JP2009252681A - Nonaqueous electrolytic solution for primary cell, and nonaqueous electrolytic solution primary cell using it - Google Patents

Nonaqueous electrolytic solution for primary cell, and nonaqueous electrolytic solution primary cell using it Download PDF

Info

Publication number
JP2009252681A
JP2009252681A JP2008102344A JP2008102344A JP2009252681A JP 2009252681 A JP2009252681 A JP 2009252681A JP 2008102344 A JP2008102344 A JP 2008102344A JP 2008102344 A JP2008102344 A JP 2008102344A JP 2009252681 A JP2009252681 A JP 2009252681A
Authority
JP
Japan
Prior art keywords
primary battery
aqueous electrolyte
electrolytic solution
positive electrode
nonaqueous electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008102344A
Other languages
Japanese (ja)
Other versions
JP5526491B2 (en
Inventor
Daisuke Noda
大介 野田
Minoru Kotado
稔 古田土
Shinichi Kinoshita
信一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2008102344A priority Critical patent/JP5526491B2/en
Publication of JP2009252681A publication Critical patent/JP2009252681A/en
Application granted granted Critical
Publication of JP5526491B2 publication Critical patent/JP5526491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic solution which is less in cell resistance elevation when stored at high temperatures, and is operated stably in a nonaqueous electrolytic solution primary cell. <P>SOLUTION: In the nonaqueous electrolytic solution for the primary cell having a positive electrode and a negative electrode containing metal lithium or lithium alloy, the nonaqueous electrolytic solution contains a solute, a nonaqueous solvent, and monofluoro phosphate and/or difluoro phosphate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、一次電池用非水電解液、及びそれを用いた非水電解液一次電池に関する。   The present invention relates to a non-aqueous electrolyte for a primary battery and a non-aqueous electrolyte primary battery using the same.

負極にリチウム金属又はその合金を用いたリチウム一次電池は、エネルギー密度が高く大容量であり、長期でも安定して使用できることから、充電電源の確保が困難な長期据え置き型機器の電源として、さまざまな用途に使用されている。   Lithium primary batteries that use lithium metal or its alloys for the negative electrode have a high energy density and a large capacity, and can be used stably over a long period of time. Used for applications.

近年、タイヤに空気圧をモニターする圧力センサーを搭載する動きが見られているが、この圧力センサー用電源としてリチウム一次電池が候補に挙げられている。しかしながら、タイヤ内部のような100℃を越える高温環境下に放置された場合、負極のリチウムと電解液とが激しく反応し、ガスの発生や、電極表面への高抵抗被膜の形成等が起こる傾向にある。その結果、電池の抵抗が上昇し、放電時の過電圧により電池電圧の低下が起こる課題があった。   In recent years, there has been a movement to mount a pressure sensor for monitoring air pressure on a tire, and a lithium primary battery has been cited as a candidate for the power source for the pressure sensor. However, when left in a high-temperature environment exceeding 100 ° C. such as the inside of a tire, the lithium of the negative electrode and the electrolytic solution react violently, and gas generation and formation of a high resistance film on the electrode surface tend to occur. It is in. As a result, there is a problem that the resistance of the battery is increased, and the battery voltage is lowered due to an overvoltage during discharge.

このような課題を解決するため、電池の電解液に環状スルトン誘導体、酸無水物を添加することにより、高温保存特性を改善するという試みがなされている(特許文献1、及び特許文献2参照)。   In order to solve such problems, attempts have been made to improve high-temperature storage characteristics by adding cyclic sultone derivatives and acid anhydrides to the battery electrolyte (see Patent Documents 1 and 2). .

特許第3722374号公報Japanese Patent No. 3722374 特許第3866191号公報Japanese Patent No. 3866191

しかしながら、上記の特許文献1や特許文献2に記載の方法では、高温保存特性等の性能の向上が十分とはいえず、更なる改善が期待されていた。
本発明は上記課題に鑑みてなされたものである。則ち、本発明の目的は、非水電解液一次電池において、高温保存時の電池抵抗上昇が小さく、安定して動作することを可能とする非水電解液の提供することにある。
However, the methods described in Patent Document 1 and Patent Document 2 described above have not been sufficiently improved in performance such as high-temperature storage characteristics, and further improvements have been expected.
The present invention has been made in view of the above problems. That is, an object of the present invention is to provide a non-aqueous electrolyte solution that can stably operate in a non-aqueous electrolyte primary battery with a small increase in battery resistance during high-temperature storage.

本発明者は、上記の課題を解決するために鋭意検討を重ねた結果、非水電解液がモノフルオロリン酸塩、又はジフルオロリン酸塩の少なくとも一種を含有させることにより、従来に比べて高温保存時の抵抗上昇が小さく、安定して動作する非水電解液一次電池を得ることができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor has found that the non-aqueous electrolyte contains at least one monofluorophosphate or difluorophosphate, which is higher in temperature than conventional. The present inventors have found that a non-aqueous electrolyte primary battery that has a small increase in resistance during storage and operates stably can be obtained, and has completed the present invention.

なお、モノフルオロリン酸塩、ジフルオロリン酸塩を電解液に含有させる技術は、特開平11−67270号公報、及び特開2007−180016号公報等に記載されているが、いずれも二次電池の改良を目的としたものであり、100℃以上の高温下での使用は想定されたものではない。本願発明は、非水電解液一次電池に関するものであり、100℃以上の高温下での使用を課題とするものである。   Techniques for adding monofluorophosphate and difluorophosphate to the electrolyte solution are described in JP-A-11-67270, JP-A-2007-180016, etc., both of which are secondary batteries. It is intended to improve the above, and is not supposed to be used at a high temperature of 100 ° C. or higher. The present invention relates to a non-aqueous electrolyte primary battery, and is intended to be used at a high temperature of 100 ° C. or higher.

則ち、本発明の要旨は、正極と、金属リチウム又はリチウム合金を含んでなる負極とを有する一次電池用の非水電解液であって、前記非水電解液が溶質と、非水溶媒と、モノフルオロリン酸塩及び/又はジフルオロリン酸塩とを含有することを特徴とする、一次電池用非水電解液に存する(請求項1)。   That is, the gist of the present invention is a non-aqueous electrolyte for a primary battery having a positive electrode and a negative electrode comprising metallic lithium or a lithium alloy, wherein the non-aqueous electrolyte is a solute, a non-aqueous solvent, and , Monofluorophosphate and / or difluorophosphate, which resides in a non-aqueous electrolyte for a primary battery (claim 1).

このとき、モノフルオロリン酸塩及び/又はジフルオロリン酸塩を、非水電解液100重量%中に、0.01重量%以上、5重量%以下含有することが好ましい(請求項2)。   At this time, the monofluorophosphate and / or difluorophosphate is preferably contained in an amount of 0.01% by weight or more and 5% by weight or less in 100% by weight of the non-aqueous electrolyte.

また、該非水溶媒が、環状カルボン酸エステル化合物及び/又は鎖状エーテル化合物を含有することが好ましい(請求項3)。   Moreover, it is preferable that this non-aqueous solvent contains a cyclic carboxylic acid ester compound and / or a chain ether compound.

このとき、該環状カルボン酸エステル化合物が、γ−ブチロラクトン及び/又はγ−バレロラクトンであることが好ましい(請求項4)。   At this time, the cyclic carboxylic acid ester compound is preferably γ-butyrolactone and / or γ-valerolactone.

また、該鎖状エーテル化合物が、1,2−ジメトキシエタン、1,2−ジエトキシエタン、及びジエチレングリコールジメチルエーテルからなる群から選ばれる少なくとも1種であることが好ましい(請求項5)。   The chain ether compound is preferably at least one selected from the group consisting of 1,2-dimethoxyethane, 1,2-diethoxyethane, and diethylene glycol dimethyl ether.

また、該溶質が、LiBF、LiClO、及びLiCFSOからなる群から選ばれる少なくとも1種を含有することが好ましい(請求項6)。 The solute preferably contains at least one selected from the group consisting of LiBF 4 , LiClO 4 , and LiCF 3 SO 3 (claim 6).

本発明の別の要旨は、正極、金属リチウム又はリチウム合金を含んでなる負極、及び上記の非水電解液を有することを特徴とする、非水電解液一次電池に存する(請求項7)。   Another gist of the present invention resides in a non-aqueous electrolyte primary battery comprising a positive electrode, a negative electrode comprising metallic lithium or a lithium alloy, and the non-aqueous electrolyte described above (Claim 7).

このとき、該正極が、フッ化黒鉛、又は式{(CF;0<X≦1}で表わされるフッ化炭素を含有することが好ましい(請求項8)。 At this time, it is preferable that the positive electrode contains fluorinated graphite or fluorocarbon represented by the formula {(CF x ) n ; 0 <X ≦ 1}.

また、該正極が、二酸化マンガンを含有することが好ましい(請求項9)。   Moreover, it is preferable that this positive electrode contains manganese dioxide (Claim 9).

本発明の非水電解液によれば、高温保存時の抵抗上昇が小さく、安定して動作する非水電解液一次電池を提供することができる。   According to the non-aqueous electrolyte of the present invention, it is possible to provide a non-aqueous electrolyte primary battery that operates stably with a small increase in resistance during high-temperature storage.

以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要素の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要素を逸脱しない限り、これらの内容に特定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. However, the description of constituent elements described below is an example (representative example) of an embodiment of the present invention, and the present invention is not limited to these elements unless departing from the elements. It is not specified in the contents of.

[I.一次電池用非水電解液]
本発明の一次電池用非水電解液は、正極と、金属リチウム又はリチウム合金を含んでなる負極とを有する一次電池(以下、単に「リチウム一次電池」という。)用の非水電解液である。この本発明の一次電池用非水電解液は、溶質と、非水溶媒と、モノフルオロリン酸塩及び/又はジフルオロリン酸塩とを含有する。
[I. Nonaqueous electrolyte for primary battery]
The nonaqueous electrolytic solution for a primary battery of the present invention is a nonaqueous electrolytic solution for a primary battery (hereinafter simply referred to as “lithium primary battery”) having a positive electrode and a negative electrode containing metallic lithium or a lithium alloy. . The nonaqueous electrolytic solution for a primary battery of the present invention contains a solute, a nonaqueous solvent, and a monofluorophosphate and / or a difluorophosphate.

(溶質)
溶質は、通常はリチウム塩を用いる。リチウム塩としては、リチウム一次電池の非水電解液の用途に用いることができるものであれば制限はないが、例えば、以下のものが挙げられる。
(Solute)
As the solute, a lithium salt is usually used. The lithium salt is not limited as long as it can be used for a non-aqueous electrolyte of a lithium primary battery, and examples thereof include the following.

(1)無機リチウム塩:LiAsF、LiPF、LiBF等の無機フッ化物塩、LiClO、LiBrO、LiIO等の過ハロゲン酸塩。 (1) Inorganic lithium salt: LiAsF 6, LiPF 6, inorganic fluoride salts LiBF 4 or the like, LiClO 4, LiBrO 4, perhalogenate of LiIO 4, and the like.

(2)有機リチウム塩:LiB(C、LiB(C等の有機ホウ酸リチウム塩、LiCHSO等のアルカンスルホン酸塩、LiN(SOCF、LiN(SO等のパーフルオロアルカンスルホン酸イミド塩、LiCFSO等のパーフルオロアルカンスルホン酸塩。 (2) Organic lithium salt: lithium borate such as LiB (C 2 O 4 ) 2 and LiB (C 6 H 5 ) 4 , alkane sulfonate such as LiCH 3 SO 3 , LiN (SO 2 CF 3 ) 2 , perfluoroalkanesulfonic acid imide salts such as LiN (SO 2 C 2 F 5 ) 2 , and perfluoroalkanesulfonic acid salts such as LiCF 3 SO 3 .

なかでも高温保存時の電池特性の安定性の面から、LiBF、LiClO、LiCFSO等が好ましい。
これらのリチウム塩は、1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
また、必要に応じてリチウム塩以外の溶質を、リチウム塩と併用してもよい。
Among these, LiBF 4 , LiClO 4 , LiCF 3 SO 3 and the like are preferable from the viewpoint of stability of battery characteristics during high-temperature storage.
One of these lithium salts may be used alone, or two or more thereof may be used in any combination and ratio.
Moreover, you may use together solutes other than lithium salt with lithium salt as needed.

本発明の一次電池用非水電解液中の溶質の濃度は、本発明の効果を著しく損なわない限り任意である。リチウム塩の濃度は通常0.1モル/リットル以上、好ましくは0.5モル/リットル以上、また、通常2.5モル/リットル以下、好ましくは1.5モル/リットル以下である。リチウム塩の濃度は、高すぎても、低すぎても電解液の電気伝導率の低下が生じる傾向にある。該濃度が上記の範囲内であると電解液の電導度の低下が抑制され、良好な電池特性が得られやすい。   The concentration of the solute in the non-aqueous electrolyte for a primary battery of the present invention is arbitrary as long as the effects of the present invention are not significantly impaired. The concentration of the lithium salt is usually 0.1 mol / liter or more, preferably 0.5 mol / liter or more, and usually 2.5 mol / liter or less, preferably 1.5 mol / liter or less. If the concentration of the lithium salt is too high or too low, the electric conductivity of the electrolytic solution tends to decrease. When the concentration is within the above range, a decrease in the conductivity of the electrolytic solution is suppressed, and good battery characteristics are easily obtained.

(非水溶媒)
非水溶媒としては、特に制限はなく、公知のリチウム一次電池用の非水電解液の溶媒として用いられてきている非水溶媒の中から、適宜選択して用いることができる。
(Non-aqueous solvent)
There is no restriction | limiting in particular as a non-aqueous solvent, It can select suitably from the non-aqueous solvents currently used as a solvent of the well-known non-aqueous electrolyte solution for lithium primary batteries.

このような非水溶媒の具体例としては、環状カーボネート(環状炭酸エステル)類、鎖状カーボネート(鎖状炭酸エステル)類、環状エステル(環状カルボン酸エステル)類、鎖状エステル(鎖状カルボン酸エステル)類、環状エーテル類、鎖状エーテル類、環状スルホン類等が挙げられる。   Specific examples of such a non-aqueous solvent include cyclic carbonates (cyclic carbonates), chain carbonates (chain carbonates), cyclic esters (cyclic carboxylic acid esters), chain esters (chain carboxylic acids). Esters), cyclic ethers, chain ethers, cyclic sulfones and the like.

環状カーボネート類としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。
鎖状カーボネート類としては、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等が挙げられる。
環状エステル類としては、γ-ブチロラクトン、γ−バレロラクトン等が挙げられる。
鎖状エステル類としては、酢酸メチル、プロピオン酸メチル等が挙げられる。
環状エーテル類としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン、1,3−ジオキソラン、1,4−ジオキサン、1,3−ジオキサン等が挙げられる。
鎖状エーテル類としては、ジエチルエーテル、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等が挙げられる。
環状スルホン類としてはスルホラン等が挙げられる。
これらの非水溶媒は、1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
Examples of cyclic carbonates include ethylene carbonate, propylene carbonate, butylene carbonate and the like.
Examples of chain carbonates include dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
Examples of cyclic esters include γ-butyrolactone and γ-valerolactone.
Examples of chain esters include methyl acetate and methyl propionate.
Examples of cyclic ethers include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,4-dioxane, 1,3-dioxane and the like.
Examples of chain ethers include diethyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, and tetraethylene glycol dimethyl ether.
Examples of cyclic sulfones include sulfolane.
One of these non-aqueous solvents may be used alone, or two or more thereof may be used in any combination and ratio.

非水溶媒は、電解液の電気伝導率の面から、高誘電率溶媒と低粘度溶媒とを組み合わせて用いることが好ましい。
ここで高誘電率溶媒とは、25℃において比誘電率が20以上のものをいい、低粘度溶媒とは、25℃において粘度が1mPa・S未満のものをいう。
The nonaqueous solvent is preferably used in combination with a high dielectric constant solvent and a low viscosity solvent from the viewpoint of the electric conductivity of the electrolytic solution.
Here, the high dielectric constant solvent means a solvent having a relative dielectric constant of 20 or more at 25 ° C., and the low viscosity solvent means a solvent having a viscosity of less than 1 mPa · S at 25 ° C.

高誘電率溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン等が挙げられる。
また、低粘度溶媒としては、例えば、ジメチルカーボネート、酢酸メチル、プロピオン酸メチル、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチレングリコールジメチルエーテル等が挙げられる。
Examples of the high dielectric constant solvent include ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, γ-valerolactone, and the like.
Examples of the low viscosity solvent include dimethyl carbonate, methyl acetate, methyl propionate, 1,2-dimethoxyethane, 1,2-diethoxyethane, and diethylene glycol dimethyl ether.

中でも、高誘電率溶媒としては、γ−ブチロラクトン、γ−バレロラクトン等の環状エステルが好ましい。また、低粘度溶媒としては、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチレングリコールジメチルエーテル等の鎖状エーテルが好ましい。これらの非水溶媒を用いると、高温での保存における安定性が優れるため特に好ましい。   Among them, as the high dielectric constant solvent, cyclic esters such as γ-butyrolactone and γ-valerolactone are preferable. The low viscosity solvent is preferably a chain ether such as 1,2-dimethoxyethane, 1,2-diethoxyethane, diethylene glycol dimethyl ether. Use of these non-aqueous solvents is particularly preferable because of excellent stability in storage at high temperatures.

(モノフルオロリン酸塩、ジフルオロリン酸塩)
本発明の一次電池用非水電解液は、上記の溶質及び非水溶媒の他に、モノフルオロリン酸塩、及びジフルオロリン酸塩からなる群より選ばれる、少なくとも一種のフルオロリン酸塩を含有する。
(Monofluorophosphate, difluorophosphate)
The nonaqueous electrolytic solution for a primary battery of the present invention contains at least one fluorophosphate selected from the group consisting of a monofluorophosphate and a difluorophosphate in addition to the above solute and nonaqueous solvent. To do.

本発明で用いられるモノフルオロリン酸塩、ジフルオロリン酸塩の対カチオンは限定されない。
具体例としては、Li、Na、K、Mg、Ca、Fe、Cu等の金属元素カチオン;NR(式中R〜Rは、各々独立に、水素原子又は炭素数1以上12以下の有機基を表わす。)で表わされるアンモニウムカチオンが挙げられる。
The counter cation of the monofluorophosphate and difluorophosphate used in the present invention is not limited.
Specific examples include metal element cations such as Li, Na, K, Mg, Ca, Fe, and Cu; NR 1 R 2 R 3 R 4 (wherein R 1 to R 4 are each independently a hydrogen atom or carbon Represents an organic group having a number of 1 or more and 12 or less.)

〜Rの炭素数1以上12以下の有機基としては、例えば、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子で置換されていてもよいシクロアルキル基、ハロゲン原子で置換されていてもよいアリール基、窒素原子含有複素環基等が挙げられる。
中でも、R〜Rとしては、水素原子、アルキル基、シクロアルキル基、窒素原子含有複素環基等が好ましい。
Examples of the organic group having 1 to 12 carbon atoms of R 1 to R 4 include an alkyl group which may be substituted with a halogen atom, a cycloalkyl group which may be substituted with a halogen atom, and a halogen atom. An aryl group which may be present, a nitrogen atom-containing heterocyclic group, and the like.
Among these, as R 1 to R 4 , a hydrogen atom, an alkyl group, a cycloalkyl group, a nitrogen atom-containing heterocyclic group, and the like are preferable.

これらの対カチオンの中でも、リチウム一次電池に用いたときの電池特性の点から、Li、Na、K、Mg、Ca、NRが好ましく、Liが特に好ましい。
本発明において、モノフルオロリン酸塩、ジフルオロリン酸塩は1種を単独で用いてもよく、2種類以上の化合物を任意の組み合わせ及び比率で併用してもよい。
Among these counter cations, Li, Na, K, Mg, Ca, NR 1 R 2 R 3 R 4 are preferable, and Li is particularly preferable from the viewpoint of battery characteristics when used for a lithium primary battery.
In the present invention, monofluorophosphate and difluorophosphate may be used alone, or two or more compounds may be used in any combination and ratio.

非水電解液に含有されるモノフルオロリン酸塩及びジフルオロリン酸塩の合計の濃度は、非水電解液100重量%中に、通常0.01重量%以上、好ましくは0.2重量%以上、さらに好ましくは0.5重量%以上、また、通常5重量%以下、好ましくは3重量%以下、さらに好ましくは1.5重量%以下である。この範囲を下回ると、高温保存時の性能改善が不十分になる傾向がある。また、この範囲を上回ると高温保存特性以外の電池特性を低下させる傾向がある。   The total concentration of monofluorophosphate and difluorophosphate contained in the non-aqueous electrolyte is usually 0.01% by weight or more, preferably 0.2% by weight or more in 100% by weight of the non-aqueous electrolyte. More preferably, it is 0.5% by weight or more, usually 5% by weight or less, preferably 3% by weight or less, more preferably 1.5% by weight or less. Below this range, performance improvements during high temperature storage tend to be insufficient. Moreover, when it exceeds this range, battery characteristics other than high-temperature storage characteristics tend to be deteriorated.

モノフルオロリン酸塩及び/又はジフルオロリン酸塩を、一次電池用非水電解液に含有させると、該一次電池用非水電解液を用いた非水電解液一次電池を高温の環境下においた場合であっても、抵抗上昇が小さくなるために安定して動作する。
その理由については、以下の様に推測される。
非水電解液一次電池は、高温環境下に置かれた場合、負極のリチウムと電解液とが激しく反応し、ガスの発生や、電極表面への高抵抗皮膜の形成等が起こる傾向にある。その結果、電池の抵抗が上昇し、放電時の過電圧により電池電圧の低下が起こる課題があった。
しかし、本発明の一次電池用非水電解液は、モノフルオロリン酸塩及び/又はジフルオロリン酸塩を含有するため、それらが金属リチウム及び/又はリチウム合金を含んでなる負極上で反応し、負極表面に耐高温性且つ低抵抗の保護皮膜を形成すると考えられる。これにより、高温保存時に起こる負極と電解液成分の異常反応が抑制でき、高温保存後も良好な放電特性を保つことができると推測される。
When monofluorophosphate and / or difluorophosphate is contained in the non-aqueous electrolyte for primary batteries, the non-aqueous electrolyte primary battery using the non-aqueous electrolyte for primary batteries is placed in a high-temperature environment. Even in this case, since the resistance increase is small, the operation is stable.
The reason is estimated as follows.
When the non-aqueous electrolyte primary battery is placed in a high temperature environment, the lithium in the negative electrode and the electrolyte react violently to generate gas and form a high resistance film on the electrode surface. As a result, there is a problem that the resistance of the battery is increased and the battery voltage is lowered due to the overvoltage at the time of discharging.
However, since the non-aqueous electrolyte for a primary battery of the present invention contains monofluorophosphate and / or difluorophosphate, they react on the negative electrode comprising metallic lithium and / or a lithium alloy, It is considered that a high temperature resistant and low resistance protective film is formed on the negative electrode surface. Thereby, it is presumed that the abnormal reaction between the negative electrode and the electrolyte component occurring during high-temperature storage can be suppressed, and good discharge characteristics can be maintained even after high-temperature storage.

(その他の成分)
本発明の一次電池用非水電解液は、いずれの態様においても、必要に応じて上記の溶質、非水溶媒、モノフルオロリン酸塩、ジフルオロリン酸塩に加えて、その他の成分を含有することができる。
(Other ingredients)
In any embodiment, the nonaqueous electrolytic solution for a primary battery of the present invention contains other components in addition to the solute, nonaqueous solvent, monofluorophosphate, and difluorophosphate as necessary. be able to.

他の成分としては、例えば、電池の活物質表面に被膜を形成するための各種の添加剤が挙げられる。このような被膜形成用の添加剤としては、例えば、ビニレンカーボネート、ビニルエチレンカーボネート、プロパンスルトン、エチレンサルファイト無水コハク酸、安息香酸エステル類、芳香族ジカルボン酸エステル類等が挙げられる。
これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。また、一次電池用非水電解液に対する添加剤の濃度は、本発明の効果を損なわない限り制限はない。
Examples of the other components include various additives for forming a film on the active material surface of the battery. Examples of such a film forming additive include vinylene carbonate, vinyl ethylene carbonate, propane sultone, ethylene sulfite succinic anhydride, benzoic acid esters, aromatic dicarboxylic acid esters, and the like.
One of these may be used alone, or two or more may be used in any combination and ratio. Moreover, the density | concentration of the additive with respect to the non-aqueous electrolyte for primary batteries will not have a restriction | limiting, unless the effect of this invention is impaired.

(一次電池用非水電解液の製造方法)
本発明の一次電池用非水電解液の製造方法に制限はなく、最終的に溶質と、非水溶媒と、モノフルオロリン酸塩及び/又はジフルオロリン酸塩とを混合した非水電解液が得られればよい。従って、本発明の効果を損なわない限り、混合の順序、混合速度、混合温度、撹拌の有無やその速度等、混合の方法には制限はなく、公知の何れの方法を用いて製造することができる。
(Method for producing non-aqueous electrolyte for primary battery)
There is no limitation on the method for producing the non-aqueous electrolyte for primary batteries of the present invention. A non-aqueous electrolyte obtained by finally mixing a solute, a non-aqueous solvent, and a monofluorophosphate and / or difluorophosphate is provided. It only has to be obtained. Therefore, as long as the effects of the present invention are not impaired, there is no limitation on the mixing method such as mixing order, mixing speed, mixing temperature, presence / absence of stirring, and its speed, and any known method can be used. it can.

[II.非水電解液一次電池]
本発明の非水電解液一次電池は、正極、金属リチウム又はリチウム合金を含んでなる負極、本発明の非水電解液を有する。以下、本発明の非水電解液一次電池について詳述する。
[II. Nonaqueous electrolyte primary battery]
The non-aqueous electrolyte primary battery of the present invention has a positive electrode, a negative electrode comprising metallic lithium or a lithium alloy, and the non-aqueous electrolyte of the present invention. Hereinafter, the non-aqueous electrolyte primary battery of the present invention will be described in detail.

(電池構成)
本発明の非水電解液一次電池は、本発明の一次電池用非水電解液以外の構成については、公知の非水電解液一次電池の構成を任意に適用できる。その具体的構成は、通常、本発明の一次電池用非水電解液が含浸されているセパレータを介して、正極と負極とが備えられており、それらを外装体に収納した形態を有する。
(Battery configuration)
The configuration of the known non-aqueous electrolyte primary battery can be arbitrarily applied to the non-aqueous electrolyte primary battery of the present invention for configurations other than the non-aqueous electrolyte for primary battery of the present invention. The specific configuration usually includes a positive electrode and a negative electrode through a separator impregnated with the non-aqueous electrolyte for a primary battery of the present invention, and has a form in which they are housed in an exterior body.

(非水電解液)
一次電池用非水電解液は、上述の本発明の一次電池用非水電解液を用いる。
(Nonaqueous electrolyte)
As the non-aqueous electrolyte for primary battery, the above-described non-aqueous electrolyte for primary battery of the present invention is used.

(正極)
本発明の非水電解液一次電池の正極に制限はないが、通常、正極活物質、結着剤、及び導電材を含有するものが用いられる。
(Positive electrode)
Although there is no restriction | limiting in the positive electrode of the nonaqueous electrolyte primary battery of this invention, Usually, what contains a positive electrode active material, a binder, and a electrically conductive material is used.

正極活物質としては、例えば、MnO、フッ化黒鉛又はフッ化炭素{(CF;0<X≦1}、V、CuO、CuS、FeS、TiS、AgCrO、MoO、Bi、BiPb、CuO(PO等が挙げられる。
中でも、MnO、フッ化黒鉛、フッ化炭素{(CF;0<X≦1}等は、電池特性の長期信頼性の面から特に好ましい。
正極活物質は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
Examples of the positive electrode active material include MnO 2 , fluorinated graphite, or carbon fluoride {(CF X ) n ; 0 <X ≦ 1}, V 2 O 5 , CuO, CuS, FeS 2 , TiS 2 , Ag 2 CrO. 4 , MoO 3 , Bi 2 O 3 , Bi 2 Pb 2 O 5 , Cu 4 O (PO 4 ) 2 and the like.
Among these, MnO 2 , graphite fluoride, carbon fluoride {(CF X ) n ; 0 <X ≦ 1} and the like are particularly preferable from the viewpoint of long-term reliability of battery characteristics.
One type of positive electrode active material may be used alone, or two or more types may be used in any combination and ratio.

結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン・ブタジエンゴム、イソプレンゴム、ブダジエンゴム等が挙げられる。
結着剤は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, styrene / butadiene rubber, isoprene rubber, and budadiene rubber.
One type of binder may be used alone, or two or more types may be used in any combination and ratio.

導電材としては、例えば、アセチレンブラック、カーボンブラック、グラファイト、粉末状のニッケル、アルミニウム、チタン、ステンレス鋼等の金属粉末等が挙げられる。
導電材は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
Examples of the conductive material include metal powders such as acetylene black, carbon black, graphite, powdered nickel, aluminum, titanium, and stainless steel.
One type of conductive material may be used alone, or two or more types may be used in any combination and ratio.

正極を製造する方法について制限はなく、公知の何れの方法を用いることができる。
例えば、上述の正極活物質に、必要に応じて上述の結着剤、上述の導電材、増粘剤、溶媒等を混合してスラリー状とし、正極集電体の基板に塗布し、乾燥させることにより製造することができる。
There is no restriction | limiting about the method of manufacturing a positive electrode, Any well-known method can be used.
For example, the above-described positive electrode active material is mixed with the above-described binder, the above-described conductive material, thickener, solvent, and the like as necessary to form a slurry, which is applied to the substrate of the positive-electrode current collector and dried. Can be manufactured.

このとき、増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。
増粘剤は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
At this time, examples of the thickener include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein.
One thickener may be used alone, or two or more thickeners may be used in any combination and ratio.

溶媒としては、例えば、正極活物質、結着剤、導電材等の正極の材料となる化合物を溶解又は分散可能な溶媒であれば、その種類に制限はなく、水系溶媒と有機系溶媒の何れを用いてもよい。
溶媒は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
The solvent is not particularly limited as long as it is a solvent that can dissolve or disperse a compound serving as a positive electrode material such as a positive electrode active material, a binder, and a conductive material, and any of an aqueous solvent and an organic solvent can be used. May be used.
One type of solvent may be used alone, or two or more types may be used in any combination and ratio.

正極に使用できる正極集電体の素材としては、例えば、アルミニウム、チタン、タンタル、ステンレス等の金属、又はそれらの金属の合金が挙げられる。中でも好ましくは、アルミニウム及びその合金が挙げられる。
正極集電体の素材は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
Examples of the material of the positive electrode current collector that can be used for the positive electrode include metals such as aluminum, titanium, tantalum, and stainless steel, or alloys of these metals. Among these, aluminum and its alloys are preferable.
As the material for the positive electrode current collector, one type may be used alone, or two or more types may be used in any combination and ratio.

正極を製造する他の例としては、該活物質をそのままロール成形してシート電極としてもよく、圧縮成形によりペレット電極とすることもできる。   As another example of producing the positive electrode, the active material may be roll-formed as it is to form a sheet electrode, or a compression-molded pellet electrode.

(負極)
負極には、金属リチウム又はリチウム合金を含んで形成されたものが用いられる。
リチウム合金としては例えば、Li−Al、Li−Si、Li−Sn、Li−NiSi、Li−Pb等が挙げられる。リチウム合金は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
なお、金属リチウムとリチウム合金とは、一方のみを用いてもよく、両方を任意の比率で組み合わせて用いてもよい。
(Negative electrode)
As the negative electrode, one formed by including metallic lithium or a lithium alloy is used.
Examples of the lithium alloy include Li—Al, Li—Si, Li—Sn, Li—NiSi, Li—Pb, and the like. One lithium alloy may be used alone, or two or more lithium alloys may be used in any combination and ratio.
Note that only one of the metal lithium and the lithium alloy may be used, or both may be used in combination at any ratio.

負極を製造する方法について制限はなく、公知の何れの方法を用いることができる。
例えば、金属リチウム又はリチウム合金のシートを所望の大きさに打ち抜くことにより製造することができる。
There is no restriction | limiting about the method of manufacturing a negative electrode, Any well-known method can be used.
For example, it can be manufactured by punching a sheet of metallic lithium or lithium alloy into a desired size.

負極に使用できる結着剤、導電材、増粘剤などは、正極と同様のものを用いることができる。
負極に使用できる負極集電体の素材としては、例えば、銅、ニッケル、ステンレス等の金属、又はそれらの合金が挙げられる。中でも好ましくは、銅が挙げられる。
負極集電体の素材は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
As the binder, the conductive material, the thickener, and the like that can be used for the negative electrode, the same materials as those for the positive electrode can be used.
Examples of the material of the negative electrode current collector that can be used for the negative electrode include metals such as copper, nickel, and stainless steel, or alloys thereof. Of these, copper is preferable.
As the material for the negative electrode current collector, one type may be used alone, or two or more types may be used in any combination and ratio.

(セパレータ)
本発明の非水電解液一次電池は、通常、短絡防止のため正極と負極との間にセパレータが介装される。セパレータが液体を含浸できるものである場合、本発明の非水系電解液は、通常このセパレータに含浸させて用いられる。
(Separator)
In the nonaqueous electrolyte primary battery of the present invention, a separator is usually interposed between the positive electrode and the negative electrode in order to prevent a short circuit. When the separator can be impregnated with a liquid, the nonaqueous electrolytic solution of the present invention is usually used by impregnating the separator.

セパレータの材質や形状について制限はなく、本発明の効果を損なわない限り、公知のものを任意に用いることが出来る。中でも、本発明の非水系電解液に対して安定な材料で形成された、保液性に優れた多孔性シート又は不織布等を用いることが好ましい。   There is no restriction | limiting about the material and shape of a separator, A well-known thing can be used arbitrarily unless the effect of this invention is impaired. Among these, it is preferable to use a porous sheet or a nonwoven fabric that is formed of a material that is stable with respect to the non-aqueous electrolyte solution of the present invention and has excellent liquid retention.

このとき、セパレータの材料としては、例えばポリエチレン、ポリプロピレン、ポリフェニレンサルファイド等を用いることができる。
なお、セパレータの材料は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
At this time, as a material for the separator, for example, polyethylene, polypropylene, polyphenylene sulfide, or the like can be used.
In addition, the material of a separator may be used individually by 1 type, and may use 2 or more types by arbitrary combinations and a ratio.

(外装体)
本発明の非水電解液一次電池は、通常、上記の本発明の非水電解液、正極、負極、セパレータ等を外装体内に収納して構成される。この外装体に制限はなく、本発明の効果を著しく損なわない限り公知のものを任意に採用することができる。
(Exterior body)
The non-aqueous electrolyte primary battery of the present invention is usually configured by housing the non-aqueous electrolyte of the present invention, a positive electrode, a negative electrode, a separator and the like in an exterior body. There is no restriction | limiting in this exterior body, A well-known thing can be arbitrarily employ | adopted unless the effect of this invention is impaired remarkably.

具体的に、外装体の材料は任意であるが、通常は、例えばニッケルメッキを施した鉄、ステンレス、アルミニウム、又はその合金、ニッケル、チタン等が用いられる。
外装体の材料は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
Specifically, the material of the exterior body is arbitrary, but usually, for example, nickel-plated iron, stainless steel, aluminum, or an alloy thereof, nickel, titanium, or the like is used.
As the material for the exterior body, one type may be used alone, or two or more types may be used in any combination and ratio.

また、外装体の形状も任意であり、例えば円筒形、角形、ラミネート型、コイン型、大型などの何れであってもよい。   The shape of the exterior body is also arbitrary, and may be any of a cylindrical shape, a square shape, a laminate shape, a coin shape, a large size, and the like.

(本発明の一次電池用非水電解液の製造方法)
本発明の非水電解液一次電池を製造する方法について制限はなく、公知の方法の中から適宜選択することができる。
具体例としては、本発明の非水電解液一次電池の形状によって、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等を製造することができる。
(Method for producing non-aqueous electrolyte for primary battery of the present invention)
There is no restriction | limiting about the method of manufacturing the nonaqueous electrolyte primary battery of this invention, It can select suitably from well-known methods.
Specific examples of the nonaqueous electrolyte primary battery according to the present invention include a cylinder type in which a sheet electrode and a separator are spiraled, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, a pellet electrode and a separator. Can be manufactured.

本発明を実施例に基づき更に具体的に説明するが、本発明はその要旨を逸脱しない限り、以下の実施例に限定されるものではない。   The present invention will be described more specifically based on examples, but the present invention is not limited to the following examples unless departing from the gist thereof.

[電池の作製・評価]
非水電解液一次電池の作製及びその評価は以下のように行った。
[Production and evaluation of batteries]
The production and evaluation of the nonaqueous electrolyte primary battery were performed as follows.

(正極の作製)
正極活物質として実施例及び比較例ごとに選択される化合物80重量%と、導電材としてアセチレンブラック10重量%と、結着剤としてポリテトラフルオロエチレン10重量%とからなる混合物を混練した後、50kgf/cmの圧力で加圧成形して、直径12mm、厚さ0.5mmの円盤状の成形体とし、これを正極として用いた。
(Preparation of positive electrode)
After kneading a mixture consisting of 80% by weight of the compound selected for each of Examples and Comparative Examples as the positive electrode active material, 10% by weight of acetylene black as the conductive material, and 10% by weight of polytetrafluoroethylene as the binder, It was pressure-molded at a pressure of 50 kgf / cm 2 to form a disk-shaped molded body having a diameter of 12 mm and a thickness of 0.5 mm, and this was used as a positive electrode.

(負極の作製)
厚さ0.5mmの金属リチウムシートを直径14mmに打ち抜いて円盤状とし、これを負極として用いた。
(Preparation of negative electrode)
A metal lithium sheet having a thickness of 0.5 mm was punched into a disk shape having a diameter of 14 mm, and this was used as a negative electrode.

(電池の組立)
アルゴン雰囲気のドライボックス内で、2032型ステンレス製コインセルケースを使用して、リチウム一次電池を作製した。具体的には、まず正極缶の上に正極を置き、その上にセパレータとしてポリプロピレン不織布を置き、ポリプロピレン製ガスケットで押さえた後、負極を置き、厚み調整用のスペーサーを置いた。次に、実施例及び比較例ごとに選択される電解液を加え電池内に十分しみこませた。その後、負極缶を載せて電池を封口することにより、リチウム一次電池を得た。
なお、実施例及び比較例における電池の容量は、放電下限2.0Vで約40mAhになる設計とした。
(Battery assembly)
A lithium primary battery was fabricated using a 2032 type stainless steel coin cell case in a dry box in an argon atmosphere. Specifically, a positive electrode was first placed on a positive electrode can, a polypropylene non-woven fabric was placed thereon as a separator, pressed with a polypropylene gasket, a negative electrode was placed, and a thickness adjusting spacer was placed. Next, an electrolytic solution selected for each of the examples and comparative examples was added, and the battery was sufficiently impregnated. Then, the lithium primary battery was obtained by mounting a negative electrode can and sealing a battery.
In addition, the capacity | capacitance of the battery in an Example and a comparative example was designed to become about 40 mAh with the discharge minimum 2.0V.

(電池の評価)
非水電解液一次電池の評価は、作製した非水電解液一次電池を125℃の環境下で3時間保存した後、−40℃で1mAの定電流放電を行い、放電開始直後の電池電圧を比較した。
電池電圧が高いものは、過電圧による電圧低下が小さいことを意味し、高温保存後でも安定に動作することができる。
(Battery evaluation)
The evaluation of the non-aqueous electrolyte primary battery was carried out by storing the produced non-aqueous electrolyte primary battery in an environment of 125 ° C. for 3 hours, performing a constant current discharge of 1 mA at −40 ° C., and measuring the battery voltage immediately after the start of discharge. Compared.
A high battery voltage means that the voltage drop due to overvoltage is small, and can operate stably even after high-temperature storage.

[実施例1]
正極活物質として、フッ化黒鉛を用いた。
非水電解液として、γ−ブチロラクトンに、1モル/リットルの濃度でLiBFを溶解させた溶液に、ジフルオロリン酸リチウムを1重量%の濃度で含有させた非水電解液を用いた。
前記の[電池の作製・評価]に記載の方法に従って、製造した非水電解液一次電池の高温保存後の放電試験を行った。結果を表1に示す。
[Example 1]
Fluorinated graphite was used as the positive electrode active material.
As the nonaqueous electrolytic solution, a nonaqueous electrolytic solution in which LiBF 4 was dissolved in γ-butyrolactone at a concentration of 1 mol / liter and lithium difluorophosphate was contained at a concentration of 1% by weight was used.
In accordance with the method described in [Preparation / Evaluation of Batteries], the produced nonaqueous electrolyte primary battery was subjected to a discharge test after high-temperature storage. The results are shown in Table 1.

[実施例2]
正極活物質として、フッ化黒鉛を用いた。
非水電解液として、プロピレンカーボネートに、1モル/リットルの濃度でLiBFを溶解させた溶液に、ジフルオロリン酸リチウムを1重量%の濃度で含有させた非水電解液を用いた。
前記の[電池の作製・評価]に記載の方法に従って、製造した非水電解液一次電池の高温保存後の放電試験を行った。結果を表1に示す。
[Example 2]
Fluorinated graphite was used as the positive electrode active material.
As the nonaqueous electrolytic solution, a nonaqueous electrolytic solution in which lithium difluorophosphate was contained at a concentration of 1% by weight in a solution obtained by dissolving LiBF 4 in propylene carbonate at a concentration of 1 mol / liter was used.
In accordance with the method described in [Preparation / Evaluation of Batteries], the produced nonaqueous electrolyte primary battery was subjected to a discharge test after high-temperature storage. The results are shown in Table 1.

[実施例3]
正極活物質として、フッ化黒鉛を用いた。
非水電解液として、γ−ブチロラクトンに、1モル/リットルの濃度でLiPFを溶解させた溶液に、ジフルオロリン酸リチウムを1重量%の濃度で含有させた非水電解液を用いた。
前記の[電池の作製・評価]に記載の方法に従って、製造した非水電解液一次電池の高温保存後の放電試験を行った。結果を表1に示す。
[Example 3]
Fluorinated graphite was used as the positive electrode active material.
As the non-aqueous electrolyte, a non-aqueous electrolyte was used in which LiPF 6 was dissolved in γ-butyrolactone at a concentration of 1 mol / liter and lithium difluorophosphate was contained at a concentration of 1% by weight.
In accordance with the method described in [Preparation / Evaluation of Batteries], the produced nonaqueous electrolyte primary battery was subjected to a discharge test after high-temperature storage. The results are shown in Table 1.

[実施例4]
正極活物質として、フッ化黒鉛を用いた。
非水電解液として、γ−ブチロラクトンと1,2−ジメトキシエタンとを体積比で3:2の比率で混合させた非水溶媒に、1モル/リットルの濃度でLiBFを溶解させた溶液に、ジフルオロリン酸リチウムを1重量%の濃度で含有させた非水電解液を用いた。
前記の[電池の作製・評価]に記載の方法に従って、製造した非水電解液一次電池の高温保存後の放電試験を行った。結果を表1に示す。
[Example 4]
Fluorinated graphite was used as the positive electrode active material.
As a non-aqueous electrolyte, a solution in which LiBF 4 was dissolved at a concentration of 1 mol / liter in a non-aqueous solvent in which γ-butyrolactone and 1,2-dimethoxyethane were mixed at a volume ratio of 3: 2 was used. A nonaqueous electrolytic solution containing lithium difluorophosphate at a concentration of 1% by weight was used.
In accordance with the method described in [Preparation / Evaluation of Batteries], the produced nonaqueous electrolyte primary battery was subjected to a discharge test after high-temperature storage. The results are shown in Table 1.

[実施例5]
正極活物質として、二酸化マンガンを用いた。
非水電解液として、プロピレンカーボネートと1,2−ジメトキシエタンとを体積比で3:2の比率で混合させた非水溶媒に、0.5モル/リットルの濃度でLiCFSOを溶解させた溶液に、ジフルオロリン酸リチウムを1重量%の濃度で含有させた非水電解液を用いた。
前記の[電池の作製・評価]に記載の方法に従って、製造した非水電解液一次電池の高温保存後の放電試験を行った。結果を表1に示す。
[Example 5]
Manganese dioxide was used as the positive electrode active material.
LiCF 3 SO 3 is dissolved at a concentration of 0.5 mol / liter in a non-aqueous solvent in which propylene carbonate and 1,2-dimethoxyethane are mixed at a volume ratio of 3: 2 as a non-aqueous electrolyte. A non-aqueous electrolyte solution containing 1% by weight of lithium difluorophosphate was used as the solution.
In accordance with the method described in [Preparation / Evaluation of Batteries], the produced nonaqueous electrolyte primary battery was subjected to a discharge test after high-temperature storage. The results are shown in Table 1.

[実施例6]
正極活物質として、二酸化マンガンを用いた。
非水電解液として、プロピレンカーボネートと1,2−ジメトキシエタンとを体積比で3:2の比率で混合させた非水溶媒に、0.5モル/リットルの濃度でLiClOを溶解させた溶液に、ジフルオロリン酸リチウムを1重量%の濃度で含有させた非水電解液を用いた。
前記の[電池の作製・評価]に記載の方法に従って、製造した非水電解液一次電池の高温保存後の放電試験を行った。結果を表1に示す。
[Example 6]
Manganese dioxide was used as the positive electrode active material.
A solution in which LiClO 4 is dissolved at a concentration of 0.5 mol / liter in a non-aqueous solvent in which propylene carbonate and 1,2-dimethoxyethane are mixed at a volume ratio of 3: 2 as a non-aqueous electrolyte. In addition, a nonaqueous electrolytic solution containing lithium difluorophosphate at a concentration of 1% by weight was used.
In accordance with the method described in [Preparation / Evaluation of Batteries], the produced nonaqueous electrolyte primary battery was subjected to a discharge test after high-temperature storage. The results are shown in Table 1.

[比較例1]
正極活物質として、フッ化黒鉛を用いた。
非水電解液として、γ−ブチロラクトンに、1モル/リットルの濃度でLiBFを溶解させた以外は、何も含有させない非水電解液を用いた。
前記の[電池の作製・評価]に記載の方法に従って、製造した非水電解液一次電池の高温保存後の放電試験を行った。結果を表1に示す。
[Comparative Example 1]
Fluorinated graphite was used as the positive electrode active material.
As the nonaqueous electrolytic solution, a nonaqueous electrolytic solution containing nothing except that LiBF 4 was dissolved in γ-butyrolactone at a concentration of 1 mol / liter was used.
In accordance with the method described in [Preparation / Evaluation of Batteries], the produced nonaqueous electrolyte primary battery was subjected to a discharge test after high-temperature storage. The results are shown in Table 1.

[比較例2]
正極活物質として、フッ化黒鉛を用いた。
非水電解液として、プロピレンカーボネートに、1モル/リットルの濃度でLiBFを溶解させた以外は、何も含有させない非水電解液を用いた。
前記の[電池の作製・評価]に記載の方法に従って、製造した非水電解液一次電池の高温保存後の放電試験を行った。結果を表1に示す。
[Comparative Example 2]
Fluorinated graphite was used as the positive electrode active material.
As the nonaqueous electrolytic solution, a nonaqueous electrolytic solution containing nothing except that LiBF 4 was dissolved in propylene carbonate at a concentration of 1 mol / liter was used.
In accordance with the method described in [Preparation / Evaluation of Batteries], the produced nonaqueous electrolyte primary battery was subjected to a discharge test after high-temperature storage. The results are shown in Table 1.

[比較例3]
正極活物質として、フッ化黒鉛を用いた。
非水電解液として、γ−ブチロラクトンに、1モル/リットルの濃度でLiPFを溶解させた以外は、何も含有させない非水電解液を用いた。
前記の[電池の作製・評価]に記載の方法に従って、製造した非水電解液一次電池の高温保存後の放電試験を行った。結果を表1に示す。
[Comparative Example 3]
Fluorinated graphite was used as the positive electrode active material.
As the nonaqueous electrolytic solution, a nonaqueous electrolytic solution containing nothing except that LiPF 6 was dissolved in γ-butyrolactone at a concentration of 1 mol / liter was used.
In accordance with the method described in [Preparation / Evaluation of Batteries], the produced nonaqueous electrolyte primary battery was subjected to a discharge test after high-temperature storage. The results are shown in Table 1.

[比較例4]
正極活物質として、フッ化黒鉛を用いた。
非水電解液として、γ−ブチロラクトンと1,2−ジメトキシエタンとを体積比で3:2の比率で混合させた非水溶媒に、1モル/リットルの濃度でLiBFを溶解させた以外は、何も含有させない非水電解液を用いた。
前記の[電池の作製・評価]に記載の方法に従って、製造した非水電解液一次電池の高温保存後の放電試験を行った。結果を表1に示す。
[Comparative Example 4]
Fluorinated graphite was used as the positive electrode active material.
As a non-aqueous electrolyte, except that LiBF 4 was dissolved at a concentration of 1 mol / liter in a non-aqueous solvent in which γ-butyrolactone and 1,2-dimethoxyethane were mixed at a volume ratio of 3: 2. A non-aqueous electrolyte solution containing nothing was used.
In accordance with the method described in [Preparation / Evaluation of Batteries], the produced nonaqueous electrolyte primary battery was subjected to a discharge test after high-temperature storage. The results are shown in Table 1.

[比較例5]
正極活物質として、二酸化マンガンを用いた。
非水電解液として、プロピレンカーボネートと1,2−ジメトキシエタンとを体積比で3:2の比率で混合させた非水溶媒に、0.5モル/リットルの濃度でLiCFSOを溶解させた以外は、何も含有させない非水電解液を用いた。
前記の[電池の作製・評価]に記載の方法に従って、製造した非水電解液一次電池の高温保存後の放電試験を行った。結果を表1に示す。
[Comparative Example 5]
Manganese dioxide was used as the positive electrode active material.
LiCF 3 SO 3 is dissolved at a concentration of 0.5 mol / liter in a non-aqueous solvent in which propylene carbonate and 1,2-dimethoxyethane are mixed at a volume ratio of 3: 2 as a non-aqueous electrolyte. Except for the above, a non-aqueous electrolyte solution containing nothing was used.
In accordance with the method described in [Preparation / Evaluation of Batteries], the produced nonaqueous electrolyte primary battery was subjected to a discharge test after high-temperature storage. The results are shown in Table 1.

[比較例6]
正極活物質として、二酸化マンガンを用いた。
非水電解液として、プロピレンカーボネートと1,2−ジメトキシエタンとを体積比で3:2の比率で混合させた非水溶媒に、0.5モル/リットルの濃度でLiClOを溶解させた以外は、何も含有させない非水電解液を用いた。
前記の[電池の作製・評価]に記載の方法に従って、製造した非水電解液一次電池の高温保存後の放電試験を行った。結果を表1に示す。
[Comparative Example 6]
Manganese dioxide was used as the positive electrode active material.
As a non-aqueous electrolyte, LiClO 4 was dissolved at a concentration of 0.5 mol / liter in a non-aqueous solvent in which propylene carbonate and 1,2-dimethoxyethane were mixed at a volume ratio of 3: 2. Used a non-aqueous electrolyte containing nothing.
In accordance with the method described in [Preparation / Evaluation of Batteries], the produced nonaqueous electrolyte primary battery was subjected to a discharge test after high-temperature storage. The results are shown in Table 1.

[比較例7]
正極活物質として、二酸化マンガンを用いた。
非水電解液として、プロピレンカーボネートと1,2−ジメトキシエタンとを体積比で3:2の比率で混合させた非水溶媒に、0.5モル/リットルの濃度でLiClOを溶解させた溶液に、1,3−プロパンスルトンを1重量%の濃度で含有させた非水電解液を用いた。
前記の[電池の作製・評価]に記載の方法に従って、製造した非水電解液一次電池の高温保存後の放電試験を行った。結果を表1に示す。
[Comparative Example 7]
Manganese dioxide was used as the positive electrode active material.
A solution in which LiClO 4 is dissolved at a concentration of 0.5 mol / liter in a non-aqueous solvent in which propylene carbonate and 1,2-dimethoxyethane are mixed at a volume ratio of 3: 2 as a non-aqueous electrolyte. In addition, a non-aqueous electrolyte solution containing 1,3-propane sultone at a concentration of 1% by weight was used.
In accordance with the method described in [Preparation / Evaluation of Batteries], the produced nonaqueous electrolyte primary battery was subjected to a discharge test after high-temperature storage. The results are shown in Table 1.

[結果]
実施例1〜6、比較例1〜7の結果を以下の表1に表わす。

Figure 2009252681
[result]
The results of Examples 1 to 6 and Comparative Examples 1 to 7 are shown in Table 1 below.
Figure 2009252681

本発明の一次電池用非水電解液を用いた実施例1〜6の非水電解液一次電池は、それぞれ対応する比較例1〜6よりも、高温保存時の抵抗上昇が小さく、安定に動作させられることがわかる。
また、比較例7では従来公知の添加剤の例として、特許第3866191号で用いられた環状スルトンを用いている。具体的には、一次電池用非水電解液に1,3−プロパンスルトンを含有させている。本比較例7と実施例6とを比較すると、実施例6の方が高温保存時の抵抗上昇が小さく、安定に動作させられることがわかる。
The non-aqueous electrolyte primary batteries of Examples 1 to 6 using the non-aqueous electrolyte for primary batteries of the present invention have a smaller resistance increase during high-temperature storage and operate stably than the corresponding Comparative Examples 1 to 6, respectively. You can see that
In Comparative Example 7, the cyclic sultone used in Japanese Patent No. 3866191 is used as an example of a conventionally known additive. Specifically, 1,3-propane sultone is contained in the non-aqueous electrolyte for primary batteries. Comparing the present Comparative Example 7 and Example 6, it can be seen that Example 6 has a smaller resistance increase during high temperature storage and can be operated stably.

本発明は、非水電解液一次電池において、高温保存時の抵抗上昇が小さく、高温環境下でも安定して動作することを可能とする非水電解液を提供することができる。   INDUSTRIAL APPLICABILITY The present invention can provide a non-aqueous electrolyte solution that has a small resistance increase during high-temperature storage and can operate stably even in a high-temperature environment in a non-aqueous electrolyte primary battery.

Claims (9)

正極と、金属リチウム又はリチウム合金を含んでなる負極とを有する一次電池用の非水電解液であって、
前記非水電解液が溶質と、非水溶媒と、モノフルオロリン酸塩及び/又はジフルオロリン酸塩とを含有する
ことを特徴とする、一次電池用非水電解液。
A non-aqueous electrolyte for a primary battery having a positive electrode and a negative electrode comprising metallic lithium or a lithium alloy,
The nonaqueous electrolytic solution for a primary battery, wherein the nonaqueous electrolytic solution contains a solute, a nonaqueous solvent, and a monofluorophosphate and / or a difluorophosphate.
モノフルオロリン酸塩及び/又はジフルオロリン酸塩を、非水電解液100重量%中に、0.01重量%以上、5重量%以下含有する
ことを特徴とする、請求項1記載の一次電池用非水電解液。
The primary battery according to claim 1, wherein the monofluorophosphate and / or difluorophosphate is contained in an amount of 0.01 wt% to 5 wt% in 100 wt% of the nonaqueous electrolyte. Non-aqueous electrolyte for use.
該非水溶媒が、環状カルボン酸エステル化合物及び/又は鎖状エーテル化合物を含有する
ことを特徴とする、請求項1又は請求項2に記載の一次電池用非水電解液。
The nonaqueous electrolytic solution for a primary battery according to claim 1 or 2, wherein the nonaqueous solvent contains a cyclic carboxylic acid ester compound and / or a chain ether compound.
該環状カルボン酸エステル化合物が、γ−ブチロラクトン及び/又はγ−バレロラクトンである
ことを特徴とする、請求項3記載の一次電池用非水電解液。
The non-aqueous electrolyte for a primary battery according to claim 3, wherein the cyclic carboxylic acid ester compound is γ-butyrolactone and / or γ-valerolactone.
該鎖状エーテル化合物が、1,2−ジメトキシエタン、1,2−ジエトキシエタン、及びジエチレングリコールジメチルエーテルからなる群から選ばれる少なくとも1種である
ことを特徴とする、請求項3又は請求項4記載の一次電池用非水電解液。
5. The chain ether compound is at least one selected from the group consisting of 1,2-dimethoxyethane, 1,2-diethoxyethane, and diethylene glycol dimethyl ether. Nonaqueous electrolyte for primary batteries.
該溶質が、LiBF、LiClO、及びLiCFSOからなる群から選ばれる少なくとも1種を含有する
ことを特徴とする、請求項1〜5の何れか一項に記載の一次電池用非水電解液。
6. The non-primary battery for a primary battery according to claim 1, wherein the solute contains at least one selected from the group consisting of LiBF 4 , LiClO 4 , and LiCF 3 SO 3. Water electrolyte.
正極、金属リチウム又はリチウム合金を含んでなる負極、及び請求項1〜6のいずれか1項に記載の非水電解液を有する
ことを特徴とする、非水電解液一次電池。
A non-aqueous electrolyte primary battery comprising: a positive electrode; a negative electrode comprising metallic lithium or a lithium alloy; and the non-aqueous electrolyte according to claim 1.
該正極が、フッ化黒鉛、又は式{(CF;0<X≦1}で表わされるフッ化炭素を含有する
ことを特徴とする、請求項7記載の非水電解液一次電池。
The non-aqueous electrolyte primary battery according to claim 7, wherein the positive electrode contains fluorinated graphite or carbon fluoride represented by the formula {(CF X ) n ; 0 <X ≦ 1}.
該正極が、二酸化マンガンを含有する
ことを特徴とする、請求項7記載の非水電解液一次電池。
The non-aqueous electrolyte primary battery according to claim 7, wherein the positive electrode contains manganese dioxide.
JP2008102344A 2008-04-10 2008-04-10 Non-aqueous electrolyte for primary battery and non-aqueous electrolyte primary battery using the same Active JP5526491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008102344A JP5526491B2 (en) 2008-04-10 2008-04-10 Non-aqueous electrolyte for primary battery and non-aqueous electrolyte primary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008102344A JP5526491B2 (en) 2008-04-10 2008-04-10 Non-aqueous electrolyte for primary battery and non-aqueous electrolyte primary battery using the same

Publications (2)

Publication Number Publication Date
JP2009252681A true JP2009252681A (en) 2009-10-29
JP5526491B2 JP5526491B2 (en) 2014-06-18

Family

ID=41313177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008102344A Active JP5526491B2 (en) 2008-04-10 2008-04-10 Non-aqueous electrolyte for primary battery and non-aqueous electrolyte primary battery using the same

Country Status (1)

Country Link
JP (1) JP5526491B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110059370A1 (en) * 2009-09-07 2011-03-10 Sawayama Takumi Electrolytic solution for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the electrolytic solution
EP2365574A3 (en) * 2010-03-02 2012-02-22 Sony Corporation Nonaqueous electrolytic solution and battery
JP5822044B1 (en) * 2015-04-17 2015-11-24 宇部興産株式会社 Non-aqueous electrolyte, and lithium ion secondary battery and lithium ion capacitor using the same
WO2016195062A1 (en) * 2015-06-03 2016-12-08 日立マクセル株式会社 Nonaqueous electrolyte primary battery and method for producing same
WO2018047456A1 (en) * 2016-09-12 2018-03-15 パナソニックIpマネジメント株式会社 Lithium battery
US11710834B2 (en) 2018-03-23 2023-07-25 Panasonic Intellectual Property Management Co., Ltd. Lithium primary battery
JP7426254B2 (en) 2020-02-19 2024-02-01 Fdk株式会社 Positive electrode of lithium primary battery and lithium primary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167270A (en) * 1997-08-21 1999-03-09 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2002170576A (en) * 2000-11-30 2002-06-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte cell
JP2004031079A (en) * 2002-06-25 2004-01-29 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2006004649A (en) * 2004-06-15 2006-01-05 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic liquid primary cell
JP2006012696A (en) * 2004-06-29 2006-01-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte primary battery
JP2006339046A (en) * 2005-06-02 2006-12-14 Matsushita Electric Ind Co Ltd Lithium primary battery
JP2007173180A (en) * 2005-12-26 2007-07-05 Central Glass Co Ltd Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP2007335284A (en) * 2006-06-16 2007-12-27 Matsushita Electric Ind Co Ltd Lithium cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167270A (en) * 1997-08-21 1999-03-09 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2002170576A (en) * 2000-11-30 2002-06-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte cell
JP2004031079A (en) * 2002-06-25 2004-01-29 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2006004649A (en) * 2004-06-15 2006-01-05 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic liquid primary cell
JP2006012696A (en) * 2004-06-29 2006-01-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte primary battery
JP2006339046A (en) * 2005-06-02 2006-12-14 Matsushita Electric Ind Co Ltd Lithium primary battery
JP2007173180A (en) * 2005-12-26 2007-07-05 Central Glass Co Ltd Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP2007335284A (en) * 2006-06-16 2007-12-27 Matsushita Electric Ind Co Ltd Lithium cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110059370A1 (en) * 2009-09-07 2011-03-10 Sawayama Takumi Electrolytic solution for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the electrolytic solution
US8481206B2 (en) * 2009-09-07 2013-07-09 Seiko Instruments Inc. Electrolytic solution for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the electrolytic solution
EP2365574A3 (en) * 2010-03-02 2012-02-22 Sony Corporation Nonaqueous electrolytic solution and battery
US9401529B2 (en) 2010-03-02 2016-07-26 Sony Corporation Nonaqueous electrolytic solution and battery including a heteropolyacid and/or a heteropolyacid compound
JP5822044B1 (en) * 2015-04-17 2015-11-24 宇部興産株式会社 Non-aqueous electrolyte, and lithium ion secondary battery and lithium ion capacitor using the same
WO2016166912A1 (en) * 2015-04-17 2016-10-20 宇部興産株式会社 Nonaqueous electrolyte, and lithium-ion secondary cell and lithium-ion capacitor in which same is used
WO2016195062A1 (en) * 2015-06-03 2016-12-08 日立マクセル株式会社 Nonaqueous electrolyte primary battery and method for producing same
JPWO2016195062A1 (en) * 2015-06-03 2017-06-15 日立マクセル株式会社 Non-aqueous electrolyte primary battery and manufacturing method thereof
US10535864B2 (en) 2015-06-03 2020-01-14 Maxell Holdings, Ltd. Nonaqueous electrolyte primary battery and method for producing same
WO2018047456A1 (en) * 2016-09-12 2018-03-15 パナソニックIpマネジメント株式会社 Lithium battery
JPWO2018047456A1 (en) * 2016-09-12 2019-01-31 パナソニックIpマネジメント株式会社 Lithium battery
US11710834B2 (en) 2018-03-23 2023-07-25 Panasonic Intellectual Property Management Co., Ltd. Lithium primary battery
JP7426254B2 (en) 2020-02-19 2024-02-01 Fdk株式会社 Positive electrode of lithium primary battery and lithium primary battery

Also Published As

Publication number Publication date
JP5526491B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
KR101954600B1 (en) Aqueous electrolyte solution for electrical storage device, and electrical storage device including said aqueous electrolyte solution
JP6613474B2 (en) Aqueous electrolyte for power storage device and power storage device including the aqueous electrolyte
CN104577197B (en) Rechargeable nonaqueous electrolytic battery
JP5274562B2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery
JP6131953B2 (en) Lithium secondary battery
JP4821161B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery
JP5545292B2 (en) Electrolytic solution for power storage device and power storage device
JP5526491B2 (en) Non-aqueous electrolyte for primary battery and non-aqueous electrolyte primary battery using the same
WO2012011507A1 (en) Non-aqueous electrolyte for secondary batteries, and secondary battery
JP2006244776A (en) Electrolyte for secondary battery, and the secondary battery using the same
EP3698420B1 (en) Additives and methods to add additives in a rechargeable non-aqueous lithium-air battery
JP2010067496A (en) Electrolyte solution, and use thereof
JP2011142066A (en) Lithium secondary battery
JP2008171574A (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery using this
WO2012011508A1 (en) Non-aqueous electrolyte for use in secondary batteries, and secondary battery
JP2003297423A (en) Nonaqueous system electrolyte solution and nonaqueous system electrolyte solution secondary battery using the same
JPWO2018173476A1 (en) Non-aqueous electrolyte secondary battery
CN111512488A (en) Non-aqueous electrolyte composition comprising lithium bis (fluorosulfonyl) imide
JP2016051600A (en) Nonaqueous electrolytic solution for power storage device
JP2008300313A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using it
JP2008171576A (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery using this
JP7289065B2 (en) Electrolyte and secondary battery
JP7084607B2 (en) Non-aqueous electrolyte for power storage devices
JP2008305705A (en) Nonaqueous electrolyte and nonaqueous electrolyte cell using the same
JP7060777B2 (en) Non-aqueous electrolyte for power storage devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5526491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350