JP2548574B2 - Electrolyte for lithium battery - Google Patents

Electrolyte for lithium battery

Info

Publication number
JP2548574B2
JP2548574B2 JP62185463A JP18546387A JP2548574B2 JP 2548574 B2 JP2548574 B2 JP 2548574B2 JP 62185463 A JP62185463 A JP 62185463A JP 18546387 A JP18546387 A JP 18546387A JP 2548574 B2 JP2548574 B2 JP 2548574B2
Authority
JP
Japan
Prior art keywords
lithium
charge
discharge
battery
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62185463A
Other languages
Japanese (ja)
Other versions
JPS6430180A (en
Inventor
敏郎 平井
準一 山木
勇 ▲吉▼松
真一 鳶島
正泰 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62185463A priority Critical patent/JP2548574B2/en
Publication of JPS6430180A publication Critical patent/JPS6430180A/en
Application granted granted Critical
Publication of JP2548574B2 publication Critical patent/JP2548574B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウム電池用電解液、更に詳細にはリチ
ウム電池に用いる電解液の改良に関する。
TECHNICAL FIELD The present invention relates to an electrolytic solution for a lithium battery, and more specifically to improvement of an electrolytic solution used for a lithium battery.

〔従来の技術〕[Conventional technology]

リチウムは、標準単極電位が−3.03V(標準水素電極
基準)と高く、還元力が極めて強く、また原子量が6.94
1と小さいため、重量当りの容量密度は3.86Ah/gと大き
い。このため、リチウムを負極活物質として用いる電池
(以下、リチウム電池と称する)は小型、高エネルギー
密度を有する電池として研究されており、既に二酸化マ
ンガン、フツ化黒鉛などを正極活物質として用いる電池
が市販されている。しかし、これらはいずれも一次電池
であり通常の実用に供しうる充放電可能なリチウム二次
電池は実現されていないのが現状である。高エネルギー
密度という放電特性の利点を生かしながら、リチウム電
池が充電も可能となれば、従来の電池系に比較して極め
て特性の優れた電池が実現することとなり、携帯電子機
器を始めとする産業界に与える効果は大きい。
Lithium has a high standard single electrode potential of −3.03V (standard hydrogen electrode standard), extremely strong reducing power, and an atomic weight of 6.94.
Since it is as small as 1, the capacity density per weight is as large as 3.86 Ah / g. Therefore, a battery using lithium as a negative electrode active material (hereinafter referred to as a lithium battery) has been studied as a battery having a small size and a high energy density, and a battery using manganese dioxide, fluorinated graphite or the like as a positive electrode active material has already been used. It is commercially available. However, all of these are primary batteries, and the present situation is that a rechargeable lithium secondary battery that can be put to ordinary practical use has not been realized. If lithium batteries can be recharged while taking advantage of the discharge characteristics of high energy density, batteries with extremely superior characteristics will be realized compared to conventional battery systems, and it will be used in industries such as portable electronic devices. It has a great effect on the world.

リチウム電池を二次化するためには、正極活物質の開
発、電解液の選択、電池構成法の改善など多くの解決す
べき問題がある。特に、電解液の選択は重要な課題であ
る。常温作動型のリチウム二次電池には、非水電解液を
用いることが実用の見地から望ましいが、電解液の導電
率は従来の電池系に用いられる水溶液系に比べ1桁も2
桁も低いという欠点があつた。このため、電池の放電利
用率向上のためには電解液の導電率向上は不可欠であ
る。同時に、二次電池に適用するためには、非水電解液
中におけるリチウムの充放電効率が高いことが要求され
るのは当然である。すなわち、リチウム二次電池に用い
る電解液は、高い導電率を有すること、高いリチウ
ム充放電効率を有すること、の二点を同時に充足する必
要がある。
In order to make a lithium battery secondary, there are many problems to be solved such as development of a positive electrode active material, selection of an electrolytic solution, and improvement of a battery construction method. In particular, the selection of the electrolytic solution is an important issue. It is desirable from the practical point of view to use a non-aqueous electrolytic solution for a lithium secondary battery that operates at room temperature, but the conductivity of the electrolytic solution is two orders of magnitude less than that of an aqueous solution system used in a conventional battery system.
There was a drawback that it was low. Therefore, it is essential to improve the conductivity of the electrolytic solution in order to improve the discharge utilization rate of the battery. At the same time, in order to apply it to the secondary battery, it is naturally required that the charge / discharge efficiency of lithium in the non-aqueous electrolyte is high. That is, the electrolytic solution used for the lithium secondary battery needs to simultaneously satisfy the two points of high conductivity and high lithium charge / discharge efficiency.

リチウム充放電効率の比較的高い電解液としては、Li
AsF6−2−メチルテトラヒドロフラン系電解液が提案さ
れている(米国特許第4118559号明細書参照)。しかし
ながら、同電解液の導電率は低く(1.5M LiAsF6で4.3×
10-3S・cm-1、25℃)、リチウム電池に用いた場合、充
放電効率が低いという欠点があつた。
As an electrolyte with relatively high lithium charge / discharge efficiency, Li
AsF 6-2-methyltetrahydrofuran-based electrolyte it has been proposed (see U.S. Pat. No. 4,118,559). However, the conductivity of the electrolyte is low (4.3M with 1.5M LiAsF 6).
(10 −3 S · cm −1 , 25 ° C.), and when used in a lithium battery, it had a drawback of low charge / discharge efficiency.

また、プロピレンカーボネートやエチレンカーボネー
トなどの極性二重結合を有する溶媒を用いた電解液は、
相対的に高い導電率を示すが(例えば、1.5M LiAsF6
それぞれ、5.3×10-3S・cm-1及び6.2×10-3S・cm-1)、
リチウムの充放電効率は低いという欠点を有する。
Further, the electrolytic solution using a solvent having a polar double bond such as propylene carbonate and ethylene carbonate,
It has a relatively high conductivity (eg 1.5M LiAsF 6 at 5.3 × 10 -3 S · cm −1 and 6.2 × 10 −3 S · cm −1 respectively ),
Lithium has a drawback of low charge / discharge efficiency.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

すなわち、現在まで導電率も高く、かつリチウムの充
放電効率が高いリチウム二次電池用電解液は実現してい
ない。
That is, up to now, an electrolyte solution for a lithium secondary battery, which has a high electric conductivity and a high lithium charge / discharge efficiency, has not been realized.

本発明は、このような現状にかんがみてなされたもの
であり、その目的は導電率が高く、かつリチウムの充放
電特性の優れたリチウム電池を製造可能とするリチウム
電池用電解液を提供することにある。
The present invention has been made in view of such a current situation, and an object thereof is to provide an electrolytic solution for a lithium battery, which enables production of a lithium battery having high conductivity and excellent charge / discharge characteristics of lithium. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によるリチウム電池用電解液は、リチウム塩を
有機溶媒に溶解させたリチウム電池用電解液において、
直鎖アルカンを10-3〜10-1M(mole/)の濃度範囲で含
有していることを最も主要な特徴とする。
The lithium battery electrolyte according to the present invention is a lithium battery electrolyte obtained by dissolving a lithium salt in an organic solvent,
The most main feature is that the linear alkane is contained in the concentration range of 10 -3 to 10 -1 M (mole /).

これによつて、従来高導電率と優れた充放電効率の両
方が困難であつたリチウム電池用電解液に対し、高導電
率を有し、かつ優れた充放電効率を有するリチウム電池
用電解液を実現するものである。
As a result, in contrast to a lithium battery electrolyte that has conventionally been difficult to have both high conductivity and excellent charge / discharge efficiency, a lithium battery electrolyte having high conductivity and excellent charge / discharge efficiency. Is realized.

本発明を更に詳しく説明する。 The present invention will be described in more detail.

リチウム電池は、負極活物質がリチウムあるいはリチ
ウムイオンを放電可能にするリチウム合金であり、正極
活物質がリチウムイオンと電気化学的に可逆反応を行う
物質であり、電解液がリチウム塩を有機溶媒に溶解させ
た溶液をもつて構成されている。
In a lithium battery, the negative electrode active material is a lithium alloy capable of discharging lithium or lithium ions, the positive electrode active material is a material that electrochemically reversibly reacts with lithium ions, and the electrolyte solution uses a lithium salt as an organic solvent. It is composed of a dissolved solution.

本発明によれば、上述のような電解液において、優れ
た特性を有するものを提供することを主旨とするもので
ある。すなわち、リチウム塩を有機溶媒に溶解させた溶
液中に、10-3〜10-1Mの濃度範囲で直鎖アルカンを含有
させ、これをリチウム電池用電解液として用いるもので
ある。
According to the present invention, it is an object of the present invention to provide an electrolytic solution as described above having excellent properties. That is, a solution in which a lithium salt is dissolved in an organic solvent contains a linear alkane in a concentration range of 10 −3 to 10 −1 M, and this is used as an electrolytic solution for a lithium battery.

リチウム電池を用いる電解液の導電率及びリチウムの
充放電効率を向上させるためには、リチウムから溶媒へ
の電子移動反応性の低い溶媒や、溶液中のリチウム塩が
解離しやすく、かつリチウムイオンの移動性が大きいこ
とが必要と考えられる。本発明における直鎖アルカン
は、リチウム塩の解離やリチウムイオンの移動性を妨げ
ることなく容易にリチウム負極に吸着し、リチウムの充
放電効率の低下要因となるリチウムと溶媒との反応を抑
制し、充放電を伴うリチウムイオンの負極上への析出、
負極から電解液中への溶出を円滑に行わせしめる目的で
添加するものである。
In order to improve the conductivity and the charge / discharge efficiency of lithium of an electrolyte using a lithium battery, a solvent having a low electron transfer reactivity from lithium to a solvent or a lithium salt in a solution is easily dissociated, and lithium ion It is considered necessary to have high mobility. The straight-chain alkane in the present invention is easily adsorbed on the lithium negative electrode without disturbing the dissociation of lithium salt and the mobility of lithium ions, and suppresses the reaction between lithium and the solvent, which causes a decrease in the charge / discharge efficiency of lithium, Deposition of lithium ions on the negative electrode with charge and discharge,
It is added for the purpose of facilitating the elution from the negative electrode into the electrolytic solution.

本発明に用いられる直鎖アルカンが、該電解液中に添
加されて有効な特性を示す理由は必ずしも明らかではな
いが、1つの考えとして該添加物が負極リチウムと物理
的あるいは化学的吸着結合を行うことにより、充放電サ
イクルに使用されるべき負極活物質としてのリチウムと
電解液との反応によるリチウムの損失を抑制する槽を負
極/電解液界面に形成する。また、この層は充電時のLi
+イオンの負極上への析出状態を良好にし、電気化学的
不活性となる析出リチウムの発生を抑制する効果も期待
される。電子顕微鏡による放電後、放電後の負極表面の
観察を、後述する実施例1に記載した電池系(ただし、
負極は30mAh Liを用いている)において行つた結果で
は、該添加剤を加えない系においては、リチウム充放電
効率を向上させる上で有効な径10μm程度の粒子状リチ
ウムと共に、リチウムの充放電効率低下の要因となる径
1〜2μm、長さ10μm程度の針状リチウムが負極表面
上に存在し、しかも充放電サイクルと共にこの針状リチ
ウムの析出割合が増加してきた。これに対し、該添加剤
を添加した本発明の電解液を用いた電池においては、上
記針状リチウムの存在は認められず、径2〜5μm程度
の粒子状リチウムが均一に析出した状態であり、該添加
剤の添加による本発明の電解液の有効性が確かめられ
た。
The reason why the linear alkane used in the present invention exhibits effective characteristics when added to the electrolytic solution is not necessarily clear, but one idea is that the additive forms a physical or chemical adsorption bond with the negative electrode lithium. By doing so, a tank for suppressing the loss of lithium due to the reaction between lithium as the negative electrode active material to be used in the charge / discharge cycle and the electrolytic solution is formed at the negative electrode / electrolytic solution interface. In addition, this layer is Li
It is also expected to improve the deposition state of + ions on the negative electrode and suppress the generation of precipitated lithium that becomes electrochemically inactive. After discharging with an electron microscope, observation of the surface of the negative electrode after discharging was performed using the battery system described in Example 1 described later (however,
The negative electrode uses 30 mAh Li), and in the system in which the additive is not added, the lithium charge / discharge efficiency is improved together with the particulate lithium having a diameter of about 10 μm, which is effective in improving the lithium charge / discharge efficiency. Needle-like lithium having a diameter of 1 to 2 μm and a length of about 10 μm, which is a cause of the decrease, is present on the surface of the negative electrode, and the deposition rate of the needle-like lithium increases with the charge / discharge cycle. On the other hand, in the battery using the electrolytic solution of the present invention to which the additive was added, the presence of the acicular lithium was not observed, and the particulate lithium having a diameter of about 2 to 5 μm was uniformly deposited. The effectiveness of the electrolytic solution of the present invention due to the addition of the additive was confirmed.

本発明における直鎖アルカンの添加濃度は10-3〜10-1
Mであるが、濃度が10-3M未満であると添加しない従来の
電解液の特性と同じで添加による特性の向上はみられ
ず、一方、濃度が10-1Mを越えると添加剤の過多がイオ
ンの移動度や負極の電気化学反応に悪影響を及ぼし、添
加前に比べて特性が低下するからである。
The addition concentration of the linear alkane in the present invention is 10 -3 to 10 -1.
However, when the concentration is less than 10 -3 M, the characteristics are not improved by the addition as it is the same as the properties of the conventional electrolyte solution that is not added.On the other hand, when the concentration exceeds 10 -1 M, the additive This is because the excessive amount adversely affects the mobility of ions and the electrochemical reaction of the negative electrode, and the characteristics deteriorate as compared with those before the addition.

本発明における電解液を構成するリチウム塩、及び有
機溶媒は、基本的に限定されるものではない。例えば、
リチウム塩においては、LiAsF6、LiClO4、LiSbF6、LiBF
4、LiPF6、LiAlCl4、LiCF3SO3及びLiCF3CO2などの1種
以上を有効に用いることができる。また、有機溶媒とし
ては、プロピレンカーボネート、エチレンカーボネー
ト、2−メチルテトラヒドロフラン、テトラヒドロフラ
ン、2−メチルジオキソラン、4−メチルジオキソラ
ン、ジオキソラン、1,2−ジメトキシエタン、γ−ブチ
ロラクトン、ジメチルスルホキシド、アセトニトリル、
ホルムアミド、ジメチルホルムアミド及びニトロメタン
等の1種以上の非プロトン性有機溶媒を有効に用いるこ
とができる。
The lithium salt and the organic solvent that compose the electrolytic solution in the present invention are not basically limited. For example,
In lithium salt, LiAsF 6, LiClO 4, LiSbF 6, LiBF
One or more of 4 , LiPF 6 , LiAlCl 4 , LiCF 3 SO 3 and LiCF 3 CO 2 can be effectively used. In addition, as the organic solvent, propylene carbonate, ethylene carbonate, 2-methyltetrahydrofuran, tetrahydrofuran, 2-methyldioxolane, 4-methyldioxolane, dioxolane, 1,2-dimethoxyethane, γ-butyrolactone, dimethylsulfoxide, acetonitrile,
One or more aprotic organic solvents such as formamide, dimethylformamide and nitromethane can be effectively used.

本発明による電解液を用いたリチウム電池に用いる負
極活物質は基本的に限定されるものではなく、従来のリ
チウム電池に用いられている負極活物質、すなわちリチ
ウムあるいはリチウムイオンを放電可能にするリチウム
合金を用いることができる。
The negative electrode active material used in the lithium battery using the electrolytic solution according to the present invention is basically not limited, and the negative electrode active material used in the conventional lithium battery, that is, lithium or lithium that can discharge lithium ions. Alloys can be used.

また、同様に本発明において用いられる正極活物質も
基本的に限定されず、従来のリチウム二次電池に用いら
れている正極活物質、すなわちリチウムイオンと電気化
学的に可逆反応を行う物質であることができる。
Similarly, the positive electrode active material used in the present invention is basically not limited, and is a positive electrode active material used in conventional lithium secondary batteries, that is, a material that electrochemically reversibly reacts with lithium ions. be able to.

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明する
が、本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.

実施例1 1.5M LiAsF6−エチレンカーボネート(以下、ECと略
記する)/2−メチルテトラヒドロフラン(以下、2Me TH
Fと略記する)(体積混合比1/1)中の不純物を100ppm以
下にコントロールした電解液を作製し、これにあらかじ
めモレキユラーシーブス3A及び又は4Aを入れ融点以上で
温度で2昼夜置き十分に脱水処理した各種の直鎖アルカ
ンを10-4〜0.5M混合し、以下に述べる作製方法により作
製したリチウム電池の電解液に用いた。
Example 1 1.5M LiAsF 6 -ethylene carbonate (hereinafter abbreviated as EC) / 2-methyltetrahydrofuran (hereinafter, 2Me TH)
(Abbreviated as F) (Mixing volume ratio 1/1) Prepare an electrolyte solution in which the impurities in the mixture are controlled to 100ppm or less, and add the Molecule Sieves 3A and / or 4A in advance to this and leave it at the temperature above the melting point for 2 days and nights. Various linear alkanes dehydrated to 10 −4 to 0.5 M were mixed and used as an electrolytic solution of a lithium battery produced by the production method described below.

正極活物質には、95mole%V2O5−5mole%P2O5の組成
より成る非晶質材料を用い、これを70重量%、導電剤と
してアセチレンブラツクを25重量%、バインダとしてテ
フロンを5重量%の混合比で作製した正極合剤ペレット
(16mφ、厚さ0.5mm)を正極として用い、負極として金
属リチウム(17mmφ、15mAh)を用い、更にセパレータ
として微孔性ポリプロピレンシートを用いてコイン型リ
チウム電池を作製した。
As the positive electrode active material, an amorphous material having a composition of 95 mol% V 2 O 5 −5 mol% P 2 O 5 was used, 70 wt% of this, acetylene black as the conductive agent was 25 wt%, and Teflon was used as the binder. Coin using positive electrode mixture pellets (16 mφ, thickness 0.5 mm) prepared at a mixing ratio of 5% by weight as a positive electrode, metallic lithium (17 mmφ, 15 mAh) as a negative electrode, and a microporous polypropylene sheet as a separator. Type lithium battery was prepared.

このリチウム電池を室温中、1mAの電流値、2〜3.5V
の電圧範囲で充放電試験を行い、電解液の充放電特性を
評価した。
This lithium battery at room temperature, current value of 1mA, 2-3.5V
A charge / discharge test was performed in the voltage range of 1 to evaluate the charge / discharge characteristics of the electrolytic solution.

結果の1例を第1図に示す。すなわち、第1図は1.5M
LiAsF6−EC/2Me THF(1/1)中にn−トリアコンタン
(n−C30H62)を0.01M添加した電解液と15mAhリチウム
を用いた本発明の電池について、1mAの電流値、2〜3.5
Vの電圧範囲で充放電試験を行つた際のサイクル回数
(横軸)と放電容量(mAh、縦軸)の関係を示したグラ
フである。該電池系においては、充放電サイクルの各放
電ごとに放電を関与できる負極側のリチウムはすべて消
費され、その容量は、第1図に明らかなように充放電効
率Eに応じて徐々に減少していくことになる。すなわ
ち、負極の充放電効率をE、第n回目の放電の容量をCn
とすると、 Cn=E×Cn-1=En-1×C1 が成立し、これより lnCn=(n−1)lnE+lnC1 なる関係が求まり、第1図のごとく縦軸の放電容量を対
数スケールで表わしたグラフの直線部の傾きから、負極
リチウムの充放電効率Eを算出することができる。
An example of the results is shown in FIG. That is, Fig. 1 shows 1.5M
LiAsF 6 -EC / 2Me the batteries of THF (1/1) in the n- triacontane (n-C 30 H 62) present invention with 0.01M electrolyte and 15mAh lithium was added, 1 mA current value, 2 to 3.5
6 is a graph showing the relationship between the number of cycles (horizontal axis) and the discharge capacity (mAh, vertical axis) when performing a charge / discharge test in the V voltage range. In the battery system, the lithium on the negative electrode side, which can participate in the discharge, is consumed for each discharge in the charge / discharge cycle, and the capacity thereof gradually decreases according to the charge / discharge efficiency E as is clear from FIG. I will go. That is, the charge / discharge efficiency of the negative electrode is E, and the capacity of the nth discharge is Cn.
Then, Cn = E × C n-1 = E n-1 × C 1 holds, and from this, the relation of lnCn = (n-1) lnE + lnC 1 is obtained, and the discharge capacity on the vertical axis is as shown in FIG. The charge / discharge efficiency E of the negative electrode lithium can be calculated from the slope of the straight line portion of the graph represented by the logarithmic scale.

各種直鎖アルカンを添加した電解液におけるリチウム
の充放電効率Eを上記の式により算出し、その結果を第
1表に示した。第1表には比較のため、添加物を含まな
い電解液における同様の試験の結果も合せて示した。
The charge / discharge efficiency E of lithium in the electrolytic solution to which various linear alkanes were added was calculated by the above formula, and the results are shown in Table 1. For comparison, Table 1 also shows the results of a similar test in an electrolyte solution containing no additive.

第1表の結果より明からなように、直鎖アルカンを10
-3〜10-1M添加することにより、無添加の場合に比べて
高いリチウム充放電効率を示すことがわかつた。
As is clear from the results in Table 1, 10
It was found that the addition of -3 to 10 -1 M shows higher lithium charge / discharge efficiency than the case of no addition.

実施例2 1.5M LiAsF6−EC/2Me THF(1/1)電解液の不純物をコ
ントロールした電解液を作製し、これにあらかじめモレ
キユラーシーブス3Aを入れ80℃の恒温槽中に2昼夜放置
して脱水したn−トリアコンタン(n−C30H62)を0.01
M添加し、これをリチウム電池溶電解液として用いた。
Example 2 An electrolyte containing 1.5M LiAsF 6 -EC / 2Me THF (1/1) electrolyte in which impurities were controlled was prepared, and Molecule Sieves 3A was added to the electrolyte in advance and allowed to stand in an 80 ° C. thermostat for 2 days and nights. to dehydrated n- triacontane the (n-C 30 H 62) 0.01
M was added, and this was used as a solution for a lithium battery.

作製後一定期間アルゴンドライボツクス中室温で放置
した該電解液を用い、これと実施例1と同様にして作製
した正極、負極を用いてコイン型リチウム電池を実施例
1と同様にして作製した。更に実施例1と同様の条件で
充放電試験を行い、リチウム充放電効率を評価した。
A coin-type lithium battery was manufactured in the same manner as in Example 1 by using the electrolytic solution left at room temperature in an argon dry box for a certain period of time after manufacturing and using the positive electrode and the negative electrode manufactured in the same manner as in Example 1. Furthermore, a charge / discharge test was performed under the same conditions as in Example 1 to evaluate the lithium charge / discharge efficiency.

結果を第2表に示す。第2表より明らかなように、該
添加剤は経時的分解劣化を来さず安定した充放電効率を
維持することがわかつた。
The results are shown in Table 2. As is clear from Table 2, it has been found that the additive does not decompose and deteriorate with time and maintains a stable charge / discharge efficiency.

実施例3 不純物をコントロールした1.5M LiAsF6−EC/2Me THF
(1/1)中にn−トリアコンタン(n−C30H62)を添加
した実施例2と同じ電解液を用い、実施例1と同様のコ
イン型リチウム電池を作製した。
Example 3 1.5M LiAsF 6 −EC / 2Me THF with controlled impurities
A coin-type lithium battery similar to that of Example 1 was produced by using the same electrolytic solution as in Example 2 in which n-triacontane (n-C 30 H 62 ) was added to (1/1).

作製したリチウム電池を1mAの電流値、2V〜3.5Vの電
圧規制で、放電後1時間の休止、充電後の休止時間を無
休止、10分、1時間、10時間、100時間、20日にそれぞ
れ設定した条件で充放電試験を行い、リチウム充放電効
率を評価した。
The prepared lithium battery has a current value of 1 mA and a voltage regulation of 2 V to 3.5 V, and has a pause of 1 hour after discharge and no pause after charging for 10 minutes, 1 hour, 10 hours, 100 hours, 20 days. A charging / discharging test was performed under the set conditions to evaluate the lithium charging / discharging efficiency.

結果を第3表に示す。第3表より明らかなように、該
添加剤は、負極リチウムに対し、何ら特性を劣化させる
ような反応を経時的に起こさず、長期休止に耐える優れ
た特性をもたらすことが明らかとなつた。
The results are shown in Table 3. As is clear from Table 3, it was revealed that the additive does not cause any reaction that deteriorates the characteristics with respect to the negative electrode lithium with time, and provides excellent characteristics that can stand for a long period of rest.

実施例4 脱水処理を行つたn−デカン(n−C10H22)、n−ヘ
キサデカン(n−C16H34)、及びn−トリアコンタン
(n−C30H62)の各添加剤を、1M LiClO4−プロピレン
カーボネート(以下、PCと略記する)/1,2−ジメトキシ
エタン(以下、DMEと略記する)(1/1)、1.5M LiAsF6
−PC、1.5M LiAsF6−2Me THF、1.5M LiPF6−EC/2Me THF
(1/1)の不純物をコントロールした各電解液中に10-4
〜0.5Mの濃度で添加し、リチウム電池用電解液として用
いた。
EXAMPLE 4 dehydrated KoTsuta n- decane (n-C 10 H 22) , n- hexadecane (n-C 16 H 34) , and n- triacontane each additive (n-C 30 H 62) , 1M LiClO 4 -propylene carbonate (hereinafter abbreviated as PC) / 1,2-dimethoxyethane (hereinafter abbreviated as DME) (1/1), 1.5M LiAsF 6
−PC, 1.5M LiAsF 6 −2Me THF, 1.5M LiPF 6 −EC / 2Me THF
10 -4 in each electrolyte solution with controlled (1/1) impurities
It was added at a concentration of 0.5 M and used as an electrolyte for lithium batteries.

実施例1と同様にしてコイン型電池を作製し、実施例
1と同様の条件で充放電試験を行つた。試験より得られ
たリチウム充放電効率を第4表に示す。
A coin-type battery was produced in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions as in Example 1. The lithium charge / discharge efficiency obtained from the test is shown in Table 4.

第4表より明らかなように、いずれの電解液において
も該添加剤を添加することにより、無添加時と比べてよ
り高い充放電効率を示すことが明らかとなつた。
As is clear from Table 4, it was revealed that by adding the additive in any of the electrolytic solutions, higher charging / discharging efficiency was exhibited as compared with the case of no addition.

実施例5 不純物をコントロールした1.5M LiAsF6−EC/2Me THF
(1/1)電解液中に、あらかじめモレキユラーシーブス3
Aを入れ80℃恒温槽中に2昼夜放置して脱水処理を施し
たn−トリアコンタン(n−C30H62)を0.01M添加し、
リチウム電池用電解液とした。
Example 5 1.5M LiAsF 6 -EC / 2Me THF with controlled impurities
In a (1/1) electrolyte solution, pre-dissolve more sieves 3
Add A and add 0.01M of dehydrated n-triacontane (n-C 30 H 62 ), which was left for 2 days in an 80 ° C constant temperature bath.
It was used as an electrolyte for a lithium battery.

活物質に組成が95mole%V2O5−5mole%P2O5となる非
晶質材料を含む実施例1と同様にして作製した正極合剤
ペレツト(16mmφ)を正極として用い、負極として60mA
hの金属リチウム(17mmφ)を用い、実施例1と同様に
してコイン型リチウム電池を作製した。
A positive electrode material mixture pellet (16 mmφ) prepared in the same manner as in Example 1 containing an active material containing an amorphous material having a composition of 95 mole% V 2 O 5 −5 mole% P 2 O 5 was used as a positive electrode, and 60 mA was used as a negative electrode.
A coin-type lithium battery was produced in the same manner as in Example 1, except that metallic lithium (17 mmφ) of h was used.

このリチウム電池を室温中、放電電流3mA/cm2、充電
電流1mA/cm2、2V〜3.5Vの電圧規制で充放電試験を行
い、充放電特性を評価した。比較のため、添加剤を含ま
ない電解液を用いてコイン型電池を作製し、同様の充放
電試験を行つた。
The lithium battery was subjected to a charge / discharge test at room temperature under a discharge current of 3 mA / cm 2 , a charge current of 1 mA / cm 2 , and a voltage regulation of 2 V to 3.5 V to evaluate the charge / discharge characteristics. For comparison, a coin-type battery was prepared using an electrolyte solution containing no additive, and the same charge / discharge test was performed.

結果を第2図に示す。すなわち、第2図は1.5M LiAsF
6−EC/2Me THF(1/1)電解液と、これに0.01Mn−トリア
コンタンを添加した電解液とを用いたそれぞれの電池に
ついて放電電流3mA/cm2、充電電流1mA/cm2、2〜3.5Vの
電圧規制で充放電試験を行つた際の充放電サイクル(横
軸)に伴う放電容量(mAh、縦軸)の変化を示したグラ
フである。第2図のうち、曲線Aはn−トリアコンタン
を添加剤として0.01M含む電解液を用いた本発明の電池
の場合であり、曲線Bは添加剤を含まない電解液を用い
た電池の場合である。
Results are shown in FIG. That is, Fig. 2 shows 1.5M LiAsF
Discharge current 3 mA / cm 2 , charge current 1 mA / cm 2 , 2 for each battery using 6- EC / 2Me THF (1/1) electrolyte solution and electrolyte solution in which 0.01 Mn-triacontane was added It is the graph which showed the change of the discharge capacity (mAh, a vertical axis | shaft) with a charge / discharge cycle (horizontal axis | shaft) at the time of performing a charging / discharging test by voltage regulation of -3.5V. In FIG. 2, curve A shows the case of the battery of the present invention using the electrolytic solution containing 0.01 M of n-triacontane as an additive, and curve B shows the case of the battery using the electrolytic solution containing no additive. Is.

第2図より明らかなように、n−トリアコンタン添加
剤として含む電解液を用いた電池は、該添加剤を含まな
い電解液を用いた電池に比べて優れた充放電サイクル安
定性を示した。
As is clear from FIG. 2, the battery using the electrolytic solution containing the n-triacontane additive exhibited excellent charge-discharge cycle stability as compared with the battery using the electrolytic solution containing no additive. .

実施例6 不純物をコントロールした1.5M LiAsF6−EC/2Me THF
(1/1)電解液に、あらかじめモレキユラーシーブス3A
を入れ80℃の恒温槽中に2昼夜置いて十分脱水したn−
トリアコンタン(n−C30H62)を0.01M添加し、リチウ
ム電池用電解液とした。
Example 6 1.5M LiAsF 6 -EC / 2Me THF with controlled impurities
(1/1) Electrolyte solution, Moreaki Sieves 3A
N-was put in a thermostat at 80 ° C for 2 days and nights to be thoroughly dehydrated n-
Triacontane (n-C 30 H 62) was 0.01M added and the lithium battery electrolyte.

この電解液を用いて、実施例5と同様にしてコイン型
リチウム電池を作製した。この電池を充電電流がそれぞ
れ1mA/cm2、2mA/cm2、4mA/cm2、及び充電電流1mA/cm2
2〜3.5Vの電圧規制で充放電試験を行つた。比較のため
に、添加剤を含まない電解液を用い、同様にしてコイン
型リチウム電池を作製し、同様の条件で充放電試験を行
つた。
Using this electrolytic solution, a coin type lithium battery was produced in the same manner as in Example 5. This battery has a charging current of 1 mA / cm 2 , 2 mA / cm 2 , 4 mA / cm 2 , and charging current of 1 mA / cm 2 ,
A charge / discharge test was conducted under the voltage regulation of 2 to 3.5V. For comparison, a coin-type lithium battery was prepared in the same manner using an electrolytic solution containing no additive, and a charge / discharge test was conducted under the same conditions.

結果を第3図に示す。すなわち、第3図は上記リチウ
ム電池の充放電サイクル回数(横軸)に伴う放電容量
(mAh、縦軸)の変化を表わしたグラフである。第3図
において、曲線Cは放電電流、充電電流共1mA/cm2の条
件での充放電試験におけるn−トリアコンタンを添加し
た電解液使用の電池の場合であり、曲線Dは同条件の充
放電試験における添加剤を含まない電解液使用の電池の
場合であり、曲線Eは放電電流2mA/cm2、充電電流1mA/c
m2の条件での充放電試験におけるn−トリアコンタン添
加の電解液を使用した電池の場合であり、曲線Fは同条
件での充放電試験における添加剤を含まない電解液を使
用した電池の場合である。更に第3図において、曲線G
は、放電電流4mA/cm2、充電電流1mA/cm2の条件での充放
電試験におけるn−トリアコンタンを添加した電解液を
用いた電池の場合であり、曲線Hは、同条件での充放電
試験における添加剤を含まない電解液を用いた電池の場
合である。
Results are shown in FIG. That is, FIG. 3 is a graph showing the change in discharge capacity (mAh, vertical axis) with the number of charge / discharge cycles (horizontal axis) of the lithium battery. In FIG. 3, curve C shows the case of a battery using an electrolytic solution to which n-triacontane was added in a charge / discharge test under conditions of discharge current and charge current of 1 mA / cm 2 , and curve D shows the case of charging under the same conditions. This is a case of a battery using an electrolyte solution containing no additive in the discharge test, and curve E shows a discharge current of 2 mA / cm 2 and a charging current of 1 mA / c.
In the case of the battery using the electrolyte solution added with n-triacontane in the charge / discharge test under the condition of m 2 , the curve F shows the result of the battery using the electrolyte solution containing no additive in the charge / discharge test under the same condition. This is the case. Furthermore, in FIG. 3, the curve G
Shows the case of the battery using the electrolyte solution to which n-triacontane was added in the charge / discharge test under the conditions of the discharge current of 4 mA / cm 2 and the charge current of 1 mA / cm 2 , and the curve H shows the charge under the same conditions. This is a case of a battery using an electrolytic solution containing no additive in a discharge test.

第3図より明らかなように、いずれの条件での充放電
試験においても、n−トリアコンタンを添加した本発明
における電解液を用いた場合、無添加の電解液を用いた
場合と比較して容量の大幅な低下はみられず、かつ長期
にわたる充放電サイクル安定性を示した。
As is clear from FIG. 3, in any charging / discharging test, the case of using the electrolytic solution of the present invention to which n-triacontane was added was compared with the case of using no additive electrolytic solution. No significant decrease in capacity was observed, and long-term charge / discharge cycle stability was demonstrated.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明による直鎖アルカンを10
-3〜10-1Mの濃度範囲で添加した、リチウム塩を溶解し
た有機溶媒系電解液をリチウム電池に用いると充放電容
量が大きく、かつ優れた充放電サイクル寿命を示す高エ
ネルギー密度電池が可能となり、種々の分野で広く利用
できるという利点がある。
As explained above, the linear alkane according to the present invention
-3 ~ 10 -1 M concentration range of the lithium salt dissolved organic solvent-based electrolyte solution is used in a lithium battery, the battery has a large charge and discharge capacity and a high energy density battery showing excellent charge and discharge cycle life. It has the advantage that it becomes possible and can be widely used in various fields.

【図面の簡単な説明】[Brief description of drawings]

第1図は、1.5M LiAsF6−EC/2Me THF(1/1)中にn−ト
リアコンタンを0.01M添加した電解液を用いる本発明の
電池で、負極に15mAhリチウムを用いた電池の1mA、2〜
3.5Vの電圧範囲で充放電試験を行つた際のサイクル回数
と放電容量の関係を示したグラフ、第2図は、1.5M LiA
sF6−EC/2Me THF(1/1)中にn−トリアコンタンを0.01
M添加した電解液と添加しない電解液を用いた電池の放
電電流3mA/cm2、充電電流1mA/cm2、2〜3.5Vの電圧規制
で充放電試験を行つた際のサイクル回数に伴う放電容量
の変化を示したグラフ、第3図は、同じ系の電池につい
て放電電流がそれぞれれ1mA/cm2、2mA/cm2、4mA/cm2
充電電流が1mA/cm2、2V〜3.5Vの電圧規制で充放電試験
を行つた際のサイクルに伴う放電容量の変化を示したグ
ラフである。
FIG. 1 is a battery of the present invention using an electrolyte solution in which 0.01 M of n-triacontane was added to 1.5 M LiAsF 6 -EC / 2Me THF (1/1), and 1 mA of a battery using 15 mAh lithium as a negative electrode. , 2
A graph showing the relationship between the number of cycles and the discharge capacity when conducting a charge / discharge test in the voltage range of 3.5V, Fig. 2 shows 1.5M LiA
0.01 of n-triacontane in sF 6 -EC / 2Me THF (1/1)
Discharge according to the number of cycles when a charge / discharge test is performed under the voltage regulation of 3mA / cm 2 charging current, 1mA / cm 2 charging current and 2 to 3.5V discharge current of batteries with and without added electrolyte. The graph showing the change in capacity, Fig. 3, shows that the discharge currents of the same type of batteries are 1mA / cm 2 , 2mA / cm 2 , 4mA / cm 2 ,
It is the graph which showed the change of the discharge capacity with the cycle at the time of performing a charging / discharging test by charging voltage 1mA / cm < 2 > and voltage regulation of 2V-3.5V.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲吉▼松 勇 茨城県那珂郡東海村大字白方字白根162 番地 日本電信電話株式会社茨城電気通 信研究所内 (72)発明者 鳶島 真一 茨城県那珂郡東海村大字白方字白根162 番地 日本電信電話株式会社茨城電気通 信研究所内 (72)発明者 荒川 正泰 茨城県那珂郡東海村大字白方字白根162 番地 日本電信電話株式会社茨城電気通 信研究所内 (56)参考文献 特開 昭63−4569(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor ▲ Yoshi ▼ Matsu Isamu 162 Shirahone, Shirahata, Tokai-mura, Naka-gun, Ibaraki Prefecture, Nippon Telegraph and Telephone Corporation, Ibaraki Dentsu Communication Laboratory (72) Inventor Shinichi Tobishima Ibaraki 162, Shirokata, Shirahone, Tokai-mura, Naka-gun, Ibaraki, NTT Corporation, Ibaraki Dentsu Telecom Laboratory (72) Inventor, Masayasu Arakawa 162, Shirane, Shirokata, Tokai-mura, Naka-gun, Ibaraki Nippon Telegraph and Telephone Corporation, Ibaraki Electric Co., Ltd. Communications Research Laboratory (56) References JP-A-63-4569 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウム塩を有機溶媒に溶解させたリチウ
ム電池用電解液において、直鎖アルカンを添加剤として
10-3〜10-1M(mole/)の濃度範囲で含有していること
を特徴とするリチウム電池用電解液。
1. An electrolytic solution for a lithium battery in which a lithium salt is dissolved in an organic solvent, wherein a linear alkane is used as an additive.
An electrolytic solution for a lithium battery, which is contained in a concentration range of 10 -3 to 10 -1 M (mole /).
JP62185463A 1987-07-27 1987-07-27 Electrolyte for lithium battery Expired - Lifetime JP2548574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62185463A JP2548574B2 (en) 1987-07-27 1987-07-27 Electrolyte for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62185463A JP2548574B2 (en) 1987-07-27 1987-07-27 Electrolyte for lithium battery

Publications (2)

Publication Number Publication Date
JPS6430180A JPS6430180A (en) 1989-02-01
JP2548574B2 true JP2548574B2 (en) 1996-10-30

Family

ID=16171226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62185463A Expired - Lifetime JP2548574B2 (en) 1987-07-27 1987-07-27 Electrolyte for lithium battery

Country Status (1)

Country Link
JP (1) JP2548574B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03206575A (en) * 1990-01-09 1991-09-09 Stanley Electric Co Ltd Image processing device
CN114256508A (en) * 2022-01-14 2022-03-29 南方科技大学 Non-aqueous electrolyte and secondary battery

Also Published As

Publication number Publication date
JPS6430180A (en) 1989-02-01

Similar Documents

Publication Publication Date Title
CN109004276B (en) Lithium negative electrode protective film, preparation method and lithium metal secondary battery
CN111063863B (en) Metal lithium composite negative electrode material and preparation method and application thereof
US6919143B2 (en) Positive active material composition for lithium-sulfur battery and lithium-sulfur battery fabricated using same
JP4837614B2 (en) Lithium secondary battery
CN102113161A (en) Nonaqueous electrolyte secondary battery
KR20180001997A (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof
KR20170121047A (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof
KR20170092455A (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof
JPH11185753A (en) Nonaqueous electrolyte lithium secondary battery
CN108886168A (en) Additive for non-aqueous electrolytic solution, the non-aqueous electrolytic solution for lithium secondary battery and the lithium secondary battery including the non-aqueous electrolytic solution
JP2548573B2 (en) Electrolyte for lithium battery
KR20180124697A (en) Electrolyte system and lithium metal battery comprising the same
JP2000251932A (en) Nonaqueous electrolyte battery
JP2000156224A (en) Nonaqueous electrolyte battery
CN114497739B (en) Lithium secondary battery electrolyte and application thereof
JP2548574B2 (en) Electrolyte for lithium battery
CN110858664A (en) Electrolyte, battery containing electrolyte and electric vehicle
CN115084656A (en) Ether electrolyte and application thereof in battery
CN114824489A (en) Medium-salt-concentration electrolyte for lithium-sulfur battery
JPH07220756A (en) Nonaqueous electrolyte lithium secondary battery
JP2546680B2 (en) Electrolyte for lithium battery
JP3498345B2 (en) Non-aqueous secondary battery
KR102046538B1 (en) Electrolyte system and lithium metal battery comprising the same
JP2002270170A (en) Carbonaceous negative electrode material for lithium secondary battery and producing method thereof
JPH08162154A (en) Secondary battery having nonaqueous solvent electrolyt

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term