JP2010232039A - Nonaqueous electrolyte primary battery - Google Patents

Nonaqueous electrolyte primary battery Download PDF

Info

Publication number
JP2010232039A
JP2010232039A JP2009078850A JP2009078850A JP2010232039A JP 2010232039 A JP2010232039 A JP 2010232039A JP 2009078850 A JP2009078850 A JP 2009078850A JP 2009078850 A JP2009078850 A JP 2009078850A JP 2010232039 A JP2010232039 A JP 2010232039A
Authority
JP
Japan
Prior art keywords
battery
nonaqueous electrolyte
primary battery
positive electrode
manganese dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009078850A
Other languages
Japanese (ja)
Inventor
Masanobu Takeuchi
正信 竹内
Atsushi Ogata
敦 尾形
Hiroyuki Fujimoto
洋行 藤本
Yoshinori Kida
佳典 喜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009078850A priority Critical patent/JP2010232039A/en
Publication of JP2010232039A publication Critical patent/JP2010232039A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress rising of internal resistance during storage while keeping excellent low temperature discharge characteristics in a nonaqueous electrolyte primary battery composed of a positive electrode using manganese dioxide as the main active material, a negative electrode comprising lithium or a lithium alloy, and an electrolyte. <P>SOLUTION: In the nonaqueous electrolyte primary battery containing a positive electrode 1 using manganese dioxide as the main active material, a negative electrode 2 containing metallic lithium or a lithium alloy, and a nonaqueous electrolyte containing a solvent and an electrolyte salt, divinyl sulfone and dimethyl phthalate are added to the nonaqueous electrolyte. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、正極活物質に二酸化マンガンを用いた非水電解質一次電池における電解液の改良に関するものである。   The present invention relates to an improvement of an electrolyte solution in a non-aqueous electrolyte primary battery using manganese dioxide as a positive electrode active material.

非水電解質一次電池は、電池容量が大きく、高率放電特性等に優れていることから、従来より、デジタルカメラ、メモリーバックアップ用電源、火災警報器用電源等に用いられているが、その用途の拡大とともに、10年保存等の過酷な条件化でも劣化が少ないものが求められるようになってきている。   Non-aqueous electrolyte primary batteries have been used for digital cameras, memory backup power supplies, fire alarm power supplies, etc., because of their large battery capacity and excellent high-rate discharge characteristics. Along with the expansion, there has been a demand for a product with little deterioration even under severe conditions such as storage for 10 years.

ここで、上記非水電解質一次電池の正極活物質としては、特に低温での放電特性の向上等を考慮して二酸化マンガンが主として用いられており、また、負極活物質としてはリチウム金属、リチウム合金等が用いられ、更に、電解液としては、プロピレンカーボネート等のカーボネート類と、1,2−ジメトキシエタン等の低沸点溶媒との混合溶媒に、LiClOまたはLiCFSO等の溶質を溶解したものが用いられている。 Here, manganese dioxide is mainly used as the positive electrode active material of the non-aqueous electrolyte primary battery, particularly in consideration of improvement of discharge characteristics at a low temperature, and as the negative electrode active material, lithium metal or lithium alloy is used. Further, as an electrolyte, a solute such as LiClO 4 or LiCF 3 SO 3 was dissolved in a mixed solvent of carbonates such as propylene carbonate and a low boiling point solvent such as 1,2-dimethoxyethane. Things are used.

しかしながら、正極活物質として二酸化マンガンを用いた非水電解質一次電池では、長期保存により、二酸化マンガンがマンガンイオンとして電解液中に溶出し、この溶出したマンガンイオンは負極材料であるリチウム金属上に析出するため、保存後の内部抵抗が上昇し放電できなくなるという問題があった。この問題は、特に、放電途中で40℃〜80℃の環境下に晒された場合には特に顕著に現れる。   However, in non-aqueous electrolyte primary batteries using manganese dioxide as the positive electrode active material, manganese dioxide elutes into the electrolyte as manganese ions due to long-term storage, and the eluted manganese ions are deposited on the lithium metal that is the negative electrode material. For this reason, there is a problem that the internal resistance after storage rises and discharge becomes impossible. This problem is particularly prominent when exposed to an environment of 40 ° C. to 80 ° C. during discharge.

このようなことを考慮して、スルホン基を有する化合物を含む非水電解液を用いるリチウム電池が提案されている。そして、このような非水電解液を用いれば、スルホン基を有する化合物の分解によって生成された被膜成分が、保存時にも安定にリチウムおよび正極上に存在するため、長期保存特性を向上できる旨記載されている(下記特許文献1参照)。   In view of the above, a lithium battery using a non-aqueous electrolyte containing a compound having a sulfone group has been proposed. And, when such a non-aqueous electrolyte is used, the coating component produced by the decomposition of the compound having a sulfone group is stably present on lithium and the positive electrode even during storage, so that long-term storage characteristics can be improved. (See Patent Document 1 below).

また、芳香族ジカルボン酸エステルを含む非水電解液を用いるリチウム電池が提案されている。そして、このような非水電解液を用いれば、放電された二酸化マンガン上での低沸点溶媒の分解生成物の発生が抑制され、室温長期保存時における内部抵抗上昇が抑制できる旨記載されている(下記特許文献2参照)。   Moreover, a lithium battery using a nonaqueous electrolytic solution containing an aromatic dicarboxylic acid ester has been proposed. Further, it is described that the use of such a non-aqueous electrolyte suppresses the generation of decomposition products of low boiling point solvents on discharged manganese dioxide, and suppresses the increase in internal resistance during long-term storage at room temperature. (See Patent Document 2 below).

特開2008−300313号公報JP 2008-300313 A 特開平7−22069号公報JP-A-7-22069

しかしながら、スルホン基を有する化合物のみを含む非水電解液や、芳香族ジカルボン酸エステルのみを含む非水電解液を用いた電池では、十分な内部抵抗上昇抑制効果が得られないという課題がある。   However, a battery using a non-aqueous electrolyte containing only a compound having a sulfone group or a non-aqueous electrolyte containing only an aromatic dicarboxylic acid ester has a problem that a sufficient internal resistance increase suppressing effect cannot be obtained.

本発明は上記課題を鑑み、二酸化マンガンを主活物質とする正極と、リチウム又はリチウム合金からなる負極、および非水電解液から構成される非水電解質一次電池において、優れた低温放電特性を維持したまま、保存時における内部抵抗の上昇を抑制することを目的としている。   In view of the above problems, the present invention maintains excellent low-temperature discharge characteristics in a non-aqueous electrolyte primary battery composed of a positive electrode mainly composed of manganese dioxide, a negative electrode made of lithium or a lithium alloy, and a non-aqueous electrolyte. The purpose is to suppress an increase in internal resistance during storage.

二酸化マンガンを正極活物質として用いた電池では、保存中に二酸化マンガンが電解液中に溶解し、溶解したマンガンがリチウム負極上に析出する。このため、電池の内部抵抗が上昇して、電池特性が低下する。そこで、本発明者らは、保存時の内部抵抗の上昇を抑制する手段について種々検討した結果、ビニルスルホンと芳香族ジカルボン酸エステルとを含む非水電解液を用いることで、内部抵抗の上昇が大幅に抑制されることを見出した。   In a battery using manganese dioxide as a positive electrode active material, manganese dioxide is dissolved in the electrolyte during storage, and the dissolved manganese is deposited on the lithium negative electrode. For this reason, the internal resistance of the battery increases, and the battery characteristics deteriorate. Therefore, as a result of various studies on means for suppressing an increase in internal resistance during storage, the present inventors have found that the increase in internal resistance can be achieved by using a non-aqueous electrolyte containing vinyl sulfone and aromatic dicarboxylic acid ester. It was found that it was greatly suppressed.

したがって、本発明は、二酸化マンガンを主活物質とする正極と、金属リチウム又はリチウム合金を含む負極と、溶媒及び電解質塩を含む非水電解液と、を備えた非水電解質一次電池において、上記非水電解液には、ビニルスルホンと芳香族ジカルボン酸エステルとが添加されていることを特徴とする。
ビニルスルホンのみが添加された非水電解液や、芳香族ジカルボン酸エステルのみが添加された非水電解液を用いた非水電解質一次電池では、内部抵抗の上昇を十分抑制することができないのに対して、ビニルスルホンと芳香族ジカルボン酸エステルとが添加された非水電解液を用いた非水電解質一次電池では、特異的に、内部抵抗の上昇を十分抑制することができる。これは、以下に示す理由によるものと考えられる。
Therefore, the present invention provides a nonaqueous electrolyte primary battery comprising a positive electrode mainly composed of manganese dioxide, a negative electrode including metallic lithium or a lithium alloy, and a nonaqueous electrolytic solution including a solvent and an electrolyte salt. Vinylsulfone and aromatic dicarboxylic acid ester are added to the non-aqueous electrolyte.
In non-aqueous electrolyte primary batteries using non-aqueous electrolytes containing only vinyl sulfone or non-aqueous electrolytes containing only aromatic dicarboxylic acid esters, the increase in internal resistance cannot be sufficiently suppressed. On the other hand, in the nonaqueous electrolyte primary battery using the nonaqueous electrolyte solution to which vinyl sulfone and aromatic dicarboxylic acid ester are added, the increase in internal resistance can be sufficiently suppressed specifically. This is considered to be due to the following reasons.

ビニルスルホンが添加された非水電解液を用いた場合には、リチウム又はリチウム合金から成る負極の還元作用により、ビニルスルホンのビニル基が開裂した後に分解生成物が正極上で酸化分解するために、分解生成物が正極表面に被膜を形成するものと考えられるが、当該被膜を形成する効果は、分解生成物が有するスルホニル基の極性による作用であると推測される。したがって、ビニル基とスルホニル基の両方を有するビニルスルホンを非水電解液に添加する必要がある。但し、電池の保存時には、正極で溶出したマンガンが負極上で還元され析出し、その際に電解液の分解を伴うが、ビニルスルホンのみを添加した電解液では、負極上に十分な被膜形成がなされていないので、電解液の分解を抑制することができない。   In the case of using a non-aqueous electrolyte to which vinyl sulfone is added, the decomposition product is oxidized and decomposed on the positive electrode after the vinyl group of vinyl sulfone is cleaved by the reducing action of the negative electrode made of lithium or lithium alloy. The decomposition product is considered to form a film on the surface of the positive electrode, and the effect of forming the film is presumed to be an action due to the polarity of the sulfonyl group of the decomposition product. Therefore, it is necessary to add vinyl sulfone having both a vinyl group and a sulfonyl group to the non-aqueous electrolyte. However, when the battery is stored, manganese eluted at the positive electrode is reduced and deposited on the negative electrode, which is accompanied by decomposition of the electrolytic solution. However, in the electrolytic solution to which only vinyl sulfone is added, sufficient film formation is formed on the negative electrode. Since it is not made, decomposition | disassembly of electrolyte solution cannot be suppressed.

一方、芳香族ジカルボン酸エステルが添加された非水電解液を用いた場合には、カルボニル基が負極と反応し、負極上にリチウム伝導性の被膜が形成される。この際、2個のカルボン酸エステル分解物と芳香環とを有する被膜が負極上に生成すると考えられるが、これは非常に立体障害性の高い被膜であり、マンガンが負極上で還元され析出する際の電解液の分解を抑制しているものと考えられる。但し、正極側ではエーテル系の溶媒の酸化分解が保存中に生じると考えられるが、芳香族ジカルボン酸エステルのみを添加した電解液では、正極上に十分な被膜形成がなされていないので、上記酸化分解を抑制することはできない。   On the other hand, when a nonaqueous electrolytic solution to which an aromatic dicarboxylic acid ester is added is used, the carbonyl group reacts with the negative electrode, and a lithium conductive film is formed on the negative electrode. At this time, it is thought that a film having two carboxylic acid ester decomposition products and an aromatic ring is formed on the negative electrode, but this is a film having a very high steric hindrance, and manganese is reduced and deposited on the negative electrode. It is thought that the decomposition of the electrolytic solution at the time is suppressed. However, on the positive electrode side, it is considered that oxidative decomposition of the ether solvent occurs during storage. However, in the electrolytic solution to which only the aromatic dicarboxylic acid ester is added, a sufficient film is not formed on the positive electrode. Degradation cannot be suppressed.

これらに対して、ビニルスルホンと芳香族ジカルボン酸エステルとが添加された非水電解液を用いた場合には、正負極それぞれに被膜を形成することができるので、マンガンが負極上で還元される際の電解液の分解や、保存中に生じる正極側でのエーテル系溶媒の酸化分解が抑制される。したがって、電池保存時に、電池の内部抵抗が上昇するのを飛躍的に抑制するという効果が得られる。
尚、負極には金属リチウム又はリチウム合金が含まれていれば良いが、この場合、アルミニウムを含むリチウム合金が含まれているのが特に好ましい。金属リチウムは反応性が極めて高いが、アルミニウムを含むリチウム合金は金属リチウムに比べて反応性が低いからである。
また、二酸化マンガンを主活物質とする正極とは、正極における活物質の総量に対する二酸化マンガンの割合が50質量%以上の場合をいう。
On the other hand, when a nonaqueous electrolytic solution to which vinyl sulfone and aromatic dicarboxylic acid ester are added is used, a film can be formed on each of the positive and negative electrodes, so that manganese is reduced on the negative electrode. The decomposition of the electrolytic solution at the time and the oxidative decomposition of the ether solvent on the positive electrode side during storage are suppressed. Therefore, the effect of drastically suppressing the increase in the internal resistance of the battery during battery storage can be obtained.
The negative electrode only needs to contain metallic lithium or a lithium alloy. In this case, it is particularly preferable that a lithium alloy containing aluminum is included. This is because metallic lithium is extremely reactive, but a lithium alloy containing aluminum is less reactive than metallic lithium.
Moreover, the positive electrode which uses manganese dioxide as a main active material means the case where the ratio of manganese dioxide with respect to the total amount of the active material in a positive electrode is 50 mass% or more.

上記ビニルスルホンがジビニルスルホンであることが望ましい。
2個のビニル基を有し、直鎖の短いジビニルスルホンを用いることにより、一層緻密な被膜を正極表面に形成することができるからである。但し、ジビニルスルホンに限定するものではなく、ビニルスルホン酸等であっても良い。
The vinyl sulfone is desirably divinyl sulfone.
This is because a denser film can be formed on the surface of the positive electrode by using a short divinyl sulfone having two vinyl groups and a straight chain. However, it is not limited to divinyl sulfone, and may be vinyl sulfonic acid or the like.

上記芳香族ジカルボン酸エステルが、フタル酸ジメチル又はフタル酸ジエチルであることが望ましく、特に、フタル酸ジメチルであることが望ましい。
より直鎖の短いカルボン酸エステルをオルト位に有することによって、高い立体障害を有する緻密な被膜を形成できるからである。但し、フタル酸ジメチル等に限定するものではなく、フタル酸ジブチル等であっても良い。
The aromatic dicarboxylic acid ester is preferably dimethyl phthalate or diethyl phthalate, and particularly preferably dimethyl phthalate.
This is because a dense film having a high steric hindrance can be formed by having a shorter linear carboxylic acid ester in the ortho position. However, it is not limited to dimethyl phthalate or the like, and may be dibutyl phthalate or the like.

上記溶媒に対する上記ジビニルスルホンの添加量が、0.01体積%以上1.00体積%未満に規制されることが望ましく、また、上記溶媒に対する上記フタル酸ジメチル又は上記フタル酸ジエチルの添加量が、0.01体積%以上1.00体積%未満に規制されることが望ましい。
フタル酸ジメチル、フタル酸ジエチル、又は、ジビニルスルホンの添加量が0.01体積%未満であると、その十分な添加効果が得られない一方、添加量が1.00体積%以上になると、生成する被膜が厚<なり過ぎて、放電時(特に、−20℃等の低温下の放電時)に著しく電圧降下が生じて、放電容量が減少するからである。
It is desirable that the amount of divinyl sulfone added to the solvent is regulated to 0.01% by volume or more and less than 1.00% by volume, and the amount of the dimethyl phthalate or diethyl phthalate added to the solvent is It is desirable to be restricted to 0.01 volume% or more and less than 1.00 volume%.
When the addition amount of dimethyl phthalate, diethyl phthalate, or divinyl sulfone is less than 0.01% by volume, the sufficient addition effect cannot be obtained. On the other hand, when the addition amount is 1.00% by volume or more, it is generated. This is because the film to be formed becomes too thick, and a voltage drop occurs significantly during discharge (especially during discharge at a low temperature such as −20 ° C.), thereby reducing the discharge capacity.

上記二酸化マンガンには酸化ホウ素が含まれており、且つ、この酸化ホウ素と上記二酸化マンガンとの総量に対する酸化ホウ素の割合が、0.1質量%以上1.0質量%以下に規制されることが望ましい。
二酸化マンガンに酸化ホウ素が含まれていれば、マンガンイオンの溶出を更に抑制できるからである。また、酸化ホウ素の割合を上記のように規制するのは、酸化ホウ素の割合が0.1質量%未満であると、その十分な添加効果が得られない一方、添加量が1.0質量%を超えると、生成する被膜が厚<なり過ぎて、放電容量が減少するからである。
The manganese dioxide contains boron oxide, and the ratio of boron oxide to the total amount of the boron oxide and the manganese dioxide is regulated to be 0.1% by mass or more and 1.0% by mass or less. desirable.
This is because if manganese oxide contains boron oxide, elution of manganese ions can be further suppressed. Moreover, the ratio of boron oxide is regulated as described above. If the ratio of boron oxide is less than 0.1% by mass, the sufficient addition effect cannot be obtained, while the addition amount is 1.0% by mass. This is because if the thickness exceeds the range, the resulting coating becomes too thick and the discharge capacity decreases.

尚、上記の如く、二酸化マンガンに酸化ホウ素が含まれている場合には、上記非水電解液にはビニルピリジンが添加されていることが望ましい。
理由は定かではないが、上記非水電解液にビニルピリジンが添加されていれば、酸化ホウ素を核としてより緻密な被膜が正極表面に生成し、上述した作用効果が一層発揮されるからである。
As described above, when manganese dioxide contains boron oxide, vinyl pyridine is preferably added to the non-aqueous electrolyte.
The reason is not clear, but if vinylpyridine is added to the non-aqueous electrolyte, a denser film is formed on the surface of the positive electrode with boron oxide as a nucleus, and the above-described effects are further exhibited. .

本発明によれば、二酸化マンガンを主活物質とする正極と、リチウム又はリチウム合金からなる負極、および非水電解液から構成される非水電解質一次電池において、優れた低温放電特性を維持したまま、保存時における内部抵抗の上昇を抑制することができるといった優れた効果を奏する。   According to the present invention, in a non-aqueous electrolyte primary battery composed of a positive electrode mainly composed of manganese dioxide, a negative electrode made of lithium or a lithium alloy, and a non-aqueous electrolyte, excellent low-temperature discharge characteristics are maintained. In addition, an excellent effect is obtained in that an increase in internal resistance during storage can be suppressed.

本発明を実施するための形態に係る非水電解質一次電池の断面図である。It is sectional drawing of the nonaqueous electrolyte primary battery which concerns on the form for implementing this invention.

以下、この発明に係る非水電解質一次電池を、図1に基づいて説明する。なお、この発明における非水電解質一次電池は、下記の形態に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, a nonaqueous electrolyte primary battery according to the present invention will be described with reference to FIG. In addition, the nonaqueous electrolyte primary battery in this invention is not limited to what was shown to the following form, In the range which does not change the summary, it can change suitably and can implement.

〔正極の作製〕
先ず、酸化ホウ素(B)と二酸化マンガンとの総量に対するホウ素量が0.5質量%となるように酸化ホウ素が添加された二酸化マンガンを、空気中にて375℃で20時間熱処理(焼成)し、粉砕することにより、正極活物質としてのホウ素含有二酸化マンガンを得た。
次に、上記ホウ素含有二酸化マンガンの粉末と、導電剤としてのカーボンブラックの粉末と、結着剤としてのフッ素樹脂の粉末とを、質量比85:10:5の割合で混合して正極合剤を得た後、この正極合剤をSUSメッシュに圧着し、更に、真空中にて250℃で2時間乾燥することにより正極を作製した。
[Production of positive electrode]
First, manganese dioxide to which boron oxide is added so that the amount of boron with respect to the total amount of boron oxide (B 2 O 3 ) and manganese dioxide is 0.5 mass% is heat-treated in air at 375 ° C. for 20 hours ( By firing) and pulverizing, boron-containing manganese dioxide as a positive electrode active material was obtained.
Next, the boron-containing manganese dioxide powder, the carbon black powder as the conductive agent, and the fluororesin powder as the binder are mixed at a mass ratio of 85: 10: 5 to mix the positive electrode mixture. After that, this positive electrode mixture was pressure-bonded to a SUS mesh, and further dried in vacuum at 250 ° C. for 2 hours to produce a positive electrode.

〔負極の作製〕
アルミニウムを0.5質量%添加したリチウム(Li−Al)合金を、シート状に加工し、負極を作製した。
(Production of negative electrode)
A lithium (Li—Al) alloy to which 0.5% by mass of aluminum was added was processed into a sheet shape to produce a negative electrode.

〔非水電解液の調製〕
エチレンカーボネート(EC)と、ブチレンカーボネート(BC)と、1,2−ジメトキシエタン(DME)とを、体積比で15:15:70の割合で混合した混合溶媒に、支持電解質塩としてのトリフルオロメタンスルホン酸リチウム(LiCFSO)を0.6モル/リットル溶かし、更に、添加剤としてジビニルスルホンとフタル酸ジメチルとを、上記混合溶媒に対して、それぞれ0.1体積%、0.08体積%添加することにより非水電解液を調製した。
(Preparation of non-aqueous electrolyte)
Trifluoromethane as a supporting electrolyte salt in a mixed solvent in which ethylene carbonate (EC), butylene carbonate (BC), and 1,2-dimethoxyethane (DME) are mixed at a volume ratio of 15:15:70. 0.6 mol / liter of lithium sulfonate (LiCF 3 SO 3 ) was dissolved, and divinyl sulfone and dimethyl phthalate were further added as additives to the above mixed solvent in an amount of 0.1% by volume and 0.08%, respectively. % Non-aqueous electrolyte was prepared.

〔電池の組立〕
先ず、上記正極1と負極2との間に、ポリエチレン製の微多孔膜からなるセパレータ3を配置した後、これを渦巻状に巻回して巻取電極体5を作製し、図1に示すように、この巻取電極体5を、上部に開ロ部を有する有底円筒状の負極缶4の収納空間内に配置した。次いで、負極集電タブ6を負極缶4の缶底に、正極集電タブ7を正極端子10にそれぞれ溶接した。これにより、電池内部に生じた化学エネルギーを正極端子10及び負極缶4の両端子から電気エネルギーとして外部へ取り出し得るようになっている。この後、負極缶4内に電解液を注入し、封口部をかしめて、直径17.0mm、高さ45.0mmの円筒形の非水電解質一次電池(定格放電容量:2500mAh)を作製した。なお、図1において、9は巻取電極体5の下面を覆う絶縁板であり、8は正極端子10と負極缶4との間に介装されて正極端子10と負極缶4とを絶縁する絶縁パッキング、11はPTC素子である。
[Battery assembly]
First, a separator 3 made of a polyethylene microporous film is disposed between the positive electrode 1 and the negative electrode 2, and then wound into a spiral shape to produce a wound electrode body 5, as shown in FIG. In addition, the wound electrode body 5 was disposed in a storage space of a bottomed cylindrical negative electrode can 4 having an open portion at the top. Next, the negative electrode current collecting tab 6 was welded to the bottom of the negative electrode can 4, and the positive electrode current collecting tab 7 was welded to the positive electrode terminal 10. Thereby, chemical energy generated inside the battery can be taken out from both terminals of the positive electrode terminal 10 and the negative electrode can 4 as electric energy. Thereafter, an electrolytic solution was injected into the negative electrode can 4 and the sealing portion was caulked to produce a cylindrical nonaqueous electrolyte primary battery (rated discharge capacity: 2500 mAh) having a diameter of 17.0 mm and a height of 45.0 mm. In FIG. 1, 9 is an insulating plate covering the lower surface of the winding electrode body 5, and 8 is interposed between the positive electrode terminal 10 and the negative electrode can 4 to insulate the positive electrode terminal 10 from the negative electrode can 4. Insulation packing 11 is a PTC element.

(実施例1)
上記発明を実施するための形態と同様にして電池を作製した。
このようにして作製した電池を、以下、本発明電池A1と称する。
Example 1
A battery was produced in the same manner as in the embodiment for carrying out the invention.
The battery thus produced is hereinafter referred to as the present invention battery A1.

(実施例2)
非水電解液の添加剤として、ジビニルスルホンとフタル酸ジメチルとを、混合溶媒に対して、それぞれ、0.1体積%、0.04体積%添加したこと以外は、実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、本発明電池A2と称する。
(Example 2)
Except that divinyl sulfone and dimethyl phthalate were added in an amount of 0.1% by volume and 0.04% by volume, respectively, as additives for the non-aqueous electrolyte, based on the mixed solvent. A battery was produced.
The battery thus produced is hereinafter referred to as the present invention battery A2.

(比較例1)
非水電解液にジビニルスルホンとフタル酸ジメチルとを添加しないこと以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池X1と称する。
(Comparative Example 1)
A battery was fabricated in the same manner as in Example 1 except that divinyl sulfone and dimethyl phthalate were not added to the non-aqueous electrolyte.
The battery thus produced is hereinafter referred to as comparative battery X1.

(比較例2)
非水電解液の添加剤として、ジビニルスルホンを混合溶媒に対して0.1体積%添加した(フタル酸ジメチルは添加しない)こと以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池X2と称する。
(Comparative Example 2)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by volume of divinyl sulfone was added to the mixed solvent as an additive for the nonaqueous electrolytic solution (dimethyl phthalate was not added).
The battery thus produced is hereinafter referred to as comparative battery X2.

(比較例3)
非水電解液の添加剤として、フタル酸ジメチルを混合溶媒に対して0.08体積%添加した(ジビニルスルホンは添加しない)こと以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池X3と称する。
(Comparative Example 3)
A battery was fabricated in the same manner as in Example 1 except that 0.08% by volume of dimethyl phthalate was added as a non-aqueous electrolyte additive to the mixed solvent (no divinyl sulfone was added).
The battery thus produced is hereinafter referred to as comparative battery X3.

(比較例4)
非水電解液の添加剤として、フタル酸ジメチルを混合溶媒に対して0.04体積%添加した(ジビニルスルホンは添加しない)こと以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池X4と称する。
(Comparative Example 4)
A battery was fabricated in the same manner as in Example 1 except that 0.04% by volume of dimethyl phthalate was added to the mixed solvent as an additive for the non-aqueous electrolyte (no divinyl sulfone was added).
The battery thus produced is hereinafter referred to as comparative battery X4.

(比較例5)
非水電解液の添加剤として、イソプロピルメチルスルホンを混合溶媒に対して0.1体積%添加した(フタル酸ジメチルとジビニルスルホンとは添加しない)こと以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池X5と称する。
(Comparative Example 5)
A battery was prepared in the same manner as in Example 1 except that 0.1% by volume of isopropyl methyl sulfone was added to the mixed solvent as an additive for the nonaqueous electrolytic solution (dimethyl phthalate and divinyl sulfone were not added). Was made.
The battery thus produced is hereinafter referred to as comparative battery X5.

(実験)
本発明電池A1、A2と比較電池X1〜X5との内部抵抗上昇量を、下記の方法で調べたので、その結果を表1に示す。実験は、作製直後の各電池について、交流四端子法で1kHzでのインピーダンスを測定し、これを保存前内部抵抗とした。次に、深い放電深度ではマンガンの溶出がより顕著にあらわれることを考慮して、3mAにて667時間定電流放電を行い、その後、80℃環境下で20日間保存を行った。次いで、保存前内部抵抗と同様の方法でインピーダンスを測定し、これを保存後内部抵抗とした。そして、下記(1)式により、内部抵抗上昇量を算出した。
内部抵抗上昇量(mΩ)=保存後内部抵抗−保存前内部抵抗・・・(1)
(Experiment)
The amount of increase in internal resistance of the present invention batteries A1 and A2 and the comparative batteries X1 to X5 was examined by the following method, and the results are shown in Table 1. In the experiment, for each battery immediately after fabrication, the impedance at 1 kHz was measured by the AC four-terminal method, and this was used as the internal resistance before storage. Next, considering that the elution of manganese appears more remarkably at a deep discharge depth, constant current discharge was performed at 3 mA for 667 hours, and then stored for 20 days in an 80 ° C. environment. Next, impedance was measured in the same manner as the internal resistance before storage, and this was used as the internal resistance after storage. And the internal resistance raise amount was computed by the following (1) formula.
Internal resistance increase (mΩ) = Internal resistance after storage-Internal resistance before storage (1)

また、作製直後の本発明電池A1、A2と比較電池X1〜X5とを、−20℃の条件下、電流値500mAで2Vまで放電し、その際の放電容量を測定したので、その結果を表1に併せて示す。   In addition, the inventive batteries A1 and A2 and the comparative batteries X1 to X5 immediately after production were discharged to 2 V at a current value of 500 mA under the condition of −20 ° C., and the discharge capacity at that time was measured. Also shown in FIG.

Figure 2010232039
Figure 2010232039

上記表1から明らかなように、非水電解液中にジビニルスルホンとフタル酸ジメチルとを共に含まない比較電池X1の内部抵抗上昇量は99.6mΩであり、この比較電池X1を基準として以下に実験結果を詳述する。   As apparent from Table 1 above, the increase in internal resistance of the comparative battery X1 that does not contain both divinylsulfone and dimethyl phthalate in the non-aqueous electrolyte is 99.6 mΩ, and the following is based on this comparative battery X1. The experimental results will be described in detail.

ジビニルスルホンのみを0.1体積%含む比較電池X2では内部抵抗上昇量は81.8mΩであり、比較電池X1に比べて17.8mΩの改善が見られ、更に、フタル酸ジメチルのみを0.08体積%含む比較電池X3では内部抵抗上昇量は48.8mΩであり、比較電池X1に比べて50.8mΩの改善が見られた。   In Comparative Battery X2 containing only 0.1% by volume of divinylsulfone, the increase in internal resistance was 81.8 mΩ, an improvement of 17.8 mΩ compared to Comparative Battery X1, and further, only dimethyl phthalate was added to 0.08. In the comparative battery X3 containing volume%, the increase in internal resistance was 48.8 mΩ, which was an improvement of 50.8 mΩ compared to the comparative battery X1.

これに対して、ジビニルスルホンを0.1体積%、フタル酸ジメチルを0.08体積%含む本発明電池A1では内部抵抗上昇量は8.4mΩであり、比較電池X1に比べて91.2mΩの改善が見られた。これは、ジビニルスルホン、フタル酸ジメチルのいずれか一方が添加された電池から予想される結果よりも特異的に大幅に改善しており、単純に、ジビニルスルホンの添加効果と、フタル酸ジメチルの添加効果とを足し合わせたものでない。
具体的に述べると、比較電池X1に対する比較電池X2、比較電池X3の改善効果は、各々17.8mΩ、50.8mΩなので、通常、比較電池X1に対する本発明電池A1の改善効果は(17.8mΩ+50.8mΩ=68.6mΩ)程度であると予想される。しかしながら、実際には、比較電池X1に対する本発明電池A1の改善効果は91.2mΩであり、予想を遥かに超える改善効果が見られるということから明らかである。
In contrast, in the battery A1 of the present invention containing 0.1% by volume of divinylsulfone and 0.08% by volume of dimethyl phthalate, the increase in internal resistance is 8.4 mΩ, which is 91.2 mΩ compared to the comparative battery X1. An improvement was seen. This is a significant improvement over the results expected from batteries with either divinyl sulfone or dimethyl phthalate added. Simply, the addition effect of divinyl sulfone and the addition of dimethyl phthalate It is not a sum of effects.
Specifically, the improvement effect of the comparison battery X2 and the comparison battery X3 with respect to the comparison battery X1 is 17.8 mΩ and 50.8 mΩ, respectively. Therefore, the improvement effect of the battery A1 of the present invention with respect to the comparison battery X1 is usually (17.8 mΩ + 50). .8 mΩ = 68.6 mΩ). However, in practice, the improvement effect of the battery A1 of the present invention with respect to the comparative battery X1 is 91.2 mΩ, which is clear from the fact that the improvement effect far beyond expectations is seen.

また、本発明電池A2においても同様の改善が見られた。このことは、上記と同様にして、本発明電池A2と、比較電池X2、比較電池X4とを比較すれば明らかである。
したがって、内部抵抗の上昇を確実に低下させるには、非水電解液にビニルスルホンと芳香族ジカルボン酸エステルとを添加する必要となることがわかる。
The same improvement was also observed in the present invention battery A2. This is apparent when the battery A2 of the present invention is compared with the comparative battery X2 and the comparative battery X4 in the same manner as described above.
Therefore, it can be seen that vinylsulfone and aromatic dicarboxylic acid ester need to be added to the non-aqueous electrolyte in order to reliably reduce the increase in internal resistance.

尚、ビニル基を含まないスルホン化合物であるイソプロピルメチルスルホンを含む比較電池X5では保存特性改善効果は一切見られなかった。このことから、正極に被膜形成を行うためには、ビニル基の存在が重要であることがわかる。
また、放電容量については、ジビニルスルホン、フタル酸ジメチルのいずれか一方が添加された比較電池X2〜X4では66.1〜79.8mAhであるのに対して、本発明電池A1、A2では66.9mAh、69.8mAhであり、両者に殆ど差異はないものと考えられる。
In Comparative Battery X5 containing isopropyl methyl sulfone, which is a sulfone compound containing no vinyl group, no effect of improving storage characteristics was observed. From this, it can be seen that the presence of a vinyl group is important for forming a film on the positive electrode.
The discharge capacity of the comparative batteries X2 to X4 to which either one of divinyl sulfone or dimethyl phthalate was added was 66.1 to 79.8 mAh, while that of the batteries A1 and A2 of the present invention was 66. 9 mAh and 69.8 mAh, and it is considered that there is almost no difference between the two.

本発明は、例えばデジタルカメラ、メモリーバックアップ用電源、火災警報器用電源等に適用することができる。   The present invention can be applied to, for example, a digital camera, a memory backup power source, a fire alarm power source, and the like.

1:正極
2:負極
3:セパレータ
4:負極缶
5:巻取電極体
10:正極端子
1: Positive electrode 2: Negative electrode 3: Separator 4: Negative electrode can 5: Winding electrode body 10: Positive electrode terminal

Claims (6)

二酸化マンガンを主活物質とする正極と、金属リチウム又はリチウム合金を含む負極と、溶媒及び電解質塩を含む非水電解液と、を備えた非水電解質一次電池において、
上記非水電解液には、ビニルスルホンと芳香族ジカルボン酸エステルとが添加されていることを特徴とする非水電解質一次電池。
In a non-aqueous electrolyte primary battery comprising a positive electrode comprising manganese dioxide as a main active material, a negative electrode containing lithium metal or a lithium alloy, and a non-aqueous electrolyte solution containing a solvent and an electrolyte salt,
A nonaqueous electrolyte primary battery comprising vinylsulfone and an aromatic dicarboxylic acid ester added to the nonaqueous electrolyte solution.
上記ビニルスルホンがジビニルスルホンである、請求1に記載の非水電解質一次電池。   The non-aqueous electrolyte primary battery according to claim 1, wherein the vinyl sulfone is divinyl sulfone. 上記芳香族ジカルボン酸エステルが、フタル酸ジメチル又はフタル酸ジエチルである、請求項1又は2に記載の非水電解質一次電池。   The nonaqueous electrolyte primary battery according to claim 1 or 2, wherein the aromatic dicarboxylic acid ester is dimethyl phthalate or diethyl phthalate. 上記溶媒に対する上記ジビニルスルホンの添加量が、0.01体積%以上1.00体積%未満に規制される、請求項2又は3に記載の非水電解質一次電池。   4. The nonaqueous electrolyte primary battery according to claim 2, wherein an amount of the divinyl sulfone added to the solvent is regulated to 0.01 volume% or more and less than 1.00 volume%. 上記溶媒に対する上記フタル酸ジメチル又は上記フタル酸ジエチルの添加量が、0.01体積%以上1.00体積%未満に規制される、請求項3又は4に記載の非水電解質一次電池。   The nonaqueous electrolyte primary battery according to claim 3 or 4, wherein an addition amount of the dimethyl phthalate or the diethyl phthalate to the solvent is regulated to 0.01 volume% or more and less than 1.00 volume%. 上記二酸化マンガンには酸化ホウ素が含まれており、且つ、この酸化ホウ素と上記二酸化マンガンとの総量に対する酸化ホウ素の割合が、0.1質量%以上1.0質量%以下に規制される、請求項1〜5の何れか1項に記載の非水電解質一次電池。   The manganese dioxide contains boron oxide, and the ratio of boron oxide to the total amount of the boron oxide and the manganese dioxide is regulated to 0.1% by mass or more and 1.0% by mass or less. Item 6. The nonaqueous electrolyte primary battery according to any one of Items 1 to 5.
JP2009078850A 2009-03-27 2009-03-27 Nonaqueous electrolyte primary battery Pending JP2010232039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009078850A JP2010232039A (en) 2009-03-27 2009-03-27 Nonaqueous electrolyte primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009078850A JP2010232039A (en) 2009-03-27 2009-03-27 Nonaqueous electrolyte primary battery

Publications (1)

Publication Number Publication Date
JP2010232039A true JP2010232039A (en) 2010-10-14

Family

ID=43047677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009078850A Pending JP2010232039A (en) 2009-03-27 2009-03-27 Nonaqueous electrolyte primary battery

Country Status (1)

Country Link
JP (1) JP2010232039A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043271A1 (en) * 2022-08-24 2024-02-29 パナソニックIpマネジメント株式会社 Lithium primary battery
WO2024043272A1 (en) * 2022-08-24 2024-02-29 パナソニックIpマネジメント株式会社 Lithium primary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722069A (en) * 1993-07-05 1995-01-24 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2548573B2 (en) * 1987-07-27 1996-10-30 日本電信電話株式会社 Electrolyte for lithium battery
JPH11339794A (en) * 1998-05-29 1999-12-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2006286500A (en) * 2005-04-04 2006-10-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2007134270A (en) * 2005-11-14 2007-05-31 Sanyo Electric Co Ltd Lithium primary cell
JP2008300313A (en) * 2007-06-04 2008-12-11 Sony Corp Nonaqueous electrolyte and nonaqueous electrolyte battery using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2548573B2 (en) * 1987-07-27 1996-10-30 日本電信電話株式会社 Electrolyte for lithium battery
JPH0722069A (en) * 1993-07-05 1995-01-24 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH11339794A (en) * 1998-05-29 1999-12-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2006286500A (en) * 2005-04-04 2006-10-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2007134270A (en) * 2005-11-14 2007-05-31 Sanyo Electric Co Ltd Lithium primary cell
JP2008300313A (en) * 2007-06-04 2008-12-11 Sony Corp Nonaqueous electrolyte and nonaqueous electrolyte battery using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043271A1 (en) * 2022-08-24 2024-02-29 パナソニックIpマネジメント株式会社 Lithium primary battery
WO2024043272A1 (en) * 2022-08-24 2024-02-29 パナソニックIpマネジメント株式会社 Lithium primary battery

Similar Documents

Publication Publication Date Title
JP4579165B2 (en) Organic electrolyte and lithium battery using the same
EP2367230B1 (en) Electrolyte solution for rechargeable lithium battery, and rechargeable lithium battery including the same
US9640840B2 (en) Sodium secondary battery
KR20190008100A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
JP4981368B2 (en) Organic electrolyte and lithium battery using the same
JP6519577B2 (en) Lithium ion secondary battery
JP4527690B2 (en) Organic electrolyte and lithium battery using the same
JP5277045B2 (en) Non-aqueous electrolyte and lithium ion secondary battery using the same
WO2012011507A1 (en) Non-aqueous electrolyte for secondary batteries, and secondary battery
JP2009146695A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary power source having the same
JP2011040311A (en) Electrolyte for secondary battery, and lithium ion secondary battery
CN104269576A (en) Electrolyte and lithium ion battery adopting same
JP2010238504A (en) Nonaqueous electrolyte solution
JP2009211822A (en) Nonaqueous electrolyte secondary battery
KR20170095324A (en) Electrolyte composition comprising fluorinated carbonate, and battery comprising the same
JP2017191634A (en) Nonaqueous electrolyte secondary battery, nonaqueous electrolyte solution, and compound
US20210111432A1 (en) Electrolyte additives and formulations for energy storage devices
JP5150670B2 (en) Lithium ion secondary battery
JP2008258022A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery equipped with it
JP6477152B2 (en) Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2009252681A (en) Nonaqueous electrolytic solution for primary cell, and nonaqueous electrolytic solution primary cell using it
JP5405238B2 (en) Nonaqueous electrolyte primary battery
CN108346824A (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery
JP2010232039A (en) Nonaqueous electrolyte primary battery
JP2010238385A (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140108