JPH10275619A - Paste type cadmium electrode - Google Patents

Paste type cadmium electrode

Info

Publication number
JPH10275619A
JPH10275619A JP9079428A JP7942897A JPH10275619A JP H10275619 A JPH10275619 A JP H10275619A JP 9079428 A JP9079428 A JP 9079428A JP 7942897 A JP7942897 A JP 7942897A JP H10275619 A JPH10275619 A JP H10275619A
Authority
JP
Japan
Prior art keywords
cadmium
paste
electrode
type cadmium
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9079428A
Other languages
Japanese (ja)
Inventor
Satoshi Minoura
敏 箕浦
Toshiaki Konuki
利明 小貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP9079428A priority Critical patent/JPH10275619A/en
Publication of JPH10275619A publication Critical patent/JPH10275619A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To retard the generation of hydrogen gas and enhance charging characteristics at low temperature by containing cadmium, β type cadmium hydroxide, γ type cadmium hydroxide in an electrode, separating the β type cadmium hydroxide from the γ type cadmium hydroxide so as not to come in contact with each other, and holding them with one kind of polymer binder selected from two and three kinds. SOLUTION: A paste type cadmium electrode is manufactured with paste prepared by dispersing β type cadmium hydroxide, metallic cadmium, and nylon fibers in an aqueous solution of one of PVP, PTFE in the specified solid composition ratio. Another paste is prepared by dispersing γ type cadmium hydroxide, metallic cadmium, and nylon fibers in an aqueous solution of one of CMC, MC, and PVA in the specified solid composition ratio, and applied to the cadmium electrode. The viscosity of the later paste is made lower than the that of the former paste. The drying temperature of both paste after coating is preferable to set to 150-200 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、小形機器などに用
いられる密閉形ニッケル−カドミウム蓄電池の負極であ
るペースト式カドミウム電極に関するものであり、詳し
くは密閉形ニッケル−カドミウム蓄電池を低温で充電し
たときのペースト式カドミウム電極からの水素ガス発生
の抑制に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a paste-type cadmium electrode which is a negative electrode of a sealed nickel-cadmium storage battery used for a small device or the like, and more particularly, to a case where a sealed nickel-cadmium storage battery is charged at a low temperature. The present invention relates to the suppression of generation of hydrogen gas from a paste-type cadmium electrode.

【0002】[0002]

【従来の技術】上記密閉形ニッケル−カドミウム蓄電池
などの密閉形アルカリ蓄電池に用いられるカドミウム電
極としては、工程が比較的簡単で製造コストが安いペー
スト式のものが広く用いられている。このペースト式カ
ドミウム電極の製造方法としては、酸化カドミウムなど
の活物質をバインダである高分子系結着剤溶液とともに
ペース状になるまで混練し、そのペーストを導電性芯材
に塗着し、その後乾燥してペースト式カドミウム電極を
得るという方法が一般的である。ペースト式カドミウム
電極は、密閉形ニッケル−カドミウム蓄電池の正極であ
る水酸化ニッケルを主成分としたニッケル電極と比べ
て、多くの活物質が必要とされる。これは、ニッケル電
極よりもペースト式カドミウム電極の利用率が低いこと
と、密閉形ニッケル−カドミウム蓄電池が満充電を越え
て充電されたとき、ペースト式カドミウム電極から水素
ガスが発生しないように、充電リザーブと称して、未充
電部分を残しておくためである。ニッケル電極で発生す
る酸素ガスはペースト式カドミウム電極で還元され、充
電生成物である金属カドミウムは放電生成物である水酸
化カドミウムへ変化するため、充電リザーブの量が減少
することはない。その結果、満充電後もペースト式カド
ミウム電極は充電が進行し、水素ガスが発生することは
ない。
2. Description of the Related Art As a cadmium electrode used in a sealed alkaline storage battery such as the above-mentioned sealed nickel-cadmium storage battery, a paste type electrode whose process is relatively simple and whose production cost is low is widely used. As a method of manufacturing this paste-type cadmium electrode, an active material such as cadmium oxide is kneaded together with a polymer binder solution as a binder until a paste is formed, and the paste is applied to a conductive core material. A method of drying to obtain a paste-type cadmium electrode is generally used. The paste-type cadmium electrode requires a larger amount of active material than the nickel electrode mainly composed of nickel hydroxide, which is the positive electrode of the sealed nickel-cadmium storage battery. This is because the utilization rate of the paste-type cadmium electrode is lower than that of the nickel electrode, and charging is performed so that hydrogen gas is not generated from the paste-type cadmium electrode when the sealed nickel-cadmium storage battery is charged beyond full charge. This is because an uncharged portion is left as a reserve. Oxygen gas generated at the nickel electrode is reduced by the paste-type cadmium electrode, and metal cadmium, which is a charge product, changes to cadmium hydroxide, which is a discharge product, so that the amount of charge reserve does not decrease. As a result, the charging of the paste-type cadmium electrode proceeds even after full charge, and no hydrogen gas is generated.

【0003】しかし、ペースト式カドミウム電極がニッ
ケル電極と比べて利用率が低いために、特に低温での密
閉形ニッケル−カドミウム蓄電池の過充電においては、
ペースト式カドミウム電極から水素ガスが発生し、電池
内圧が上昇する。電池内圧が上昇すると、やがて電池上
蓋に設けられた安全弁が開き、電解液の漏れを引き起こ
し、その結果電池寿命の低下、あるいは周辺機器を汚染
する等の問題を引き起こす。そこでペ−スト式カドミウ
ム電極の導電剤としてニッケル粉末を添加することが提
案されている。例えば特開昭58−35870号公報で
は、ニッケル塩の酸性溶液中にニッケル粉末を分散して
得た、表面に水酸化ニッケル層を有するニッケル粉末よ
りなる導電剤をペースト式カドミウム電極中に添加する
ことが考えられている。しかし、ニッケル粉末は水素過
電圧を低下させるため、水素ガスが発生しやすい状況に
は変わりがない。特開昭58−186163号公報で
は、添加するカーボニルニッケル粉末を主活物質に対し
て1重量%以下にすることによって水素ガス発生を抑制
するとともに、活物質表面層に金属ニッケル層と金属カ
ドミウム層を順次形成させて、活物質表面に直接ニッケ
ル層が露出しない構成とすることでペースト式カドミウ
ム電極の導電性を確保することが考えられている。この
場合、充電量が200%程度であると水素ガスの発生は
抑制されるものの、それ以上連続して充電すると水素ガ
ス発生の抑制効果は小さくなり、やがて電池内圧は上昇
する。
However, since the utilization rate of the paste-type cadmium electrode is lower than that of the nickel electrode, particularly in the case of overcharging of a sealed nickel-cadmium storage battery at a low temperature,
Hydrogen gas is generated from the paste-type cadmium electrode, and the internal pressure of the battery increases. When the internal pressure of the battery rises, a safety valve provided on the battery lid eventually opens, causing leakage of the electrolytic solution, resulting in a problem such as a reduction in battery life or contamination of peripheral devices. Therefore, it has been proposed to add nickel powder as a conductive agent for the paste cadmium electrode. For example, in JP-A-58-35870, a conductive agent composed of a nickel powder having a nickel hydroxide layer on the surface obtained by dispersing a nickel powder in an acidic solution of a nickel salt is added to a paste-type cadmium electrode. It is thought that. However, since nickel powder reduces hydrogen overvoltage, the situation where hydrogen gas is easily generated remains unchanged. In JP-A-58-186163, generation of hydrogen gas is suppressed by reducing the amount of carbonyl nickel powder added to 1% by weight or less based on the main active material, and a metal nickel layer and a metal cadmium layer are formed on the active material surface layer. Are sequentially formed so that the nickel layer is not directly exposed on the surface of the active material to secure the conductivity of the paste-type cadmium electrode. In this case, when the charged amount is about 200%, the generation of hydrogen gas is suppressed, but when the battery is continuously charged, the effect of suppressing the generation of hydrogen gas is reduced, and the internal pressure of the battery eventually increases.

【0004】その他の方法として、発生した水素ガスを
電池内で消費させて、電池内圧の上昇を抑制することが
提案されている。例えば特開昭52−58827号公報
では、コバルトに対して60wt%以下のニッケルある
いはニッケル化合物を含んだ水酸化コバルトを集電体に
保持させたガス吸収電極を正極あるいは負極に接続し
て、発生した水素ガスをこのガス吸収電極で吸収するこ
とが考えられている。また、特開昭61−179070
号公報では、水素吸蔵合金電極を密閉形ニッケル−カド
ミウム蓄電池内に挿入して正極と接続し、発生した水素
ガスをこの水素吸蔵合金電極で吸収することが考えられ
ている。しかし、これらの方法は電池の構造が複雑にな
り製造が困難である。
[0004] As another method, it has been proposed to suppress the rise in battery internal pressure by consuming generated hydrogen gas in the battery. For example, Japanese Patent Application Laid-Open No. 52-58827 discloses that a gas-absorbing electrode in which a current collector holds cobalt hydroxide containing 60% by weight or less of nickel or a nickel compound with respect to cobalt is connected to a positive electrode or a negative electrode. It is considered that the absorbed hydrogen gas is absorbed by the gas absorbing electrode. Also, Japanese Patent Application Laid-Open No. 61-179070
In the publication, it is considered that a hydrogen storage alloy electrode is inserted into a sealed nickel-cadmium storage battery and connected to a positive electrode, and the generated hydrogen gas is absorbed by the hydrogen storage alloy electrode. However, these methods have a complicated battery structure and are difficult to manufacture.

【0005】[0005]

【発明が解決しようとする課題】導電剤であるニッケル
粉末は、水素過電圧を低下させるため、水素ガスが発生
しやすい状態であることには変わりなく、ニッケル粉末
の添加は好ましくない。また、ニッケル粉末を添加する
場合、ペースト式カドミウム電極の体積エネルギー密度
が減少するため、密閉形ニッケル−カドミウム蓄電池の
高容量化には適さない。さらに、補助電極を電池内に設
ける場合、電池の構造が複雑になり製造が困難になる。
SUMMARY OF THE INVENTION Nickel powder, which is a conductive agent, is in a state where hydrogen gas is easily generated because hydrogen overvoltage is reduced, and addition of nickel powder is not preferable. In addition, when nickel powder is added, the volume energy density of the paste-type cadmium electrode is reduced, which is not suitable for increasing the capacity of a sealed nickel-cadmium storage battery. Further, when the auxiliary electrode is provided in the battery, the structure of the battery becomes complicated and manufacturing becomes difficult.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに本発明は、密閉形アルカリ蓄電池、例えば密閉形ニ
ッケル−カドミウム蓄電池に用いられるペースト式カド
ミウム電極において、該電極中にカドミウム、β型水酸
化カドミウム、γ型水酸化カドミウムを含み、かつ該電
極中のβ型水酸化カドミウムとγ型水酸化カドミウムが
互いに接することがなく、かつ該電極中のβ型水酸化カ
ドミウムはポリビニルピロリドン(以下「PVP」と云
う)、ポリテトラフルオロエチレン(以下「PTFE」
と云う)のうちから選ばれた1種類のバインダによって
のみ保持されており、γ型水酸化カドミウムはカルボキ
シメチルセルロ−ス(以下「CMC」と云う)、メチル
セルロ−ス(以下「MC」と云う)、ポリビニルアルコ
−ル(以下「PVA」と云う)のうちから選ばれた1種
類のバインダによってのみ保持されていることを特徴と
する。バインダは活物質であるカドミウム、β型水酸化
カドミウム、γ型水酸化カドミウムを取り囲むことによ
って、活物質同士あるいは活物質と導電性芯材とを結着
させ、活物質の脱落を抑制している。活物質がバインダ
によって取り囲まれているために、バインダの種類によ
ってペースト式カドミウム電極の性能は影響される。例
えば、ペースト式カドミウム電極を充電する際の充電電
位もバインダの種類によって異なる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a paste type cadmium electrode used in a sealed alkaline storage battery, for example, a sealed nickel-cadmium storage battery. Cadmium hydroxide and γ-type cadmium hydroxide are contained, and β-type cadmium hydroxide and γ-type cadmium hydroxide in the electrode are not in contact with each other, and β-type cadmium hydroxide in the electrode is polyvinylpyrrolidone (hereinafter referred to as polyvinylpyrrolidone). "PVP"), polytetrafluoroethylene (hereinafter "PTFE")
Γ-cadmium hydroxide (hereinafter referred to as “CMC”) and methylcellulose (hereinafter referred to as “MC”). ) And polyvinyl alcohol (hereinafter referred to as "PVA"), and is held by only one kind of binder selected from the group consisting of polyvinyl alcohol (hereinafter referred to as "PVA"). The binder binds the active materials or the active material and the conductive core material by surrounding cadmium, β-type cadmium hydroxide, and γ-type cadmium hydroxide, which are active materials, thereby preventing the active material from falling off. . Since the active material is surrounded by the binder, the performance of the paste-type cadmium electrode is affected by the type of the binder. For example, the charging potential when charging the paste-type cadmium electrode also differs depending on the type of the binder.

【0007】β型水酸化カドミウムをPVP、PTFE
のうちから選ばれた1種類のバインダと混練して作製し
たペースト式カドミウム電極と、CMC、MC、PVA
のうちから選ばれた1種類のバインダと混練して作製し
たペースト式カドミウム電極を、それぞれ低温で充電す
ると、前者のペースト式カドミウム電極の方が後者のそ
れよりも充電電位が貴になる。これは、PVP、PTF
Eの方が、CMC、MC、PVAと比較して、電解液と
の濡れ性が良いために、電解液の拡散過電圧が小さくな
り、その結果充電電位がより貴になると考えられる。一
方、β型水酸化カドミウムとγ型水酸化カドミウムで
は、γ型水酸化カドミウムの方が充電電位が貴であり、
充電されやすい。密閉形ニッケル−カドミウム蓄電池の
場合、ペースト式カドミウム電極に充電リザーブと称す
る未充電部分を設けているので、電池の満充電後もペー
スト式カドミウム電極の充電は進行し、水素ガスの発生
はない。ニッケル電極から発生した酸素はペースト式カ
ドミウム電極上で還元され、その際、金属カドミウムは
水酸化カドミウムに戻るため、見かけ上はペースト式カ
ドミウム電極の充電は進まない構造になっており、充電
リザーブ量が少なくなることはない。電池の満充電後、
充電リザーブに充電が進行しない場合、電解液の分解が
始まり、水素ガスが発生する。低温ではペースト式カド
ミウム電極の充電が進行しにくくなり、利用率が低下
し、充電リザーブ量が低下するか、あるいは不活性にな
る。
[0007] β-type cadmium hydroxide is PVP, PTFE
Paste-type cadmium electrode produced by kneading with one kind of binder selected from the group consisting of: CMC, MC, PVA
When the paste-type cadmium electrode prepared by kneading with one kind of binder selected from the above is charged at a low temperature, the former paste-type cadmium electrode has a higher charging potential than that of the latter. This is PVP, PTF
It is considered that E has better wettability with the electrolytic solution than CMC, MC, and PVA, so that the diffusion overvoltage of the electrolytic solution becomes smaller, and as a result, the charging potential becomes more noble. On the other hand, among β-cadmium hydroxide and γ-cadmium hydroxide, γ-cadmium hydroxide has a more noble charging potential,
Easy to charge. In the case of a sealed nickel-cadmium storage battery, the paste-type cadmium electrode is provided with an uncharged portion called a charging reserve, so that the charging of the paste-type cadmium electrode proceeds even after the battery is fully charged, and no hydrogen gas is generated. Oxygen generated from the nickel electrode is reduced on the paste-type cadmium electrode, and at that time, the metal cadmium returns to cadmium hydroxide, so that apparently the charging of the paste-type cadmium electrode does not proceed, and the charge reserve amount Does not decrease. After the battery is fully charged,
If charging does not proceed to the charging reserve, decomposition of the electrolytic solution starts, and hydrogen gas is generated. At a low temperature, the charging of the paste-type cadmium electrode becomes difficult to progress, the utilization rate decreases, and the charge reserve decreases or becomes inactive.

【0008】そこで、β型水酸化カドミウムよりも充電
されやすい、γ型水酸化カドミウムを充電リザーブにす
ることが考えられる。すなわち、ペースト式カドミウム
電極の充電電位が貴な方のバインダのみでβ型水酸化カ
ドミウムを保持し、ペースト式カドミウム電極の充電電
位が卑な方のバインダのみでγ型水酸化カドミウムを保
持するものである。そこで、PVP、PTFEから選ば
れる1種類のバインダのみでβ型水酸化カドミウムを保
持し、CMC、MC、PVAから選ばれる1種類のバイ
ンダのみでγ型水酸化カドミウムを保持する。PVP、
PTFEから選ばれる1種類のバインダのみで保持され
たβ型水酸化カドミウムは、CMC、MC、PVAから
選ばれる1種類のバインダのみで保持されたγ型水酸化
カドミウムよりも充電電位が貴になるため、充電を開始
するとβ型水酸化カドミウムから充電が入る。その後、
ペースト式カドミウム電極の電位が低下し、水素ガスが
発生し始めると、バインダによって充電電位がより卑に
なっているγ型水酸化カドミウムに充電が入ることにな
る。γ型水酸化カドミウムはβ型よりも充電が入りやす
いので充電リザーブは活性であり、水素ガス発生を抑制
することができる。
Therefore, it is conceivable to use γ-cadmium hydroxide, which is more easily charged than β-cadmium hydroxide, as a charge reserve. That is, the paste-type cadmium electrode holds β-cadmium hydroxide only with the binder having a more noble charge potential, and the paste-type cadmium electrode holds gamma-type cadmium hydroxide with only the lower-potential binder. It is. Therefore, β-type cadmium hydroxide is held only by one kind of binder selected from PVP and PTFE, and γ-type cadmium hydroxide is held only by one kind of binder selected from CMC, MC and PVA. PVP,
Β-cadmium hydroxide held by only one kind of binder selected from PTFE has a higher charging potential than γ-type cadmium hydroxide held by only one kind of binder selected from CMC, MC and PVA. Therefore, when charging is started, charging starts from β-type cadmium hydroxide. afterwards,
When the potential of the paste-type cadmium electrode is lowered and hydrogen gas starts to be generated, charging starts in the γ-type cadmium hydroxide, which has a more negative charging potential due to the binder. Since γ-type cadmium hydroxide is easier to charge than β-type cadmium hydroxide, the charge reserve is active and hydrogen gas generation can be suppressed.

【0009】[0009]

【発明の実施の形態】本発明を以下に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below.

【0010】(実施例)下記の固形分組成比で、PVP
水溶液中にβ型水酸化カドミウム、金属カドミウム、ナ
イロン繊維を投入したペースト(a)により、ペースト
式カドミウム電極(A)を作製する。好ましくは、ペー
ストを導電性芯材に塗着した後の乾燥温度を150〜2
00℃の範囲で乾燥する。 β型水酸化カドミウム:500 金属カドミウム:100 ナイロン繊維:5 PVP粉末:2.5 その後、下記の固形分組成比で、CMC水溶液中にγ型
水酸化カドミウム、金属カドミウム、ナイロン繊維を投
入し、もう1つのペースト(b)を作製し、ペースト式
カドミウム電極(A)に塗着する。その際、ペースト
(b)の粘度をペースト(a)の粘度よりも低くしてお
く。ペースト(b)をペースト式カドミウム電極(A)
に塗着した後の乾燥温度は150〜200℃の範囲が好
ましい。このようにして、カドミウム電極(1)を得
る。 γ型水酸化カドミウム:50 金属カドミウム:10 ナイロン繊維:0.5 CMC粉末:0.25 同様に、ペースト(a)、(b)のバインダの種類のみ
を変えて、表1のペースト式カドミウム電極(2)〜
(6)を作製する。
(Example) PVP was prepared at the following solid content ratio.
A paste-type cadmium electrode (A) is prepared from a paste (a) in which β-type cadmium hydroxide, metal cadmium, and nylon fibers are put into an aqueous solution. Preferably, the drying temperature after applying the paste to the conductive core material is 150-2.
Dry at 00 ° C. β-type cadmium hydroxide: 500 metal cadmium: 100 Nylon fiber: 5 PVP powder: 2.5 Then, γ-type cadmium hydroxide, metal cadmium, and nylon fiber are put into a CMC aqueous solution at the following solid content composition ratio, Another paste (b) is prepared and applied to the paste-type cadmium electrode (A). At this time, the viscosity of the paste (b) is set lower than the viscosity of the paste (a). Paste (b) is replaced with a paste-type cadmium electrode (A)
The drying temperature after coating is preferably in the range of 150 to 200 ° C. Thus, a cadmium electrode (1) is obtained. Gamma-type cadmium hydroxide: 50 Metal cadmium: 10 Nylon fiber: 0.5 CMC powder: 0.25 Similarly, the paste type cadmium electrode shown in Table 1 was changed by changing only the binder type of the pastes (a) and (b). (2)-
(6) is produced.

【0011】[0011]

【表1】 [Table 1]

【0012】(比較例)下記の固形分組成比で、ニッケ
ル粉末を添加したペースト式カドミウム電極を、通常の
方法で作製する。このペースト式カドミウム電極をペー
スト式カドミウム電極(7)とする。し、CMCのみを
バインダとして作製したペースト式カドミウム電極をペ
ースト式カドミウム電極(8)とした。 β型水酸化カドミウム:500 γ型水酸化カドミウム:50 金属カドミウム:110 ナイロン繊維:5.5 PVA粉末あるいはCMC粉末:2.75 表面に水酸化ニッケルを有するニッケル粉末:40 さらに、下記の固形分組成比で、ペースト式カドミウム
電極を作製した。その後ニッケル塩水溶液中で陰電解
し、次いでカドミウム塩水溶液に含浸した後アルカリ水
溶液中で陰電解して、活物質表面に金属ニッケル層と金
属カドミウムまたは水酸化カドミウム層を順次形成させ
て、活物質表面に直接ニッケル層が露出していないペー
スト式カドミウム電極(8)を作製した。 β型水酸化カドミウム:500 γ型水酸化カドミウム:50 金属カドミウム:110 ナイロン繊維:5.5 PVA粉末あるいはCMC粉末:2.75 カーボニルニッケル粉末:1 次にペースト式カドミウム電極(1)〜(8)を化成
後、所定寸法に切断して完成負極板とし、公知のペース
ト式ニッケル極を正極として、公称容量800mAhの
密閉形ニッケル−カドミウム蓄電池を作製した。ここ
で、ペースト式カドミウム電極(1)、(2)、
(3)、(4)、(5)、(6)、(7)、(8)を使
用した密閉形ニッケル−カドミウム蓄電池をそれぞれ電
池(1)、(2)、(3)、(4)、(5)、(6)、
(7)、(8)とする。電池(1)〜(8)を、活性化
処理を施して次の試験を開始した。
(Comparative Example) A paste-type cadmium electrode to which nickel powder is added at the following solid composition ratio is prepared by a usual method. This paste-type cadmium electrode is referred to as a paste-type cadmium electrode (7). The paste-type cadmium electrode produced using only CMC as a binder was used as a paste-type cadmium electrode (8). β-type cadmium hydroxide: 500 γ-type cadmium hydroxide: 50 Metal cadmium: 110 Nylon fiber: 5.5 PVA powder or CMC powder: 2.75 Nickel powder having nickel hydroxide on the surface: 40 A paste-type cadmium electrode was produced at a composition ratio. Thereafter, negative electrolysis is performed in a nickel salt aqueous solution, then impregnated in a cadmium salt aqueous solution, and then negative electrolysis is performed in an alkaline aqueous solution, thereby sequentially forming a metal nickel layer and a metal cadmium or cadmium hydroxide layer on the surface of the active material. A paste-type cadmium electrode (8) in which the nickel layer was not directly exposed on the surface was produced. β-type cadmium hydroxide: 500 γ-type cadmium hydroxide: 50 Metal cadmium: 110 Nylon fiber: 5.5 PVA powder or CMC powder: 2.75 Carbonyl nickel powder: 1 Next, paste-type cadmium electrodes (1) to (8) ), And cut into predetermined dimensions to form a completed negative electrode plate, and a sealed nickel-cadmium storage battery having a nominal capacity of 800 mAh was produced using a known paste-type nickel electrode as a positive electrode. Here, the paste type cadmium electrodes (1), (2),
The sealed nickel-cadmium storage batteries using (3), (4), (5), (6), (7), and (8) are replaced with batteries (1), (2), (3), and (4), respectively. , (5), (6),
(7) and (8). The batteries (1) to (8) were activated, and the next test was started.

【0013】電池周囲温度を0℃に保持し、0.3Cの
電流で1週間連続して充電した。この際、電池の缶底部
に直径1mmの穴を開け、圧力センサーを取り付けて、
充電時の電池内圧を測定した。充電終了時の電池内圧を
表2に示す。表2から明らかなように、本発明の電池
(1)〜(6)は、従来の比較例の電池(7)、(8)
と比較して、電池内圧を低く抑えることができた。すな
わち、本発明電池(1)〜(6)は、従来の比較例の電
池(7)、(8)と比較して、1週間の連続した充電に
おいて、水素ガスの発生を抑制する効果が大きくなっ
た。以上の試験より、本発明の電池(1)〜(6)は従
来の比較例の電池(7)、(8)と比べて、優れた低温
充電時の水素ガス発生の抑制効果を持っていることがわ
かる。これは、PVP,PTFEから選ばれる1種類の
バインダのみで保持されたβ型水酸化カドミウムは、C
MC,MC,PVAから選ばれる1種類のバインダのみ
で保持されたγ型水酸化カドミウムよりも充電電位が貴
になるため、充電を開始するとβ型水酸化カドミウムか
ら充電が入る。その後カドミウム電極の電位が低下し、
水素ガスが発生し始めると、バインダによって充電電位
がより卑になっているγ型水酸化カドミウムに充電が入
ることになる。γ型水酸化カドミウムはβ型よりも充電
が入りやすいので充電リザーブは活性であり、水素ガス
発生を抑制することができる。
The battery was kept at an ambient temperature of 0 ° C. and charged continuously at a current of 0.3 C for one week. At this time, a hole with a diameter of 1 mm was made in the bottom of the battery can, and a pressure sensor was attached.
The internal pressure of the battery during charging was measured. Table 2 shows the internal pressure of the battery at the end of charging. As is clear from Table 2, the batteries (1) to (6) of the present invention were the batteries (7) and (8) of the conventional comparative examples.
As compared with, the internal pressure of the battery could be kept low. That is, the batteries (1) to (6) of the present invention have a greater effect of suppressing the generation of hydrogen gas during one week of continuous charging than the batteries (7) and (8) of the conventional comparative examples. became. From the above test, the batteries (1) to (6) of the present invention have an excellent effect of suppressing hydrogen gas generation during low-temperature charging as compared with the conventional batteries (7) and (8) of the comparative example. You can see that. This is because β-cadmium hydroxide held by only one kind of binder selected from PVP and PTFE is C
Since the charging potential is more noble than γ-type cadmium hydroxide held by only one kind of binder selected from MC, MC, and PVA, when charging starts, charging starts from β-type cadmium hydroxide. After that, the potential of the cadmium electrode decreases,
When the hydrogen gas starts to be generated, the γ-type cadmium hydroxide whose charging potential is made more negative by the binder is charged. Since γ-type cadmium hydroxide is more easily charged than β-type cadmium hydroxide, the charge reserve is active and hydrogen gas generation can be suppressed.

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【発明の効果】以上のように、本発明のペースト式カド
ミウム電極において、該電極中にカドミウム、β型水酸
化カドミウム、γ型水酸化カドミウムを含み、かつ該電
極中のβ型水酸化カドミウムとγ型水酸化カドミウムが
互いに接することがなく、かつ該電極中のβ型水酸化カ
ドミウムはPVP,PTFEのうちから選ばれた1種類
のバインダによってのみ保持されており、γ型水酸化カ
ドミウムはCMC,MC,PVAのうちから選ばれた1
種類のバインダによってのみ保持されていることによっ
て、密閉形ニッケル−カドミウム蓄電池等の密閉形アル
カリ蓄電池を低温で充電したときのペースト式カドミウ
ム電極からの水素ガス発生を抑制することができ、従っ
て、低温での密閉形電池の充電特性が従来のものに比べ
て大幅に向上するものである。
As described above, in the paste-type cadmium electrode of the present invention, the electrode contains cadmium, β-type cadmium hydroxide, and γ-type cadmium hydroxide. The γ-cadmium hydroxide does not touch each other, the β-cadmium hydroxide in the electrode is held only by one kind of binder selected from PVP and PTFE, and the γ-cadmium hydroxide is CMC. , MC, PVA
By being held only by the type of binder, it is possible to suppress the generation of hydrogen gas from the paste-type cadmium electrode when a sealed alkaline storage battery such as a sealed nickel-cadmium storage battery is charged at a low temperature. The charging characteristics of the sealed battery are greatly improved as compared with the conventional battery.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ペースト式カドミウム電極において、該電
極中にカドミウム、β型水酸化カドミウム、γ型水酸化
カドミウムを含み、かつ該電極中のβ型水酸化カドミウ
ムとγ型水酸化カドミウムが互いに接することがなく、
かつ該電極中のβ型水酸化カドミウムはPVP、PTF
Eのうちから選ばれた1種類のバインダによってのみ保
持されており、γ型水酸化カドミウムはCMC、MC、
PVAのうちから選ばれた1種類のバインダによっての
み保持されていることを特徴とするペースト式カドミウ
ム電極。
1. A paste type cadmium electrode, wherein the electrode contains cadmium, β-type cadmium hydroxide and γ-type cadmium hydroxide, and the β-type cadmium hydroxide and the γ-type cadmium hydroxide in the electrode are in contact with each other. Without
And the β-type cadmium hydroxide in the electrode is PVP, PTF
E is held only by one kind of binder selected from E, and γ-type cadmium hydroxide is CMC, MC,
A paste-type cadmium electrode which is held only by one kind of binder selected from PVA.
JP9079428A 1997-03-31 1997-03-31 Paste type cadmium electrode Pending JPH10275619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9079428A JPH10275619A (en) 1997-03-31 1997-03-31 Paste type cadmium electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9079428A JPH10275619A (en) 1997-03-31 1997-03-31 Paste type cadmium electrode

Publications (1)

Publication Number Publication Date
JPH10275619A true JPH10275619A (en) 1998-10-13

Family

ID=13689613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9079428A Pending JPH10275619A (en) 1997-03-31 1997-03-31 Paste type cadmium electrode

Country Status (1)

Country Link
JP (1) JPH10275619A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052802B2 (en) 2002-10-15 2006-05-30 Quallion Llc Fluorinated carbon active material
US8524397B1 (en) 2004-11-08 2013-09-03 Quallion Llc Battery having high rate and high capacity capabilities

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052802B2 (en) 2002-10-15 2006-05-30 Quallion Llc Fluorinated carbon active material
US7503943B2 (en) 2002-10-15 2009-03-17 Quallion Llc Fluorinated carbon active material
US8524397B1 (en) 2004-11-08 2013-09-03 Quallion Llc Battery having high rate and high capacity capabilities

Similar Documents

Publication Publication Date Title
JP3345889B2 (en) Manufacturing method of alkaline storage battery and its negative electrode
JPH10275619A (en) Paste type cadmium electrode
JP3644427B2 (en) Cadmium negative electrode and nickel cadmium storage battery containing the same
JPH11307116A (en) Cadmium negative electrode for alkaline storage battery
JP3188000B2 (en) Non-sintered nickel positive electrode
JP2797554B2 (en) Nickel cadmium storage battery
JP3086525B2 (en) Sealed alkaline storage battery and method for manufacturing the same
JP2994850B2 (en) Paste cadmium negative electrode for alkaline storage batteries
JP2692795B2 (en) Paste type cadmium cathode for alkaline storage battery
JP3653441B2 (en) Method for producing negative electrode for alkaline storage battery
JP3995288B2 (en) Cadmium negative electrode for alkaline storage battery and method for producing the same
JPH10125351A (en) Nickel-cadmium storage battery and its manufacture
JP2968813B2 (en) Method for producing cadmium negative electrode for alkaline storage battery
JP2754800B2 (en) Nickel cadmium storage battery
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JPH0417260A (en) Cadmium negative electrode for alkaline storage battery
JP3490858B2 (en) Non-sintered cadmium negative electrode for alkaline storage batteries
JPH09245827A (en) Manufacture of alkaline storage battery
JPH11149920A (en) Nickel electrode for alkali secondary battery and alkali secondary battery
JP2840270B2 (en) Paste type cadmium electrode for alkaline storage battery and method for producing the same
JPH0251874A (en) Alkaline zinc lead-acid battery
JPH0234433B2 (en)
JPH0555980B2 (en)
JPS63241861A (en) Nickel positive electrode
JPH10188971A (en) Unsintered nickel electrode for alkaline storage battery