエニル基、ベンジル基
及びそれらの誘導体によつて置換されたモノエステルあ
るいはジエステル化合物(R′OOC−R−COOH、R′OOC
−R−COOR″)や、あるいはアルカリ又はアルカリ土類
金属等によつて置換されたもの(−COOX)でも同様の効
果を発現できる。またジカルボン酸化合物のカルボキシ
ル基−COOHに結合する基は芳香族、非芳香族を問わな
い。
The dicarboxylic acid compound used in the present invention is a compound having two carboxyl groups -COOH, but one or two H are simultaneously substituted with an alkyl group, a phenyl group, a benzyl group and derivatives thereof. Monoester or diester compound (R'OOC-R-COOH, R'OOC
-R-COOR "), or those substituted with an alkali or alkaline earth metal or the like (-COOX) can also produce the same effect. The group bonded to the carboxyl group -COOH of the dicarboxylic acid compound is aromatic. It can be of any type, non-aromatic.

本発明に用いられるジカルボン酸化合物が、該電解液
中に添加されて有効な特性を示す理由は、必ずしも明ら
かではないが、1つの考えとして該添加物が負極リチウ
ムと物理的又は化学的吸着結合を行うことにより充放電
サイクルに使用されるべき活物質としてのリチウムと電
解液との反応によるリチウムの損失を抑制する層を負極
/電解液界面に形成する。また、この層は充電時のLi+
イオンの負極上への析出状態を良好にし、電気化学的不
活性となる析出リチウムの発生を抑制する効果も期待さ
れる。電子顕微鏡による充電後、充電後の負極表面の観
察を実施例1に記載した電池系において行つた結果で
は、該添加剤を加えない系においては、リチウム充放電
効率を向上させる上で有効な径10μm程度の粒子状リチ
ウムと共に、リチウムの充放電効率低下の要因となる径
1〜2μm、長さ10μm程度の針状リチウムが負極表面
上に存在し、しかも充放電サイクルと共にこの針状リチ
ウムの析出割合が増加してきた。これに対し、該添加剤
を添加した本発明の電解液を用いた電池においては、上
記針状リチウムの存在は認められず、径2〜5μm程度
の粒子状リチウムが均一に析出した状態であり、該添加
剤の添加による本発明の電解液の有効性が確かめられ
た。
The reason why the dicarboxylic acid compound used in the present invention shows effective characteristics when added to the electrolytic solution is not necessarily clear, but one idea is that the additive physically or chemically adsorbs to the negative electrode lithium. By doing so, a layer that suppresses the loss of lithium due to the reaction between lithium as an active material to be used in the charge / discharge cycle and the electrolytic solution is formed at the negative electrode / electrolytic solution interface. Also, this layer is Li + during charging
The effect of improving the deposition state of ions on the negative electrode and suppressing the generation of precipitated lithium that becomes electrochemically inactive is expected. After charging with an electron microscope, the surface of the negative electrode after charging was observed in the battery system described in Example 1. The results show that in the system without the additive, the diameter effective for improving the lithium charge / discharge efficiency is shown. Along with about 10 μm of particulate lithium, acicular lithium with a diameter of 1 to 2 μm and a length of about 10 μm, which causes a decrease in charge / discharge efficiency of lithium, is present on the surface of the negative electrode, and the acicular lithium is deposited with the charge / discharge cycle. The percentage has increased. On the other hand, in the battery using the electrolytic solution of the present invention to which the additive was added, the presence of the acicular lithium was not observed, and the particulate lithium having a diameter of about 2 to 5 μm was uniformly deposited. The effectiveness of the electrolytic solution of the present invention due to the addition of the additive was confirmed.

本発明におけるジカルボン酸化合物の添加濃度は10-3
〜10-1Mであるが、濃度が10-3M未満であると添加しない
従来の電解液の特性と同じで添加による特性の向上はみ
られず、一方、濃度が10-1Mを越えると添加剤の過多が
イオンの移動度や負極の電気化学的反応に悪影響を及ぼ
し、添加前に比べて特性が劣化するからである。
The addition concentration of the dicarboxylic acid compound in the present invention is 10 −3
~ 10 -1 M, but if the concentration is less than 10 -3 M, the characteristics are not improved by the addition as with the characteristics of the conventional electrolyte solution that is not added, while the concentration exceeds 10 -1 M And the excess of additives adversely affects the mobility of ions and the electrochemical reaction of the negative electrode, and the characteristics deteriorate as compared with before the addition.

本発明における電解液を構成するリチウム塩、及び有
機溶媒は、基本的に限定されるものではない。例えば、
リチウム塩においては、LiAsF6、LiClO4、LiSbF6、LiBF
4、LiPF6、LiAlCl4、LiCF3SO3及びLiCF3CO2などの1種
以上を有効に用いることができる。また、有機溶媒とし
ては、プロピレンカーボネート、エチレンカーボネー
ト、2−メチルテトラヒドロフラン、テトラヒドロフラ
ン、2−メチルジオキソラン、4−メチルジオキソラ
ン、ジオキソラン、1,2−ジメトキシエタン、γ−ブチ
ロラクトン、ジメチルスルホキシド、アセトニトリル、
ホルムアミド、ジメチルホルムアミド及びニトロメタン
等の1種以上の非プロトン性有機溶媒を有効に用いるこ
とができる。
The lithium salt and the organic solvent that compose the electrolytic solution in the present invention are not basically limited. For example,
In lithium salt, LiAsF 6, LiClO 4, LiSbF 6, LiBF
One or more of 4 , LiPF 6 , LiAlCl 4 , LiCF 3 SO 3 and LiCF 3 CO 2 can be effectively used. In addition, as the organic solvent, propylene carbonate, ethylene carbonate, 2-methyltetrahydrofuran, tetrahydrofuran, 2-methyldioxolane, 4-methyldioxolane, dioxolane, 1,2-dimethoxyethane, γ-butyrolactone, dimethylsulfoxide, acetonitrile,
One or more aprotic organic solvents such as formamide, dimethylformamide and nitromethane can be effectively used.

本発明による電解液を用いたリチウム電池に用いる負
極活物質は基本的に限定されるものではなく、従来のリ
チウム電池に用いられている負極活物質、すなわちリチ
ウムあるいはリチウムイオンを放電可能にするリチウム
合金を用いることができる。
The negative electrode active material used in the lithium battery using the electrolytic solution according to the present invention is basically not limited, and the negative electrode active material used in the conventional lithium battery, that is, lithium or lithium that can discharge lithium ions. Alloys can be used.

また、同様に本発明において用いられる正極活物質も
基本的に限定されず、従来のリチウム二次電池に用いら
れている正極活物質、すなわちリチウムイオンと電気化
学的に可逆反応を行う物質であることができる。
Similarly, the positive electrode active material used in the present invention is basically not limited, and is a positive electrode active material used in conventional lithium secondary batteries, that is, a material that electrochemically reversibly reacts with lithium ions. be able to.

〔実施例〕〔Example〕

以下、本発明の実施例により更に具体的に説明する
が、本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.

実施例1 1.5M LiAsF6−エチレンカーボネート(以下、ECと略
記する)/2−メチルテトラヒドロフラン(以下、2Me TH
Fと略記する)(体積混合比1/1)中の不純物を100ppm以
下にコントロールした電解液を作製し、これにあらかじ
め80℃、真空乾燥機中1週間放置して十分乾燥した各種
のジカルボン酸化合物を10-4〜0.5M溶解させ、以下に述
べる作製方法により作製したリチウム二次電池の電解液
に用いた。
Example 1 1.5M LiAsF 6 -ethylene carbonate (hereinafter abbreviated as EC) / 2-methyltetrahydrofuran (hereinafter, 2Me TH)
(Abbreviated as F) (volume mixing ratio 1/1) to prepare an electrolyte solution in which the impurities in the mixture are controlled to 100 ppm or less, and various dicarboxylic acids that have been sufficiently dried by leaving them in a vacuum dryer at 80 ° C for 1 week in advance. The compound was dissolved at 10 −4 to 0.5 M and used as an electrolytic solution of a lithium secondary battery manufactured by the manufacturing method described below.

正極には、活物質として95mole%V2O5−5mole%P2O5
の組成より成る非晶質材料を70重量%、導電剤としてア
セチレンブラツクを25重量%、バインダとしてテフロン
5重量%の混合比で作製した正極合剤ペレツト(16mm
φ)を用い、負極として金属リチウム(17mmφ、15mA
h)を用い、更にセパレータとして微孔性ポリプロピレ
ンシートを用いてコイン型リチウム電池を作製した。
For the positive electrode, 95mole% V 2 O 5 −5mole% P 2 O 5 as an active material
70% by weight of an amorphous material having a composition of 25% by weight, acetylene black as a conductive agent by weight of 25%, and Teflon as a binder by weight of 5% by weight.
φ) and metallic lithium (17 mmφ, 15 mA) as the negative electrode
A coin-type lithium battery was produced by using h) and a microporous polypropylene sheet as a separator.

このリチウム電池を室温中、1mAの電流値、2〜3.5V
の電圧範囲で充放電試験を行い、電解液の充放電特性を
評価した。
This lithium battery at room temperature, current value of 1mA, 2-3.5V
A charge / discharge test was performed in the voltage range of 1 to evaluate the charge / discharge characteristics of the electrolytic solution.

結果の1例を第1図に示す。すなわち、第1図は1.5M
LiAsF6−EC/2Me THF(1/1)中にトリデカン二酸〔HOOC
−(CH211−COOH〕を0.01M添加した電解液、15mAh Li
を用いた本発明の電池について1mA、2〜3.5Vの電圧範
囲で充放電試験を行つた際のサイクル回数(横軸)と放
電容量(mAh、縦軸)の関係を示したグラフである。こ
の第1図より明らかなように、放電に関与できるリチウ
ムは各放電ごとに負極側においてすべて消費され、その
容量は充放電効率Eに応じて徐々に減少していくことに
なる。すなわち、負極の充放電効率をE、第n回目の放
電の容量をCnとすると、 Cn=E×Cn-1=En-1×C1 が成立し、これより lnCn=(n−1)lnE+lnC1 なる関係が求まり、第1図のごとく縦軸の放電容量を対
数スケールで表わしたグラフの直線部の傾きから、負極
リチウムの充放電効率Eを算出することができる。
An example of the results is shown in FIG. That is, Fig. 1 shows 1.5M
In LiAsF 6 −EC / 2Me THF (1/1), tridecanedioic acid [HOOC
- (CH 2) 11 -COOH] of 0.01M the added electrolyte, 15 mAh Li
3 is a graph showing the relationship between the number of cycles (horizontal axis) and the discharge capacity (mAh, vertical axis) when a charge / discharge test was performed in a voltage range of 1 mA and 2 to 3.5 V for the battery of the present invention using. As is clear from FIG. 1, all the lithium that can participate in the discharge is consumed on the negative electrode side for each discharge, and the capacity thereof gradually decreases according to the charge / discharge efficiency E. That is, assuming that the charge / discharge efficiency of the negative electrode is E and the capacity of the nth discharge is Cn, Cn = E × C n-1 = E n-1 × C 1 holds, and lnCn = (n-1 ) LnE + lnC 1 is obtained, and the charging / discharging efficiency E of the negative electrode lithium can be calculated from the slope of the straight line portion of the graph showing the discharge capacity on the vertical axis in a logarithmic scale as shown in FIG.

各種ジカルボン酸化合物を添加した電解液における充
放電効率Eを上記の式により算出し、その結果を第1表
に示した。第1表には比較のため、添加物を含まない電
解液における同様の試験の結果も合せて示した。
The charging / discharging efficiency E in the electrolytic solution containing various dicarboxylic acid compounds was calculated by the above formula, and the results are shown in Table 1. For comparison, Table 1 also shows the results of a similar test in an electrolyte solution containing no additive.

第1表の結果により明らかなように、ジカルボン酸化
合物を10-3〜10-1M添加することにより、無添加の場合
に比べて高いリチウム充放電効率を示すことがわかつ
た。
As is clear from the results in Table 1, it was found that the addition of 10 -3 to 10 -1 M of the dicarboxylic acid compound exhibited higher lithium charge / discharge efficiency than the case of no addition.

実施例2 1.5M LiAsF6−EC/2Me THF(1/1)電解液の不純物をコ
ントロールした電解液を作製し、これに80℃、2週間真
空乾燥させたトリデカン二酸を0.01M添加し、これをリ
チウム電池用電解液として用いた。
Example 2 An electrolytic solution in which impurities of 1.5M LiAsF 6 -EC / 2Me THF (1/1) electrolytic solution were controlled was prepared, and 0.01 M of tridecanedioic acid vacuum-dried at 80 ° C. for 2 weeks was added to the electrolytic solution. This was used as an electrolytic solution for a lithium battery.

正極、負極を実施例1と同様に作成し、コイン型リチ
ウム電池を実施例1と同様にして作製した。更に実施例
1と同様の条件で充放電試験を行い、リチウム充放電効
率を評価した。
A positive electrode and a negative electrode were prepared in the same manner as in Example 1, and a coin-type lithium battery was prepared in the same manner as in Example 1. Furthermore, a charge / discharge test was performed under the same conditions as in Example 1 to evaluate the lithium charge / discharge efficiency.

結果を第2表に示す。第2表より明らかなように、該
添加剤は経時的分解劣化をきたさず、安定した充放電効
率を維持することがわかつた。
The results are shown in Table 2. As is clear from Table 2, it was found that the additive does not decompose and deteriorate with time and maintains stable charge / discharge efficiency.

実施例3 80℃、2週間真空乾燥させたこはく酸〔HOOC(CH22
COOH〕、トリデカン二酸〔HOOC(CH211COOH〕及び1,4
−シクロヘキサンジカルボン酸〔C6H10−(COOH)
の各添加剤を、1M LiClO4−プロピレンカーボネート
(以下、PCと略記する)/1,2−ジメトキシエタン(以
下、DMEと略記する)(1/1)、1.5M LiAsF6−PC、1.5M
LiAsF6−2Me THF、1.5M LiPF6−EC/2Me THF(1/1)の不
純物をコントロールした各種電解液中に10-4〜0.5Mの濃
度で添加し、リチウム電池用電解液として用いた。
Example 3 Succinic acid [HOOC (CH 2 ) 2 vacuum dried at 80 ° C. for 2 weeks
COOH], tridecanedioic acid [HOOC (CH 2 ) 11 COOH] and 1,4
- cyclohexanedicarboxylic acid [C 6 H 10 - (COOH) 2 ]
Each additive of 1M LiClO 4 -propylene carbonate (hereinafter abbreviated as PC) / 1,2-dimethoxyethane (hereinafter abbreviated as DME) (1/1), 1.5M LiAsF 6 -PC, 1.5M
LiAsF 6 −2Me THF and 1.5M LiPF 6 −EC / 2Me THF (1/1) were added to various controlled electrolytes at a concentration of 10 −4 to 0.5M and used as electrolytes for lithium batteries. .

実施例1と同様にしてコイン型電池を作製し、実施例
1と同様の条件で充放電試験を行つた。試験より得られ
たリチウム充放電効率を第3表に示す。
A coin-type battery was produced in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions as in Example 1. Table 3 shows the lithium charge / discharge efficiency obtained from the test.

第3表よりも明らかなように、いずれの電解液におい
ても該添加剤を添加することにより、無添加時に比べて
より高い充放電効率を示すことが明らかとなつた。
As is clear from Table 3, it was revealed that by adding the additive in any of the electrolytic solutions, higher charging / discharging efficiency was exhibited as compared with the case where no additive was added.

実施例4 不純物をコントロールした1.5M LiAsF6−EC/2Me THF
(1/1)電解液中に80℃、2週間真空乾燥したトリデカ
ン二酸〔HOOC−(CH211−COOH〕を0.01M添加し、リチ
ウム電池用電解液とした。
Example 4 1.5M LiAsF 6 -EC / 2Me THF with controlled impurities
(1/1) 80 ° C. in the electrolyte solution, 2 weeks vacuum dried tridecanedioic acid [HOOC- (CH 2) 11 -COOH] to a 0.01M added and the electrolytic solution for lithium battery.

正極には、95mole%V2O5−5mole%P2O5の組成よりな
る非晶質材料を活物質として用いた実施例1と同様にし
て作製した正極合剤ペレツトを用い、負極として60mAh
の金属リチウム(17mmφ)を用い、実施例1と同様にし
てコイン型リチウム電池を作製した。
As the positive electrode, a positive electrode material mixture pellet prepared in the same manner as in Example 1 using an amorphous material having a composition of 95 mole% V 2 O 5 −5 mole% P 2 O 5 as an active material was used, and 60 mAh was used as the negative electrode.
A coin-type lithium battery was produced in the same manner as in Example 1 by using the metallic lithium (17 mmφ).

このリチウム電池を室温中、放電電流3mA/cm2、充電
電流1mA/cm2、2〜3.5Vの電圧規制で充放電試験を行
い、充放電特性を評価した。比較のために添加剤を含ま
ない電解液を用いてコイン型電池を作製し、同様の試験
を行つた。
The lithium battery was subjected to a charge / discharge test at room temperature under a discharge current of 3 mA / cm 2 , a charge current of 1 mA / cm 2 , and a voltage regulation of 2 to 3.5 V to evaluate the charge / discharge characteristics. For comparison, a coin-type battery was manufactured using an electrolyte solution containing no additive, and the same test was performed.

結果を第2図に示す。すなわち、第2図は1.5M LiAsF
6−EC/2Me THF(1/1)電解液と、これに0.01Mトリデカ
ン二酸を添加した電解液を用いたそれぞれの電池につい
て放電電流3mA/cm2、充電電流1mA/cm2、2〜3.5Vの電圧
規制で充放電試験を行つた際のサイクル回数(横軸)に
伴う放電容量(mAh、縦軸)の変化を示したグラフであ
る。第2図のうち、曲線Aはトリデカン二酸を添加剤と
して0.01M含む電解液を用いた電池の場合であり、曲線
Bは添加剤を含まない電解液を用いた電池の場合であ
る。
Results are shown in FIG. That is, Fig. 2 shows 1.5M LiAsF
Discharge current 3mA / cm 2 , charging current 1mA / cm 2 , 2 to 6 for each battery using 6- EC / 2Me THF (1/1) electrolyte and 0.01M tridecanedioic acid It is the graph which showed the change of the discharge capacity (mAh, a vertical axis) with the number of cycles (horizontal axis) at the time of performing a charging / discharging test by 3.5V voltage regulation. In FIG. 2, a curve A shows a case of a battery using an electrolytic solution containing 0.01 M of tridecanedioic acid as an additive, and a curve B shows a case of a battery using an electrolytic solution containing no additive.

第2図より明らかなように、トリデカン二酸を添加剤
として含む電解液を用いた電池は、該添加剤を含まない
電解液を用いた電池に比べて優れた充放電サイクル安定
性を示した。
As is clear from FIG. 2, the battery using the electrolytic solution containing tridecanedioic acid as an additive exhibited excellent charge-discharge cycle stability as compared with the battery using the electrolytic solution containing no additive. .

実施例5 不純物をコントロールした1.5M LiAsF6−EC/2Me THF
(1/1)電解液に、80℃、2週間真空乾燥したトリデカ
ン二酸〔HOOC−(CH211COOH〕を0.01M添加し、リチウ
ム電池用電解液とした。
Example 5 1.5M LiAsF 6 -EC / 2Me THF with controlled impurities
(1/1) in the electrolytic solution, 80 ° C., 2 weeks vacuum dried tridecanedioic acid [HOOC- (CH 2) 11 COOH] was 0.01M added and the lithium battery electrolyte.

この電解液を用いて、実施例4と同様にしてコイン型
リチウム電池を作製した。この電池を放電電流がそれぞ
れ1mA/cm2、2mA/cm2、4mA/cm2、及び充電電流1mA/cm2
2〜3.5Vの電圧規制で充放電試験を行つた。比較のため
に、添加剤を含まない電解液を用い、同様にしてコイン
型リチウム電池を作製し、同様の条件で充放電試験を行
つた。
Using this electrolytic solution, a coin type lithium battery was produced in the same manner as in Example 4. This battery has a discharge current of 1 mA / cm 2 , 2 mA / cm 2 , 4 mA / cm 2 , and a charging current of 1 mA / cm 2 ,
A charge / discharge test was conducted under the voltage regulation of 2 to 3.5V. For comparison, a coin-type lithium battery was prepared in the same manner using an electrolytic solution containing no additive, and a charge / discharge test was conducted under the same conditions.

結果を第3図に示す。すなわち第3図は上記リチウム
電池の充放電サイクル回数(横軸)に伴う放電容量(mA
h、縦軸)の変化を表わしたグラフである。第3図にお
いて、曲線Cは放電電流1mA/cm2、充電電流1mA/cm2の条
件での充放電試験におけるトリデカン二酸を添加した電
解液使用の電池の場合であり、曲線Dは同条件の充放電
試験における添加剤を含まない電解液使用の電池の場合
であり、曲線Eは、放電電流2mA/cm2、充電電流1mA/cm2
の条件での充放電試験におけるトリデカン二酸添加の電
解液を使用した電池の場合であり、また曲線Fは同条件
の充放電試験における添加剤を含まない電解液使用の電
池の場合である。更に、第3図において、曲線Gは、放
電電流4mA/cm2、充電電流1mA/cm2の条件での充放電試験
におけるトリデカン二酸を添加剤として含む電解液を用
いた電池の場合であり、曲線Hは、同条件の充放電試験
における添加剤を含まない電解液を用いた電池の場合で
ある。
Results are shown in FIG. That is, FIG. 3 shows the discharge capacity (mA) according to the number of charge / discharge cycles (horizontal axis) of the lithium battery.
It is a graph showing the change of (h, vertical axis). In FIG. 3, curve C shows the case of a battery using an electrolyte solution added with tridecanedioic acid in a charge / discharge test under the conditions of a discharge current of 1 mA / cm 2 and a charge current of 1 mA / cm 2 , and curve D shows the same conditions. In the case of a battery using an electrolyte solution containing no additive in the charge and discharge test, the curve E shows a discharge current of 2 mA / cm 2 and a charge current of 1 mA / cm 2
This is the case of the battery using the electrolyte solution added with tridecanedioic acid in the charge / discharge test under the conditions of, and the curve F is the case of the battery using the electrolyte solution without the additive in the charge / discharge test under the same conditions. Further, in FIG. 3, a curve G is the case of a battery using an electrolyte solution containing tridecanedioic acid as an additive in a charge / discharge test under the conditions of a discharge current of 4 mA / cm 2 and a charge current of 1 mA / cm 2 . , Curve H is the case of a battery using an electrolyte solution containing no additive in a charge / discharge test under the same conditions.

第3図より明らかなように、いずれの条件下の充放電
試験においても、トリデカン二酸を添加した本発明にお
ける電解液を用いた場合、無添加の電解液を用いた場合
と比較して容量の大幅な低下はみられず、かつ長期にわ
たる充放電サイクル安定性を示した。
As is clear from FIG. 3, in any charging / discharging test, when the electrolytic solution of the present invention to which tridecanedioic acid was added was used, the capacity was increased as compared with the case of using the additive-free electrolytic solution. No significant decrease was observed, and long-term charge / discharge cycle stability was shown.

実施例6 不純物をコントロールした1.5M LiPF6−EC/2Me THF
(1/1)電解液にあらかじめ脱水処理を行つた各種ジカ
ルボン酸エステル、すなわち、アジピン酸ジ−n−ブチ
ル、アジピン酸ジベンジル、フタル酸ジ−n−アミルを
0.01M添加し、リチウム電池用電解液とした。
Example 6 1.5M LiPF 6 -EC / 2Me THF with controlled impurities
(1/1) Various dicarboxylic acid esters obtained by dehydrating the electrolytic solution in advance, that is, di-n-butyl adipate, dibenzyl adipate, and di-n-amyl phthalate were used.
0.01 M was added to obtain a lithium battery electrolyte.

正極、負極を実施例1と同様に作製し、コイン型リチ
ウム電池を実施例1と同様にして作製した。作製した電
池は、実施例1と同じ条件で充放電試験を行い、リチウ
ム充放電効率を評価した。比較のため、該添加剤を含ま
ない電解液を用いてコイン型リチウム電池を同様に作製
し、同条件による充放電試験も合せて行つた。
A positive electrode and a negative electrode were produced in the same manner as in Example 1, and a coin-type lithium battery was produced in the same manner as in Example 1. The produced battery was subjected to a charge / discharge test under the same conditions as in Example 1 to evaluate lithium charge / discharge efficiency. For comparison, a coin-type lithium battery was similarly prepared using an electrolytic solution containing no additive, and a charge / discharge test under the same conditions was also performed.

結果を第4表に示す。第4表により明らかなように、
該添加剤を電解液中に添加することにより、無添加の場
合に比べてリチウム充放電効率が向上することがわかつ
た。
The results are shown in Table 4. As is clear from Table 4,
It was found that the lithium charge / discharge efficiency is improved by adding the additive to the electrolytic solution as compared with the case where the additive is not added.

なお、脱水処理は、アジピン酸ジ−n−ブチル、フタ
ル酸ジ−n−アミルについては室温中、アジピン酸ジベ
ンジルについては50℃の恒温槽中、モレキユーシーブス
3Aをそれぞれ入れ1昼夜放置してこれを行つた。
The dehydration treatment was carried out at room temperature for di-n-butyl adipate and di-n-amyl phthalate, at 50 ° C for dibenzyl adipate in a thermostatic sieve.
3A was put in each and left for one day and night.

〔発明の効果〕 以上説明したように、本発明によるジカルボン酸化合
物を10-3〜10-1Mの濃度範囲で添加した、リチウム塩を
溶解した有機溶媒系電解液をリチウム電池に用いると充
放電容量が大きく、かつ、優れたサイクル寿命を示す高
エネルギー密度電池が可能となり、種々の分野で広く利
用できるという利点がある。
(Effects of the Invention) As described above, when the dicarboxylic acid compound according to the present invention is added in the concentration range of 10 -3 to 10 -1 M and the lithium salt-dissolved organic solvent-based electrolytic solution is used in a lithium battery, There is an advantage that a high energy density battery having a large discharge capacity and an excellent cycle life can be realized and can be widely used in various fields.

【図面の簡単な説明】[Brief description of drawings]

第1図は、1.5M LiAsF6−EC/2Me THF(1/1)中にトリデ
カン二酸を0.01M添加した電解液を用いる本発明の電池
で、15mAhリチウムを負極に用いた電池の1mA、2〜3.5V
の電圧範囲で充放電試験を行つた際のサイクル回数と放
電容量の関係を示したグラフ、第2図は、1.5 LiAsF6
EC/2Me THF(1/1)中にトリデカン二酸を0.01M添加した
電解液と添加しない電解液を用いた電池の放電電流3mA/
cm2、充電電流1mA/cm2、2V〜3.5Vの電圧規制で充放電試
験を行つた際のサイクル数に伴う放電容量の変化を示し
たグラフ、第3図は、同じ系の電池の放電電流がそれぞ
れ1mA/cm2、2mA/cm2、4mA/cm2、充電電流が1mA/cm2、2V
〜3.5Vの電圧規制で充放電試験を行つた際のサイクルに
伴う放電容量の変化を示したグラフである。
FIG. 1 shows a battery of the present invention using an electrolyte solution in which 0.01M tridecanedioic acid is added to 1.5M LiAsF 6 -EC / 2Me THF (1/1), which is 1mA of a battery using 15mAh lithium as a negative electrode. 2-3.5V
Fig. 2 is a graph showing the relationship between the number of cycles and the discharge capacity when conducting the charge / discharge test in the voltage range of 1.5 LiAsF 6 −.
Discharge current 3mA / of a battery using an electrolyte solution containing 0.01M tridecanedioic acid in EC / 2Me THF (1/1) and an electrolyte solution not containing it
A graph showing the change in discharge capacity with the number of cycles when conducting a charge / discharge test under voltage regulation of cm 2 , charging current 1mA / cm 2 , and 2V to 3.5V, Fig. 3 shows the discharge of the same system battery. Current is 1mA / cm 2 , 2mA / cm 2 , 4mA / cm 2 , charging current is 1mA / cm 2 , 2V
It is the graph which showed the change of the discharge capacity with the cycle at the time of carrying out a charging / discharging test by the voltage regulation of -3.5V.

フロントページの続き (72)発明者 ▲吉▼松 勇 茨城県那珂郡東海村大字白方字白根162 番地 日本電信電話株式会社茨城電気通 信研究所内 (72)発明者 鳶島 真一 茨城県那珂郡東海村大字白方字白根162 番地 日本電信電話株式会社茨城電気通 信研究所内 (72)発明者 荒川 正泰 茨城県那珂郡東海村大字白方字白根162 番地 日本電信電話株式会社茨城電気通 信研究所内 (56)参考文献 特開 昭63−969(JP,A) 特開 昭62−288815(JP,A) 特開 昭60−41774(JP,A) 特開 昭54−75533(JP,A)Continuation of the front page (72) Inventor ▲ Yoshi ▼ Matsu Isamu 162 Shirahane, Shirahoji, Tokai-mura, Naka-gun, Ibaraki Prefecture, Nippon Steel Telephone Corporation Ibaraki Dentsu Tsushin Laboratory (72) Inventor Shinichi Tobajima Naka-gun, Ibaraki Prefecture Tokaimura Shirahata 162 Shirane, Nippon Telegraph and Telephone Corporation Ibaraki Dentsu Communication Research Laboratories (72) Inventor Masayasu Arakawa Tokaimura Nakamura, Ibaraki 162 Shirahone Shirane Shiken, Nippon Telegraph and Telephone Corporation Ibaraki Dentsu Communication Research In-house (56) Reference JP 63-969 (JP, A) JP 62-288815 (JP, A) JP 60-41774 (JP, A) JP 54-75533 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウム塩を有機溶媒に溶解させたリチウ
ム電池用電解液において、ジカルボン酸化合物を添加剤
として10-3〜10-1M(mole/)の濃度範囲で含有してい
ることを特徴とするリチウム電池用電解液。
1. A lithium battery electrolyte in which a lithium salt is dissolved in an organic solvent, which contains a dicarboxylic acid compound as an additive in a concentration range of 10 -3 to 10 -1 M (mole /). A featured electrolyte for lithium batteries.
JP62185461A 1987-07-27 1987-07-27 Electrolyte for lithium battery Expired - Lifetime JP2548573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62185461A JP2548573B2 (en) 1987-07-27 1987-07-27 Electrolyte for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62185461A JP2548573B2 (en) 1987-07-27 1987-07-27 Electrolyte for lithium battery

Publications (2)

Publication Number Publication Date
JPS6430178A JPS6430178A (en) 1989-02-01
JP2548573B2 true JP2548573B2 (en) 1996-10-30

Family

ID=16171193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62185461A Expired - Lifetime JP2548573B2 (en) 1987-07-27 1987-07-27 Electrolyte for lithium battery

Country Status (1)

Country Link
JP (1) JP2548573B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232039A (en) * 2009-03-27 2010-10-14 Sanyo Electric Co Ltd Nonaqueous electrolyte primary battery

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3168962B2 (en) 1997-11-04 2001-05-21 日本電気株式会社 Battery
KR100875112B1 (en) * 2002-11-16 2008-12-22 삼성에스디아이 주식회사 Non-aqueous electrolyte and lithium battery employing the same
JP4586388B2 (en) * 2004-03-19 2010-11-24 三菱化学株式会社 Nonaqueous electrolyte, lithium ion secondary battery, and fluorine-containing ester compound
JP2009113174A (en) * 2007-11-08 2009-05-28 Honda R&D Sun Co Ltd Working turntable
FR2933240B1 (en) * 2008-06-25 2010-10-22 Commissariat Energie Atomique NON-AQUEOUS ELECTROLYTE FOR HIGH VOLTAGE LITHIUM ACCUMULATOR
JP2010170886A (en) * 2009-01-23 2010-08-05 Sony Corp Electrolyte and secondary battery
KR102457557B1 (en) 2014-09-30 2022-10-24 미쯔비시 케미컬 주식회사 Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery using same
JP2016183436A (en) * 2015-03-26 2016-10-20 ニッポン高度紙工業株式会社 Hydrophilic nonwoven fabric
JPWO2016208028A1 (en) * 2015-06-25 2018-04-12 ニッポン高度紙工業株式会社 Battery separator, secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232039A (en) * 2009-03-27 2010-10-14 Sanyo Electric Co Ltd Nonaqueous electrolyte primary battery

Also Published As

Publication number Publication date
JPS6430178A (en) 1989-02-01

Similar Documents

Publication Publication Date Title
CA2616327C (en) Plastic crystal electrolyte in lithium-based electrochemical devices
CN109088099B (en) Sulfonyl electrolyte additive giving consideration to high and low temperature performance and electrolyte containing additive
CN106784629A (en) A kind of lithium metal battery cathode interface method of modifying
CN102077405A (en) Non-aqueous electrolyte for a high-voltage lithium battery
CN102113161A (en) Nonaqueous electrolyte secondary battery
CN108886168A (en) Additive for non-aqueous electrolytic solution, the non-aqueous electrolytic solution for lithium secondary battery and the lithium secondary battery including the non-aqueous electrolytic solution
CN113644326B (en) Water-based zinc ion battery and formation method
JP2004281325A (en) Electrolyte for secondary battery and the secondary battery using the same
JP3199426B2 (en) Non-aqueous electrolyte secondary battery
JP2000138072A (en) Nonaqueous electrolyte secondary battery
JP2548573B2 (en) Electrolyte for lithium battery
CN105226269A (en) A kind of nickel ion doped manufacturing process
KR20180124722A (en) Electrolyte system and lithium metal battery comprising the same
JP2000251932A (en) Nonaqueous electrolyte battery
JP2000156224A (en) Nonaqueous electrolyte battery
CN114497739B (en) Lithium secondary battery electrolyte and application thereof
WO2019059698A2 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
CN115084656A (en) Ether electrolyte and application thereof in battery
CN114843627A (en) Dual-ion electrolyte and water system zinc-based dual-ion battery containing same
JP2548574B2 (en) Electrolyte for lithium battery
JPH07220756A (en) Nonaqueous electrolyte lithium secondary battery
JP2546680B2 (en) Electrolyte for lithium battery
JPH08162154A (en) Secondary battery having nonaqueous solvent electrolyt
CN116072973B (en) High-voltage potassium ion battery ether electrolyte and application thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term