JP3345889B2 - Manufacturing method of alkaline storage battery and its negative electrode - Google Patents

Manufacturing method of alkaline storage battery and its negative electrode

Info

Publication number
JP3345889B2
JP3345889B2 JP14468789A JP14468789A JP3345889B2 JP 3345889 B2 JP3345889 B2 JP 3345889B2 JP 14468789 A JP14468789 A JP 14468789A JP 14468789 A JP14468789 A JP 14468789A JP 3345889 B2 JP3345889 B2 JP 3345889B2
Authority
JP
Japan
Prior art keywords
negative electrode
hydrogen
storage alloy
hydrogen storage
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14468789A
Other languages
Japanese (ja)
Other versions
JPH02291665A (en
Inventor
浩次 湯浅
宗久 生駒
博志 川野
収 高橋
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14468789A priority Critical patent/JP3345889B2/en
Publication of JPH02291665A publication Critical patent/JPH02291665A/en
Application granted granted Critical
Publication of JP3345889B2 publication Critical patent/JP3345889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素吸蔵合金負極を用いたアルカリ蓄電池
およびその負極の製造法の改良に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery using a hydrogen storage alloy negative electrode, and an improvement in a method for manufacturing the negative electrode.

従来の技術 活物質である水素を多量に電気化学的な吸蔵・放出し
うる水素吸蔵合金は、高エネルギー密度を有する電極材
料として注目され、高容量化を目指す密閉形アルカリ蓄
電池特に密閉形ニッケル・水素蓄電池への応用が図られ
ている。
2. Description of the Related Art A hydrogen storage alloy capable of electrochemically storing and releasing hydrogen as an active material is attracting attention as an electrode material having a high energy density. Applications to hydrogen storage batteries are being pursued.

密閉形ニッケル・水素蓄電池における電極反応は以下
に示すとおりである。
The electrode reaction in the sealed nickel-metal hydride storage battery is as follows.

ここで、Mは水素吸蔵合金である。 Here, M is a hydrogen storage alloy.

この蓄電池における水素吸蔵合金負極の製造法として
は、粉末化された水素吸蔵合金にポリエチレン,フッ素
樹脂等の耐アルカリ有機高分子を結着剤として加え、こ
の混合物を導電性の集電体であるパンチングメタル,発
泡メタル等に圧着,充填して電極としている。
As a method of manufacturing a hydrogen storage alloy negative electrode in this storage battery, an alkali-resistant organic polymer such as polyethylene or fluororesin is added to a powdered hydrogen storage alloy as a binder, and this mixture is used as a conductive current collector. Electrodes are formed by pressing and filling into punching metal, foam metal, etc.

この電池を過充電すると、正極,負極ではそれぞれ
(3)式,(4)式のガス発生反応が起こる。
When this battery is overcharged, gas generation reactions of the formulas (3) and (4) occur at the positive electrode and the negative electrode, respectively.

正極 2OH-→H2O+1/2O2+2e- ……(3) 負極 2H2O+2e-→2OH-+H2 ……(4) このとき、電池内圧の上昇を抑制する方法として、
(3)式により正極から発生する酸素ガスを負極に吸蔵
されている水素と反応させて水にする方式が採られてい
る。また、(4)式の水素ガス発生を抑制するために、
負極の容量を正極の容量よりも大きくする方式が採られ
ている。
Positive electrode 2OH → H 2 O + 1 / 2O 2 + 2e … (3) Negative electrode 2H 2 O + 2e → 2OH + H 2 …… (4) At this time, as a method of suppressing an increase in battery internal pressure,
According to the formula (3), a method is employed in which oxygen gas generated from the positive electrode is reacted with hydrogen stored in the negative electrode to form water. In addition, in order to suppress the generation of hydrogen gas in equation (4),
A method is adopted in which the capacity of the negative electrode is made larger than the capacity of the positive electrode.

しかし、急速充電時には、酸素ガスの発生速度が、吸
収速度を上回り、電池内に酸素ガスが蓄積して電池内圧
が上昇する。上記の不都合を解消するため、負極に白金
などの貴金属触媒を添加し、酸素ガスの還元を促進する
方法(特開昭60−100382号)や、燃料電池用ガス電極に
よく見うけられる様に、水素吸蔵合金負極に撥水性層を
設け、酸素ガスの負極上での吸収を早める(特開昭61−
118963号)方法などがある。
However, at the time of rapid charging, the generation rate of oxygen gas exceeds the absorption rate, and oxygen gas accumulates in the battery to increase the internal pressure of the battery. In order to solve the above-mentioned problems, a method of adding a noble metal catalyst such as platinum to the negative electrode to promote the reduction of oxygen gas (Japanese Patent Application Laid-Open No. 60-100382) and a method commonly used in gas electrodes for fuel cells have been proposed. Providing a water-repellent layer on a hydrogen storage alloy negative electrode to accelerate absorption of oxygen gas on the negative electrode
No. 118963) method.

発明が解決しようとする課題 しかし前述した従来の構成においては、種々の課題が
存在する。すなわち、負極に貴金属を添加する方法で
は、材料の高価格化という課題があった。一方、負極に
撥水性層を設ける方法では、負極中での電解液の分布の
不均一化,電気化学的反応における有効表面積の減少に
よる放電電圧の低下という課題があった。また、上記方
法においては酸素吸収能は向上するが、水素吸蔵合金負
極内部の電解液の濡れ性の低下により、充電時に負極か
ら水素を発生しやすくなり、電池内圧が上昇するという
課題もあった。この現象は特に急速充電時において顕著
である。
Problems to be Solved by the Invention However, in the above-described conventional configuration, there are various problems. That is, the method of adding a noble metal to the negative electrode has a problem that the material is expensive. On the other hand, the method of providing the water-repellent layer on the negative electrode has problems in that the distribution of the electrolyte in the negative electrode is made non-uniform, and the effective surface area in the electrochemical reaction is reduced to lower the discharge voltage. In addition, in the above method, although the oxygen absorbing ability is improved, there is a problem that hydrogen is easily generated from the negative electrode during charging due to a decrease in wettability of the electrolytic solution inside the hydrogen storage alloy negative electrode, and the internal pressure of the battery increases. . This phenomenon is particularly noticeable during quick charging.

本発明は、このような問題点を解決するもので、水素
吸蔵合金負極表面の撥水性を保ち、かつ負極内部の電解
液に対する濡れ性を向上させることにより、急速充電時
における電池内圧を低減させ、放電時の電圧低下を防ぐ
ことを目的とするものである。
The present invention solves such a problem, by maintaining the water repellency of the surface of the hydrogen storage alloy negative electrode, and by improving the wettability to the electrolyte solution inside the negative electrode, to reduce the internal pressure of the battery during rapid charging. It is intended to prevent a voltage drop at the time of discharging.

課題を解決するための手段 この課題を解決するために、本発明はアルカリ蓄電池
の新たな構成、ならびにその負極である水素吸蔵合金電
極の内部に親水性樹脂を、電極表面部分に撥水性樹脂を
それぞれ付与したアルカリ蓄電池の構成と、その負極の
製造法を提供するものである。
Means for Solving the Problems In order to solve this problem, the present invention provides a new configuration of an alkaline storage battery, a hydrophilic resin inside a hydrogen storage alloy electrode which is a negative electrode thereof, and a water repellent resin on an electrode surface portion. An object of the present invention is to provide a configuration of an alkaline storage battery provided and a method of manufacturing a negative electrode thereof.

作用 本発明は、上記した構成および製造法により、気相触
媒を備えおよび/又は撥水性樹脂を水素吸蔵合金負極表
面へ付与することにより、気相反応により水素ガスを吸
収させる。また、親水性樹脂による水素吸蔵合金負極内
部の電解液に対する濡れ性の向上により、電気化学的に
水素を吸蔵させやすくして水素ガスを抑え、急速充電時
の電池内圧を低下させる。また、親水性樹脂の添加によ
り、放電時の電圧低下を抑制することとなる。
Function The present invention allows a gaseous phase catalyst to be provided and / or a water-repellent resin to be applied to the surface of a hydrogen-absorbing alloy negative electrode to absorb hydrogen gas by a gas-phase reaction according to the above-described structure and production method. In addition, by improving the wettability of the hydrogen storage alloy negative electrode inside the negative electrode with the hydrophilic resin, the hydrogen can be easily stored electrochemically, the hydrogen gas is suppressed, and the internal pressure of the battery during rapid charging is reduced. Further, the addition of the hydrophilic resin suppresses a voltage drop during discharge.

実施例 以下、本発明をその実施例により説明する。ここでの
負極に用いる水素吸蔵合金組成は、MmNi3.55Co0.75Mn
0.4Al0.3とした。希土類元素の混合物であるミッシュメ
タルMm(La:約25wt%,Ce:約52wt%,Nd:約18wt%,Pr:約5
wt%)とNi,Co,Mn,Alの各試料をアーク溶解炉に入れ
て、10-4〜10-5torrまで真空状態にした後、アルゴンガ
ス雰囲気下の減圧状態でアーク放電し、加熱溶解させ
た。試料の均質化を図るため、真空中、1050℃で6時間
熱処理を行なった。得られた合金を粗粉砕後、ボールミ
ルで38μm以下の微粉末とした。
Examples Hereinafter, the present invention will be described with reference to examples. The hydrogen storage alloy composition used for the negative electrode here is MmNi 3.55 Co 0.75 Mn
0.4 Al 0.3 . Misch metal Mm which is a mixture of rare earth elements (La: about 25 wt%, Ce: about 52 wt%, Nd: about 18 wt%, Pr: about 5
wt%) and each sample of Ni, Co, Mn, and Al were placed in an arc melting furnace, evacuated to 10 -4 to 10 -5 torr, then arc-discharged under reduced pressure under an argon gas atmosphere, and heated. Dissolved. In order to homogenize the sample, a heat treatment was performed in vacuum at 1050 ° C. for 6 hours. After coarsely pulverizing the obtained alloy, it was reduced to a fine powder of 38 μm or less by a ball mill.

以上のようにして得た水素吸蔵合金粉末を用い、下記
の20種類の水素吸蔵合金負極を作成した。
Using the hydrogen storage alloy powder obtained as described above, the following 20 types of hydrogen storage alloy negative electrodes were prepared.

(実施例1) 前記の水素吸蔵合金粉末に親水性樹脂であるポリビニ
ルアルコール(以下PVAと称す)の水溶液をPVAの樹脂量
として0.15wt%混合してペースト状にし、多孔度95%の
発泡状ニッケル多孔体へ充填した後、加圧し、その負極
両面に四フッ化エチレン−六フッ化プロピレンの共重合
体樹脂粉末(以後FEPと称す)を0.8mg/cm2塗布した。
(Example 1) An aqueous solution of polyvinyl alcohol (hereinafter referred to as PVA), which is a hydrophilic resin, was mixed with the hydrogen storage alloy powder in an amount of 0.15 wt% as a resin amount of PVA to form a paste, and foamed with a porosity of 95%. After filling in the nickel porous body, pressure was applied and 0.8 mg / cm 2 of a copolymer resin powder of ethylene tetrafluoride-propylene hexafluoride (hereinafter referred to as FEP) was applied to both surfaces of the negative electrode.

(比較例2) 前記の水素吸蔵合金粉末に水を加えてペースト状に
し、多孔度95%の発泡状ニッケル多孔体へ充填した後、
加圧し、表面にFEPを0.8mg/cm2塗布した。これにより、
内部に親水性樹脂を含まず、表面にのみ撥水性樹脂を配
した水素吸蔵合金負極を得た。
(Comparative Example 2) Water was added to the hydrogen-absorbing alloy powder to form a paste, and after filling into a foamed nickel porous body having a porosity of 95%,
Pressure was applied, and FEP was applied to the surface at 0.8 mg / cm 2 . This allows
A hydrogen-absorbing alloy negative electrode containing no hydrophilic resin and having a water-repellent resin only on the surface was obtained.

(比較例3) 前記の水素吸蔵合金粉末97wt%とFEP3wt%とを混合
し、これにエチルアルコールを加えてペースト状にし、
多孔度95%の発泡状ニッケル多孔体へ充填した後、加圧
した。これにより撥水性樹脂を内部に有する水素吸蔵合
金電極を得た。これらを、それぞれAAサイズの電池用寸
法(39mm×80mm×0.5mm)に切断し、充放電可能容量が1
600mAh、多孔度が30vol%の負極板を得た。
(Comparative Example 3) 97 wt% of the hydrogen storage alloy powder and 3 wt% of FEP were mixed, and ethyl alcohol was added thereto to form a paste.
After filling into a foamed nickel porous body having a porosity of 95%, pressure was applied. Thereby, a hydrogen storage alloy electrode having a water-repellent resin inside was obtained. Each of these was cut into AA size battery dimensions (39 mm x 80 mm x 0.5 mm), and the chargeable / dischargeable capacity was 1
A negative electrode plate having 600 mAh and a porosity of 30 vol% was obtained.

また実施例4〜実施例20は、実施例1と原則的に同様
な方法で、それぞれ以下のとおりに形成した。
Examples 4 to 20 were formed in the same manner as in Example 1 in principle as follows.

(比較例4) 前記の水素吸蔵合金の平均粒子径が0.1μmである水
素吸蔵合金負極。
Comparative Example 4 A hydrogen storage alloy negative electrode in which the hydrogen storage alloy has an average particle size of 0.1 μm.

(実施例5) 前記の水素吸蔵合金の平均粒子径が75μmである水素
吸蔵合金負極。
(Example 5) A hydrogen storage alloy negative electrode in which the hydrogen storage alloy has an average particle size of 75 µm.

(実施例6) 前記の水素吸蔵合金粉末をアルカリ溶液中に浸漬する
ことにより、水素吸蔵合金粒子の表面に凹凸を付与させ
た水素吸蔵合金負極。
(Example 6) A hydrogen storage alloy negative electrode in which the surface of the hydrogen storage alloy particles is provided with irregularities by immersing the hydrogen storage alloy powder in an alkaline solution.

(比較例7) 撥水性樹脂であるポリエチレンを表面に配した水素吸
蔵合金負極。
(Comparative Example 7) A hydrogen storage alloy negative electrode having a water-repellent resin polyethylene disposed on the surface.

(実施例8) 水素ガスの透過係数が1×10-9cm2/sec・atmである四
フッ化エチレン(以後M−12と称す)を表面に配した水
素吸蔵合金負極。
(Example 8) A hydrogen storage alloy negative electrode in which ethylene tetrafluoride (hereinafter referred to as M-12) having a hydrogen gas transmission coefficient of 1 × 10 −9 cm 2 / sec · atm is disposed on the surface.

(比較例9) 溶液中に界面活性剤を有するFEPのディスパージョン
(以後ND−1と称す)溶液中に浸漬することにより、表
面に撥水性樹脂を配した水素吸蔵合金負極。
(Comparative Example 9) A hydrogen storage alloy negative electrode in which a water-repellent resin is disposed on the surface by immersion in a FEP dispersion (hereinafter referred to as ND-1) solution having a surfactant in the solution.

(実施例10) 撥水性樹脂あるポリビニリデンフルオライド(以後VD
Fと称す)粉末を表面に塗布した水素吸蔵合金負極。
(Example 10) Polyvinylidene fluoride having a water-repellent resin (hereinafter referred to as VD
F) Hydrogen storage alloy negative electrode with powder applied to the surface.

(実施例11) FEPを0.1mg/cm2表面に塗布した水素吸蔵合金負極。(Example 11) A hydrogen storage alloy negative electrode coated with FEP at a surface of 0.1 mg / cm 2 .

(実施例12) FEPを2mg/cm2表面に塗布した水素吸蔵合金負極。(Example 12) A hydrogen storage alloy negative electrode coated with FEP at 2 mg / cm 2 .

(実施例13) 水素の分解反応に対して触媒性能を有する白金ブラッ
クとFEPとを2:1(重量比)の割合で混合した混合物を2.
4mg/cm2の比率で表面に塗布した水素吸蔵合金負極。
(Example 13) A mixture obtained by mixing platinum black and FEP having a catalytic performance with respect to a hydrogen decomposition reaction at a ratio of 2: 1 (weight ratio) was used.
Hydrogen storage alloy negative electrode applied to the surface at a rate of 4 mg / cm 2 .

(実施例14) 白金ブラックを1.6mg/cm2の比率で表面に塗布した
後、さらにFEPを0.8mg/cm2の比率で表面に塗布した水素
吸蔵合金負極。
(Example 14) A hydrogen storage alloy negative electrode in which platinum black was applied to the surface at a rate of 1.6 mg / cm 2 and then FEP was further applied to the surface at a rate of 0.8 mg / cm 2 .

(実施例15) LaNi4Al:FEPを4:1(重量比)とした混合物を4.0mg/cm
2の比率で表面に塗布した水素吸蔵合金負極。
(Example 15) 4.0 mg / cm of a mixture obtained by changing LaNi 4 Al: FEP to 4: 1 (weight ratio)
Hydrogen storage alloy negative electrode applied to the surface at a ratio of 2 .

(実施例16) 導電性物質であるアセチレンブラックとFEPとをアセ
チレンブラック:FEPが1:1(重量比)の割合で混合した
混合物を1.6mg/cm2の比率で表面に塗布した水素吸蔵合
金負極。
(Example 16) A hydrogen storage alloy in which a mixture of acetylene black and FEP, which are conductive substances, mixed at a ratio of 1: 1 (weight ratio) of acetylene black: FEP was applied to the surface at a ratio of 1.6 mg / cm 2. Negative electrode.

(実施例17) 電極内部に親水性樹脂を1.5wt%含む水素吸蔵合金負
極。
(Example 17) A hydrogen storage alloy negative electrode containing 1.5 wt% of a hydrophilic resin inside the electrode.

(比較例18) 極板の多孔度を15vol%とした水素吸蔵合金負極。(Comparative Example 18) A hydrogen storage alloy negative electrode in which the porosity of the electrode plate was 15 vol%.

(実施例19) 前記の水素吸蔵合金粉末に対してPVAを0.15wt%混合
してペースト状にし、これを発泡状ニッケル多孔体へ充
填した後、FEPを0.8mg/cm2の比率で表面に塗布し、その
後所定の厚さに加圧した水素吸蔵合金負極。
(Example 19) 0.15 wt% of PVA was mixed with the above-mentioned hydrogen storage alloy powder to form a paste, which was filled in a foamed nickel porous body, and then FEP was applied at a rate of 0.8 mg / cm 2 to the surface. A hydrogen-absorbing alloy negative electrode applied and then pressurized to a predetermined thickness.

(実施例20) 1.5wt%のPVA水溶液にFEP粉末を分散させた分散液に
負極を浸漬させ、FEPを0.8mg/cm2の比率で付着させた水
素吸蔵合金負極。
(Example 20) A hydrogen storage alloy negative electrode in which a negative electrode was immersed in a dispersion liquid in which FEP powder was dispersed in a 1.5 wt% aqueous PVA solution, and FEP was attached at a rate of 0.8 mg / cm 2 .

これら20種類の負極1と公知の発泡メタルに水酸化ニ
ッケルを充填したニッケル正極2とをポリアミドの不織
布製セパレータ3を介してうず巻き状に旋回し、負極端
子を兼ねるケース4に挿入した。その後アルカリ電解液
を所定量注液して封口し、1000mAhのAAサイズの密閉形
ニッケル・水素蓄電池を構成した。作成した電池の構造
を第1図に示した。図中、正極キャップ5の内側に形成
した安全弁6は一般には11〜12kg/cm2の圧力になると弁
が開くよう作動するが、電池内圧を測定するために30kg
/cm2以上で作動するように設定した。図中7は封口板、
8は絶縁ガスケット、9は正極2と封口板7とを電気的
に接続する正極集電体を示す。電池内圧は、電池ケース
底部に1mmφの穴をあけ、圧力センサーを取り付けた固
定装置に電池を固定して測定した。電池内圧測定時の充
電は、2CmAまでの種々の充電率で正極容量の200%まで
行ない、その時点における電池内圧を、その充電率にお
ける電池内圧とした。また、電池内の発生ガスを水上置
換法により捕集し、ガスクロマトグラフィーによりガス
組成の分析を行なった。
These 20 kinds of negative electrodes 1 and a nickel positive electrode 2 in which a known foamed metal was filled with nickel hydroxide were swirled through a polyamide nonwoven fabric separator 3 and inserted into a case 4 also serving as a negative electrode terminal. Thereafter, a predetermined amount of an alkaline electrolyte was injected and sealed to form a sealed AA-size nickel-metal hydride battery of 1000 mAh. FIG. 1 shows the structure of the prepared battery. In the figure, a safety valve 6 formed inside a positive electrode cap 5 generally operates so as to open when a pressure of 11 to 12 kg / cm 2 is reached.
It was set to operate at / cm 2 or more. In the figure, 7 is a sealing plate,
8 denotes an insulating gasket, 9 denotes a positive electrode current collector for electrically connecting the positive electrode 2 and the sealing plate 7. The internal pressure of the battery was measured by making a 1 mmφ hole in the bottom of the battery case and fixing the battery to a fixing device equipped with a pressure sensor. Charging at the time of measuring the battery internal pressure was performed up to 200% of the positive electrode capacity at various charging rates up to 2 CmA, and the battery internal pressure at that time was defined as the battery internal pressure at that charging rate. In addition, the generated gas in the battery was collected by a water displacement method, and the gas composition was analyzed by gas chromatography.

放電特性の試験は、20℃の環境下で1CmAの充電電流で
正極容量の150%充電し、3CmAの放電電流で0.8Vまで連
続放電を行なった。
In the test of the discharge characteristics, the battery was charged to 150% of the positive electrode capacity with a charge current of 1 CmA under an environment of 20 ° C., and was continuously discharged to 0.8 V with a discharge current of 3 CmA.

第2図に、実施例1,比較例2および比較例3の水素吸
蔵合金負極を含む電池を、充電電流1CmAで正極容量の20
0%まで充電した場合の充電容量に対する電池内圧の挙
動を示した。第2図より、それぞれの2000mAh充電時に
おける電池内圧は、実施例1が3.3kg/cm2、比較例2が
4.8kg/cm2、比較例3が7.0kg/cm2であった。また、実施
例1は1000mAh充電付近から電池内圧が上昇し始めた
が、比較例2および3は800mAh充電時から電池内圧が上
昇し始めた。また、2000mAh充電時の電池内のガス組成
を分析すると酸素分圧は、3種とも1kg/cm2程度で同程
度であり、3種の電池内圧の違いは、水素分圧の違いに
よるものであることがわかった。
FIG. 2 shows that the batteries including the hydrogen storage alloy negative electrodes of Example 1, Comparative Example 2 and Comparative Example 3 were charged at a charging current of 1 CmA and a positive electrode capacity of 20.
The behavior of the internal pressure of the battery with respect to the charging capacity when the battery was charged to 0% was shown. From FIG. 2, the internal pressure of the battery at the time of each 2000 mAh charge was 3.3 kg / cm 2 in Example 1 and Comparative Example 2 was 3.3 kg / cm 2 .
4.8 kg / cm 2 , and Comparative Example 3 was 7.0 kg / cm 2 . In Example 1, the internal pressure of the battery began to increase around 1000 mAh charge, whereas in Comparative Examples 2 and 3, the internal pressure of the battery began to increase after 800 mAh charge. When the gas composition in the battery at the time of 2000 mAh charge was analyzed, the oxygen partial pressure was about 1 kg / cm 2 for all three types, which was almost the same. The difference in the three types of battery internal pressure was due to the difference in hydrogen partial pressure. I found it.

これは、以下の理由による。 This is for the following reason.

本実験のように高容量化、例えばAAサイズにおいて、
1000mAhを目指すニッケル・水素蓄電池においては、正
極容量(1000mAh)に対して負極容量(1600mAh)のバラ
ンスが充分でなく、充電時には水素吸蔵合金負極上で
は、以下の(5)〜(8)式で表わされる反応が進行す
る。
As in this experiment, with high capacity, for example, in AA size,
In a nickel-metal hydride storage battery aiming at 1000 mAh, the balance between the positive electrode capacity (1000 mAh) and the negative electrode capacity (1600 mAh) is not sufficient, and the following formulas (5) to (8) are used on the hydrogen storage alloy negative electrode during charging. The represented reaction proceeds.

M+H2O+e-→MH+OH- ……(5) H2O+e- →1/2H2+OH- ……(6) M+1/2H2 →MH ……(7) MH−1/4O2 →M+1/2H2O ……(8) (但し、Mは水素吸蔵合金である。) つまり、負極上の電解液で濡れた部分においては、
(5)式の水素吸蔵反応と、(6)式の水素発生反応が
競争的に起こる。また、(8)式で表わされる正極から
発生した酸素ガスの消費反応も同時に起こる。逆に負極
上の電解液で濡れていない部分では、(6)式で発生し
た水素ガスを気体状で吸蔵する反応(7)が進行する。
撥水性樹脂のFEPは、水素吸蔵合金負極上の撥水性部分
の面積を制御するものである。比較例2および比較例3
の結果から撥水性樹脂の添加は、負極内部への添加より
も負極表面への添加の方が効果があり、(7)式の反応
は主として負極表面上で行なわれることがわかった。し
かし、これら実施例および比較例を比較すると、比較例
2および3は、撥水性樹脂添加のために、水素吸蔵合金
負極の電解液に対する濡れ性が悪く、電気化学的反応時
の有効表面積が減少するために、充電電流密度が上昇
し、(6)式の水素ガス発生反応が促進され、電池内圧
の立ち上がりが早く、かつ電池内圧が上昇した。この課
題を解決するために、実施例1では親水性樹脂であるPV
Aを電極内部に添加した。この結果、とくに水素吸蔵合
金負極内部の電解液に対する濡れ性が向上した。そのた
め、比較例2,3に比べ実施例1は、電気化学的反応時の
有効表面積が増大することにより、充電電流密度が低下
し、(6)式の水素ガス発生反応が抑制され、電池内圧
の立ち上がりが遅く、かつ電池内圧が低下した。上記の
理由のため、実施例1は1CmAという急速充電の場合でも
電池内圧の上昇を抑制することが可能となった。
M + H 2 O + e → MH + OH (5) H 2 O + e → 1 / 2H 2 + OH (6) M + 1 / 2H 2 → MH (7) MH−1 / 4O 2 → M + 1 / 2H 2 O (8) (where M is a hydrogen storage alloy) That is, in the portion of the negative electrode wetted with the electrolyte,
The hydrogen storage reaction of the formula (5) and the hydrogen generation reaction of the formula (6) occur competitively. The consumption reaction of the oxygen gas generated from the positive electrode represented by the formula (8) also occurs at the same time. Conversely, in a portion of the negative electrode that is not wet with the electrolytic solution, a reaction (7) for absorbing the hydrogen gas generated by the equation (6) in a gaseous state proceeds.
The FEP of the water-repellent resin controls the area of the water-repellent portion on the hydrogen storage alloy negative electrode. Comparative Example 2 and Comparative Example 3
From the results, it was found that the addition of the water-repellent resin was more effective when added to the negative electrode surface than when added to the inside of the negative electrode, and the reaction of formula (7) was mainly performed on the negative electrode surface. However, comparing these Examples and Comparative Examples, Comparative Examples 2 and 3 show that, due to the addition of the water-repellent resin, the hydrogen storage alloy negative electrode has poor wettability to the electrolytic solution, and the effective surface area during the electrochemical reaction decreases. As a result, the charging current density was increased, the hydrogen gas generation reaction of the formula (6) was promoted, the rise of the internal pressure of the battery was quick, and the internal pressure of the battery was increased. In order to solve this problem, in Example 1, PV which is a hydrophilic resin is used.
A was added inside the electrode. As a result, in particular, the wettability to the electrolyte inside the hydrogen storage alloy negative electrode was improved. Therefore, in Example 1 as compared with Comparative Examples 2 and 3, the effective surface area during the electrochemical reaction was increased, the charging current density was reduced, and the hydrogen gas generation reaction of the formula (6) was suppressed, and the internal pressure of the battery was reduced. Rises slowly and the internal pressure of the battery drops. For the above reason, the first embodiment can suppress the increase of the battery internal pressure even in the case of the quick charge of 1 CmA.

また、PVAの代りにカルボキシメチルセルロース,メ
チルセルロースなどを用いても同様な効果が得られた。
Similar effects were obtained by using carboxymethylcellulose, methylcellulose, or the like instead of PVA.

第3図に実施例1および比較例2,3の3種類の電池を2
0℃の環境下、3CmAの放電電流で0.8Vまで放電したとき
の放電曲線を示した。また、0.8Vまで放電した際の放電
容量の中間点における電池電圧を中間電圧と定義し、そ
れぞれの電池の放電電圧の差の目安とした。
FIG. 3 shows the three types of batteries of Example 1 and Comparative Examples 2 and 3.
A discharge curve when the battery was discharged to 0.8 V at a discharge current of 3 CmA in an environment of 0 ° C. was shown. The battery voltage at the midpoint of the discharge capacity when discharging to 0.8 V was defined as the intermediate voltage, and was used as a measure of the difference between the discharge voltages of the batteries.

実施例および比較例相互を比較すると、放電容量は同
程度であるが、中間電圧に顕著な差が現れた。中間電圧
は、実施例1が1.150V、比較例2および3はともに1.10
0Vであり、実施例1とは50mVの差があった。
When the examples and the comparative examples were compared with each other, the discharge capacity was almost the same, but a remarkable difference appeared in the intermediate voltage. The intermediate voltage was 1.150 V in Example 1 and 1.10 V in Comparative Examples 2 and 3.
0 V, which was a difference of 50 mV from Example 1.

これは以下の理由による。すなわち実施例1は、水素
吸蔵合金負極内部に親水性樹脂のPVAを添加したため
に、負極内部の電解液の濡れ性が向上し、比較例2およ
び3に比べ、電気化学的反応時の有効表面積が増大し、
放電電流密度が低下したために放電の中間電圧が上昇し
た。
This is for the following reason. That is, in Example 1, the wettability of the electrolyte solution inside the negative electrode was improved because the hydrophilic resin PVA was added inside the negative electrode of the hydrogen storage alloy, and the effective surface area at the time of the electrochemical reaction was improved as compared with Comparative Examples 2 and 3. Increases,
Since the discharge current density decreased, the intermediate voltage of discharge increased.

上記理由のため、実施例1は高率放電時における電圧
低下を防止することが可能となった。
For the above reason, the first embodiment can prevent a voltage drop during high-rate discharge.

表1に実施例および比較例1〜20までの20種類の水素
吸蔵合金負極を用いた電池において、1CmAの充電電流で
正極容量の200%まで充電した時の電池内圧と、20℃,3C
mAの放電電流で0.8Vまで連続放電した際の中間電圧を示
した。
Table 1 shows the internal pressures of the batteries using the 20 types of hydrogen storage alloy negative electrodes of Examples and Comparative Examples 1 to 20 when charged to 200% of the positive electrode capacity at a charging current of 1 CmA, and at 20 ° C. and 3 C.
The intermediate voltage when the battery was continuously discharged to 0.8 V with a discharge current of mA was shown.

比較例4および実施例5において水素吸蔵合金粒子径
の検討を行なった。表1より、水素吸蔵合金粒子の平均
粒径が0.1μmとなると電池内圧が25.4kg/cm2まで上昇
した。これは、水素吸蔵合金の平均粒子径が小さくなる
ほど合金表面が酸化されやすくなり、その結果充電時に
水素吸蔵合金負極の分極が大きくなり、水素ガスが発生
しやすくなるためである。また実施例5の様に水素吸蔵
合金の平均粒子径が75μmと大きくなると、真の電極面
積が実施例1に比較して小さくなる。そのため中間電圧
が、実施例1に比べ70mV低下した。このことより、水素
吸蔵合金の平均粒子径は、1〜50μmであることが好ま
しい。
In Comparative Example 4 and Example 5, the particle diameter of the hydrogen storage alloy was examined. According to Table 1, when the average particle diameter of the hydrogen storage alloy particles reached 0.1 μm, the internal pressure of the battery increased to 25.4 kg / cm 2 . This is because the smaller the average particle diameter of the hydrogen storage alloy, the more easily the alloy surface is oxidized. As a result, the polarity of the negative electrode of the hydrogen storage alloy during charging increases, and hydrogen gas is easily generated. Further, when the average particle diameter of the hydrogen storage alloy is as large as 75 μm as in the fifth embodiment, the true electrode area is smaller than that in the first embodiment. Therefore, the intermediate voltage was reduced by 70 mV as compared with the first embodiment. For this reason, the average particle diameter of the hydrogen storage alloy is preferably 1 to 50 μm.

また、実施例6において、アルカリ溶液中に浸漬する
ことにより水素吸蔵合金粉末の各粒子の表面が凹凸層を
有した負極を用いた場合には、実施例1と比較し、充電
時の電池内圧は同程度であったが、放電の中間電圧は30
mV上昇した。このことより、水素吸蔵合金粉末の各粒子
の表面には、凹凸層を有していることが好ましい。
Further, in Example 6, when the negative electrode in which the surface of each particle of the hydrogen storage alloy powder had an uneven layer by immersion in an alkaline solution was used, the internal pressure of the battery during charging was lower than that in Example 1. Were similar, but the intermediate voltage of the discharge was 30
mV rose. For this reason, it is preferable that the surface of each particle of the hydrogen storage alloy powder has an uneven layer.

次に、実施例および比較例7〜10においては水素吸蔵
合金負極の表面に添加する撥水性樹脂について検討し
た。表1からわかるように、表面にポリエチレンを配し
た比較例7、水素ガスの透過係数が1×10-9cm2/sec・a
tmであるM−12を配した実施例8、溶液中に界面活性剤
を有するFEPのディスパージョンであるND−1を配した
比較例9、VDFを配した実施例10はいずれも実施例1に
比べて充電時の電池内圧が上昇した。
Next, in Examples and Comparative Examples 7 to 10, the water-repellent resin added to the surface of the hydrogen storage alloy negative electrode was examined. As can be seen from Table 1, Comparative Example 7 in which polyethylene was disposed on the surface, the permeability coefficient of hydrogen gas was 1 × 10 −9 cm 2 / sec · a.
Example 8 in which M-12 as tm was provided, Comparative Example 9 in which ND-1 which is a dispersion of FEP having a surfactant in the solution was provided, and Example 10 in which VDF was provided were all Example 1. The internal pressure of the battery during charging increased as compared to.

これは、比較例7および実施例10においては、それぞ
れの樹脂の撥水性の度合がFEPに比べ小さく、水素吸蔵
合金負極上に固気(固体と気体)界面が満足に形成され
ず、その結果、水素ガスの吸蔵能力が充分でなかったた
めである。
This is because, in Comparative Example 7 and Example 10, the degree of water repellency of each resin was smaller than that of FEP, and a solid-gas (solid and gas) interface was not satisfactorily formed on the hydrogen storage alloy negative electrode. This is because the hydrogen gas storage capacity was not sufficient.

実施例8においては、水素吸蔵合金負極上に固気界面
は充分に形成されているが、電気化学反応により発生し
た水素ガスの負極上での透過性能が悪く、電池内圧が上
昇した。また、酸素ガスの透過係数の小さい撥水性樹脂
を水素吸蔵合金負極の表面に配した負極においても同様
に充電時の電池内圧が上昇した。この場合、ガス組成を
分析したところ実施例1に比べて酸素の割合が大きくな
っていた。これは、酸素ガスの負極上でのガス透過性能
が悪く、酸素ガスの還元能力が低下しているためであ
る。
In Example 8, although the solid-gas interface was sufficiently formed on the negative electrode of the hydrogen storage alloy, the permeability of the hydrogen gas generated by the electrochemical reaction on the negative electrode was poor, and the internal pressure of the battery increased. Similarly, in the negative electrode in which a water-repellent resin having a small permeability coefficient of oxygen gas was disposed on the surface of the hydrogen storage alloy negative electrode, the internal pressure of the battery at the time of charging similarly increased. In this case, when the gas composition was analyzed, the proportion of oxygen was higher than in Example 1. This is because the gas permeability of the oxygen gas on the negative electrode is poor, and the reducing ability of the oxygen gas is reduced.

比較例9においては、ND−1の溶媒中に存在する界面
活性剤がFEPに吸着するために、比較例7,実施例10の場
合と同様に、水素吸蔵合金負極上に固気界面が満足に形
成されず、その結果、水素ガスの吸蔵能力が充分でなか
ったためである。
In Comparative Example 9, since the surfactant present in the solvent of ND-1 was adsorbed on FEP, the solid-gas interface was satisfactory on the hydrogen-absorbing alloy negative electrode as in Comparative Example 7 and Example 10. This is because the hydrogen gas storage capacity was not sufficient.

電池の安全弁の構造上または、電池ケースの強度上の
面から、充電時の電池内圧は少なくとも5kg/cm2以下で
あることが好ましい。このことより、水素吸蔵合金負極
の表面層に配する撥水性材料としては、 (1) フッ素系樹脂であること、 (2) 酸素ガスまたは水素ガスの透過係数が25℃にお
いて1×10-8cm2/sec・atm以上であること、 (3) ディスパージョンを用いる際には、溶媒中に界
面活性剤を有していないこと、 更には、 (4) ポリ四フッ化エチレンまたは、四フッ化エチレ
ン−六フッ化プロピレン共重合樹脂であること、 が好ましい。なお、(3)においては溶媒にアルコール
類などの有機溶媒を用いることにより実現できる。
From the viewpoint of the structure of the battery safety valve or the strength of the battery case, the battery internal pressure during charging is preferably at least 5 kg / cm 2 or less. From this, the water-repellent material disposed on the surface layer of the hydrogen storage alloy negative electrode is (1) a fluororesin, (2) an oxygen gas or hydrogen gas having a permeability coefficient of 1 × 10 −8 at 25 ° C. cm 2 / sec · atm or more. (3) When using a dispersion, there should be no surfactant in the solvent. Further, (4) Polytetrafluoroethylene or tetrafluoroethylene. It is preferable to use a hydrogenated ethylene-propylene hexafluoride copolymer resin. Note that the method (3) can be realized by using an organic solvent such as an alcohol as the solvent.

実施例11,12においては、水素吸蔵合金負極表面層に
配する撥水性樹脂の添加量について検討を行なった。実
施例11において、FEPの添加量が0.1mg/cm2であると充電
時の電池内圧が8.3kg/cm2と上昇した。また実施例12に
おいてFEPの添加量が2mg/cm2であると、FEPが絶縁性物
質であるために、水素吸蔵合金負極の放電時の分極が大
きくなり、放電の中間電圧が1.105Vと低下した。第4図
に、FEPの添加量と充電時の電池内圧及び放電時の中間
電圧との関係を示す。第4図から明らかなようにFEPの
添加量には最適値が存在し、充電時の電池内圧と放電時
の放電の中間電圧との両面から、水素吸蔵合金負極の表
面層には撥水性樹脂を0.15mg/cm2〜1.5mg/cm2の範囲内
で添加することが好ましい。
In Examples 11 and 12, the amount of the water-repellent resin to be disposed on the hydrogen-absorbing alloy negative electrode surface layer was examined. In Example 11, when the amount of FEP added was 0.1 mg / cm 2 , the internal pressure of the battery during charging increased to 8.3 kg / cm 2 . Further, when the addition amount of FEP in Example 12 was 2 mg / cm 2 , since FEP was an insulating substance, the polarization of the hydrogen storage alloy negative electrode during discharge increased, and the discharge intermediate voltage decreased to 1.105 V. did. FIG. 4 shows the relationship between the amount of FEP added, the battery internal pressure during charging, and the intermediate voltage during discharging. As is clear from FIG. 4, there is an optimum value for the amount of FEP added, and the water-repellent resin is added to the surface layer of the hydrogen-absorbing alloy negative electrode from both the internal pressure of the battery during charging and the intermediate voltage of the discharging during discharging. that it is preferably added in the range of 0.15mg / cm 2 ~1.5mg / cm 2 .

実施例13,14においては、水素吸蔵合金負極表面への
水素ガスの分解反応に対して触媒性能を有する材料の添
加の効果とその添加方法について検討を行なった。実施
例13は、水素ガスの分解反応に対して触媒性能を示す白
金ブラックと撥水性材料であるFEPの混合物を表面に配
した水素吸蔵合金負極を用いた電池、実施例14は、白金
ブラックを表面に配した後、さらにその上にFEPを配し
た水素吸蔵合金負極を用いた電池である。表1より、い
ずれも、実施例1のFEPのみを表面に配した水素吸蔵合
金負極を用いた電池よりも、充電時の電池内圧は低下
し、放電時の中間電圧は上昇した。これは、白金ブラッ
クの添加により、充電時には(7)式の気体状の水素の
水素吸蔵合金電極への吸蔵反応が促進され、更に放電時
には、水素吸蔵合金中の水素の解離反応を促進したため
である。なお、水素ガスの分解反応に対して触媒性能を
示す材料としては、白金ブラックの他に、白金,パラジ
ウム,パラジウムブラックなどてもよく、それらの材料
も白金ブラックと同様に、良好な結果を示した。
In Examples 13 and 14, the effect of adding a material having catalytic performance on the decomposition reaction of hydrogen gas on the surface of the hydrogen storage alloy negative electrode and the method of adding the material were examined. Example 13 is a battery using a hydrogen storage alloy negative electrode on the surface of a mixture of platinum black exhibiting catalytic performance against hydrogen gas decomposition reaction and FEP as a water-repellent material, Example 14 is a platinum black This is a battery using a hydrogen-absorbing alloy negative electrode in which FEP is further disposed thereon after being disposed on the surface. Table 1 shows that, in each case, the battery internal pressure during charging was lower and the intermediate voltage during discharging was higher than in the battery using the hydrogen storage alloy negative electrode of Example 1 having only FEP on the surface. This is because the addition of platinum black accelerated the storage reaction of gaseous hydrogen of the formula (7) into the hydrogen storage alloy electrode during charging, and further promoted the dissociation reaction of hydrogen in the hydrogen storage alloy during discharge. is there. In addition, as a material exhibiting catalytic performance with respect to the decomposition reaction of hydrogen gas, platinum, palladium, palladium black, etc. may be used in addition to platinum black, and these materials show good results similarly to platinum black. Was.

次に、水素吸蔵合金負極表面へ、MnNi3.55Mn0.4Al0.3
Co0.75よりも水素平衡圧が低い水素吸蔵合金粉末を配す
る効果について、実施例15により検討した。MmNi3.55Mn
0.4Al0.3Co0.75の20℃における水素平衡圧は、約0.4kg/
cm2、負極表面に配したLaNi4Alの20℃における水素平衡
圧は、1.8×10-3kg/cm2である。この場合、充電時の電
池内圧は2.4kg/cm2となり実施例1の3.3kg/cm2よりも良
好な結果を示した。これは、MnNi3.55Mn0.4Al0.3Co0.75
よりもLaNi4Alの方が、水素平衡圧が低いため(7)式
の気体状水素の吸蔵反応がより進行しやすいためであ
る。なお、LaNi4Alは、水素吸蔵合金負極表面または、
負極表面の撥水層のいずれに配しても効果があった。ま
た負極表面へ添加する水素吸蔵合金としては、LaNi4Al
の他に、MmNi3.55Mn0.4Al0.3Co0.75よりも水素平衡圧が
低ければ、どのような組成の水素吸蔵合金でもよい。
Next, MnNi 3.55 Mn 0.4 Al 0.3
Example 15 examined the effect of disposing a hydrogen storage alloy powder having a lower hydrogen equilibrium pressure than Co 0.75 . MmNi 3.55 Mn
The hydrogen equilibrium pressure of 0.4 Al 0.3 Co 0.75 at 20 ° C is about 0.4 kg /
The hydrogen equilibrium pressure at 20 ° C. of LaNi 4 Al disposed on the negative electrode surface in cm 2 is 1.8 × 10 −3 kg / cm 2 . In this case, the battery internal pressure during charging showed better results than 3.3 kg / cm 2 of 2.4 kg / cm 2 next Example 1. This is MnNi 3.55 Mn 0.4 Al 0.3 Co 0.75
This is because LaNi 4 Al has a lower hydrogen equilibrium pressure and the gaseous hydrogen storage reaction of the formula (7) proceeds more easily. In addition, LaNi 4 Al is a hydrogen storage alloy negative electrode surface or
There was an effect even if it was arranged on any of the water repellent layers on the negative electrode surface. As a hydrogen storage alloy to be added to the negative electrode surface, LaNi 4 Al
In addition, a hydrogen storage alloy having any composition may be used as long as the hydrogen equilibrium pressure is lower than that of MmNi 3.55 Mn 0.4 Al 0.3 Co 0.75 .

また、水素吸蔵合金電極負面の撥水層への導電性材料
の添加の効果について実施例16において検討した。実施
例16の電池の充電時の電池内圧は、2.3kg/cm2、放電時
の中間電圧は1.200Vであり、実施例1よりも良好な結果
を示した。これは、導電性材料の添加により、水素吸蔵
合金負極の電子伝導性が向上し、充電時及び放電時の水
素吸蔵合金負極の分極が小さくなったためである。なお
実施例16においては、導電性材料としてアセチレンブラ
ックを用いたが、カーボンブラック,ケッチャンブラッ
クなど他の無定形構造炭素や黒鉛化構造を有するグラフ
ァイトなどでも同様の効果が得られた。更に膨張性黒鉛
を用いるとFEPの負極への密着性が向上し充放電サイク
ル寿命が向上した。
In Example 16, the effect of adding a conductive material to the water-repellent layer on the negative surface of the hydrogen storage alloy electrode was examined. The internal pressure of the battery of Example 16 at the time of charging was 2.3 kg / cm 2 , and the intermediate voltage at the time of discharging was 1.200 V. The result was better than that of Example 1. This is because the addition of the conductive material improves the electron conductivity of the hydrogen storage alloy negative electrode and reduces the polarization of the hydrogen storage alloy negative electrode during charging and discharging. In Example 16, acetylene black was used as the conductive material. However, the same effect was obtained with other amorphous carbon such as carbon black and Ketchan black or graphite having a graphitized structure. Furthermore, when expandable graphite was used, the adhesion of FEP to the negative electrode was improved, and the charge / discharge cycle life was improved.

次に、水素吸蔵合金負極中に含まれる親水性樹脂量に
ついて検討した。実施例17は、親水性樹脂であるPVAを
実施例1の10倍添加した水素吸蔵合金負極を用いた電池
である。表1から明らかであるように、実施例17の様に
多量に添加しても放電特性は向上せず、充電時の電池内
圧は8.4kg/cm2に上昇した。また、PVAを添加すればする
ほど相対的に水素吸蔵合金粉末の充填量は減少すること
になり水素吸蔵合金負極の高エネルギー密度化の観点か
らも、PVAの多量添加は好ましくない。逆にPVAを全く添
加していない比較例2は、充電特性及び放電特性の観点
からも好ましくない。第5図にPVAの添加量と充電時の
電池内圧及び放電時の中間電圧との関係を示した。第5
図の結果および水素吸蔵合金負極の高エネルギー密度化
の観点からPVAの添加量は、水素吸蔵合金量に対して0.0
5〜1.0wt%が最適である。なお親水性材料としては、PV
Aの他にカルボキシメチルセルロースなど、他の耐アル
カリ性樹脂でも同様の効果が認められた。
Next, the amount of the hydrophilic resin contained in the hydrogen storage alloy negative electrode was examined. Example 17 is a battery using a hydrogen-absorbing alloy negative electrode to which PVA, which is a hydrophilic resin, is added 10 times that of Example 1. As is clear from Table 1, even when added in a large amount as in Example 17, the discharge characteristics did not improve, and the internal pressure of the battery during charging increased to 8.4 kg / cm 2 . Further, the more the PVA is added, the more the filling amount of the hydrogen storage alloy powder decreases, and from the viewpoint of increasing the energy density of the hydrogen storage alloy negative electrode, it is not preferable to add a large amount of PVA. Conversely, Comparative Example 2, in which no PVA was added, is not preferable from the viewpoint of charging characteristics and discharging characteristics. FIG. 5 shows the relationship between the amount of PVA added and the internal pressure of the battery during charging and the intermediate voltage during discharging. Fifth
From the results in the figure and the viewpoint of increasing the energy density of the hydrogen storage alloy negative electrode, the amount of PVA added was 0.0
5 to 1.0 wt% is optimal. In addition, as the hydrophilic material, PV
Similar effects were observed with other alkali-resistant resins such as carboxymethylcellulose other than A.

次に水素吸蔵合金負極の多孔度についての検討を行な
った。水素吸蔵合金負極の多孔度を15vol%にした比較
例18の電池の充電時の電池内圧は14.3kg/cm2であり水素
吸蔵合金負極の多孔度が30vol%である実施例1の電池
よりも水素ガス吸収能力が低下した。これは以下の理由
による。すなわち、比較例18は、水素吸蔵合金負極の多
孔度が15vol%と低いために、電極内部の電解液による
濡れ性が悪く、その結果、(5)式の電気化学的水素吸
蔵反応が抑制され、(7)式の水素ガス発生が促進され
たためである。また、同様に電極の濡れ性の低下のため
に、放電時の中間電圧も実施例1に比べ低下した。しか
し、逆に水素吸蔵合金の多孔度を上昇させると、充電特
性及び放電特性は向上するが、水素吸蔵合金負極及び電
池の高エネルギー密度化の観点からは好ましくない。以
上のことより、水素吸蔵合金負極の多孔度は20〜40vol
%が適当である。
Next, the porosity of the hydrogen storage alloy negative electrode was examined. The battery internal pressure at the time of charging of the battery of Comparative Example 18 in which the porosity of the hydrogen storage alloy negative electrode was 15 vol% was 14.3 kg / cm 2 , and was lower than that of the battery of Example 1 in which the porosity of the hydrogen storage alloy negative electrode was 30 vol%. Hydrogen gas absorption capacity decreased. This is for the following reason. That is, in Comparative Example 18, since the porosity of the hydrogen-absorbing alloy negative electrode was as low as 15 vol%, the wettability with the electrolytic solution inside the electrode was poor, and as a result, the electrochemical hydrogen-absorbing reaction of the formula (5) was suppressed. This is because the generation of hydrogen gas in the formula (7) is promoted. Similarly, the intermediate voltage at the time of discharge was lower than that of Example 1 due to a decrease in wettability of the electrode. However, conversely, when the porosity of the hydrogen storage alloy is increased, the charge characteristics and the discharge characteristics are improved, but this is not preferable from the viewpoint of increasing the energy density of the hydrogen storage alloy negative electrode and the battery. From the above, the porosity of the hydrogen storage alloy anode is 20 to 40 vol
% Is appropriate.

また、水素吸蔵合金負極表面への撥水性材料の添加方
法について検討した。水素吸蔵合金粉末とPVA水溶液と
を混合してペースト状にし、このペーストを三次元支持
体である発泡状ニッケル多孔体に充填したのち、実施例
1は、ペーストを含有する支持体をプレス加圧し、その
のち負極表面にFEPを塗布した負極を用いた電池であ
り、実施例19は、ペーストを含有する支持体の表面にFE
Pを塗布したのち、支持体をプレス加圧した負極を用い
た電池である。表1から明らかな様に、実施例19は、充
電時の電池内圧が11.2kg/cm2と実施例1に比べ上昇し
た。これは、実施例19の場合、支持体をプレス加圧する
ことにより、FEPが水素吸蔵合金負極内部にも分布する
ことになる。その結果、水素吸蔵合金負極内部の親水性
が低下し、(5)式の電気化学的な水素吸蔵反応が抑制
され、充電時に水素ガスが発生しやすくなるためであ
る。このことにより、本発明の水素吸蔵合金負極の製造
法としては、実施例1の様に、まず水素吸蔵合金粉末と
PVA水溶液とを混合してペースト状にし、そのペースト
を支持体に充填,圧入又は塗着したのちプレス加圧し、
さらにその表面にFEPを塗布・浸漬又は圧入するのが最
適である。この水素吸蔵合金負極の製造法は、水素ガス
の分解反応に対して触媒性能を有する材料、導電性物質
や、MmNi3.55Mn0.4Al0.3Co0.75よりも水素平衡圧が低い
水素吸蔵合金粉末を水素吸蔵合金負極の表面に有する場
合も同様に、水素吸蔵合金粉末とPVA水溶液とから成る
ペーストを含む支持体をプレス加圧したのち、上記物質
及び上記物質とFEPとの混合物が水素吸蔵合金負極表面
に、塗布・浸漬又は圧入するのが好ましい。
Further, a method of adding a water-repellent material to the surface of the hydrogen storage alloy negative electrode was examined. After mixing the hydrogen storage alloy powder and the PVA aqueous solution to form a paste and filling the paste into a foamed nickel porous body as a three-dimensional support, in Example 1, the support containing the paste was press-pressed. Then, a battery using a negative electrode coated with FEP on the negative electrode surface, and Example 19 shows that the surface of the paste-containing support was FE-coated.
This is a battery using a negative electrode obtained by applying P and then press-pressing the support. As apparent from Table 1, in Example 19, the internal pressure of the battery during charging was 11.2 kg / cm 2, which was higher than that in Example 1. This means that, in the case of Example 19, FEP is also distributed inside the hydrogen storage alloy negative electrode by pressing the support with a press. As a result, the hydrophilicity inside the hydrogen storage alloy negative electrode is reduced, the electrochemical hydrogen storage reaction of the formula (5) is suppressed, and hydrogen gas is easily generated during charging. Accordingly, as a method for producing the hydrogen storage alloy negative electrode of the present invention, first, as in Example 1,
A PVA aqueous solution is mixed to form a paste, and the paste is filled into a support, press-fitted or coated, and then press-pressed,
Further, it is optimal to apply / dip or press-fit FEP on the surface. This method of producing a hydrogen storage alloy negative electrode involves the use of hydrogen storage alloy powder having a hydrogen equilibrium pressure lower than that of MmNi 3.55 Mn 0.4 Al 0.3 Co 0.75 , such as a material having a catalytic performance against the decomposition reaction of hydrogen gas, a conductive substance, or hydrogen. Similarly, in the case of having the surface of the hydrogen storage alloy negative electrode, the support containing the paste composed of the hydrogen storage alloy powder and the PVA aqueous solution is press-pressed, and then the above substance and the mixture of the substance and FEP are mixed with the hydrogen storage alloy negative electrode surface. It is preferable to apply, immerse or press-fit.

また、実施例20の様に、水素吸蔵合金粉末とPVA水溶
液とから成るペーストを支持体に充填したのち、その支
持体をプレス加圧して得た水素吸蔵合金負極を、FEPを
含むPVA水溶液中に浸漬することにより表面にFEPを添加
した負極を用いた電池の充放電特性は、充電時の電池内
圧が3.5kg/cm2、放電時の中間電圧が1.175Vであった。
これを実施例1と比較すると、放電特性が向上している
ことがわかる。以上より、本発明の水素吸蔵合金負極の
製造法としては、水素吸蔵合金粉末とPVA水溶液とを混
合してペースト状にしたのち、そのペーストを支持体に
充填,浸漬、又は圧入し、そののち、その支持体をプレ
ス加圧し、さらにその表面に親水性材料と撥水性材料と
の混合物を塗布・浸漬又は圧入してもよい。
Further, as in Example 20, after filling a support comprising a hydrogen storage alloy powder and an aqueous PVA solution into a support, the hydrogen storage alloy negative electrode obtained by press-pressing the support was placed in an aqueous PVA solution containing FEP. As for the charge / discharge characteristics of the battery using the negative electrode to which FEP was added by immersion in the battery, the battery internal pressure during charging was 3.5 kg / cm 2 , and the intermediate voltage during discharging was 1.175 V.
Comparing this with Example 1, it can be seen that the discharge characteristics are improved. As described above, as a method for producing the hydrogen storage alloy negative electrode of the present invention, the hydrogen storage alloy powder and the PVA aqueous solution are mixed to form a paste, and then the paste is filled, immersed, or pressed into a support, and thereafter, Alternatively, the support may be press-pressed, and a mixture of a hydrophilic material and a water-repellent material may be applied, dipped, or pressed into the surface.

また、気相触媒の効果を把握するため、次の実施例を
試みた。
Further, in order to grasp the effect of the gas phase catalyst, the following example was tried.

(実施例21) 直径約1mm、長さ約2.5mmのアルミナ粉末の焼結多孔体
からなるペレットを塩化パラジウムの水溶液に浸漬し、
約25mgのパラジウムを析出させ、乾燥後1.5wt%のフッ
素樹脂のディスパージョンに浸漬して撥水性を付与し
た。ついで、このペレットをポリプロピレン製不織布に
包み、第1図に示す電極群の上に正,負極いずれとも電
気的に絶縁を保って配置し、前記と同様に密閉形ニッケ
ル,水素蓄電池を構成した。なおこの電池の負極は実施
例1による負極と同じものとした。
(Example 21) A pellet made of a sintered porous body of alumina powder having a diameter of about 1 mm and a length of about 2.5 mm was immersed in an aqueous solution of palladium chloride,
About 25 mg of palladium was precipitated, dried, and immersed in a 1.5 wt% fluororesin dispersion to impart water repellency. Next, the pellet was wrapped in a nonwoven fabric made of polypropylene, and placed on the electrode group shown in FIG. 1 while keeping both the positive electrode and the negative electrode electrically insulated, thereby forming a sealed nickel-hydrogen storage battery in the same manner as described above. The negative electrode of this battery was the same as the negative electrode according to Example 1.

この電池を、実施例および比較例1〜20までの水素吸
蔵合金負極を用いた電池と同様に、1CmAの充電電流で正
極容量の200%まで充電した時の電池内圧を測定すると
2.8kg/cm2であった。また中間電圧も1.150Vで実施例1
のときと同じであった。
When measuring the internal pressure of the battery when the battery was charged to 200% of the positive electrode capacity with a charging current of 1 CmA, similarly to the batteries using the hydrogen storage alloy negative electrodes of Examples and Comparative Examples 1 to 20,
It was 2.8 kg / cm 2 . In addition, the intermediate voltage is 1.150 V and the first embodiment
It was the same as at the time.

(実施例22) 実施例21の塩化パラジウムに代え塩化白金酸水溶液を
用意して、これにアルミナペレットを浸漬して白金を25
mg析出させ、これに前例同様の撥水性を付与した気相触
媒を、電極群上の同様の位置に配して電池内圧と中間電
圧を調べたところ、パラジウム触媒とほぼ同様の結果が
得られた。
(Example 22) An aqueous solution of chloroplatinic acid was prepared in place of the palladium chloride of Example 21, and alumina pellets were immersed in the aqueous solution to convert platinum to 25%.
When a gas phase catalyst with the same water repellency as in the previous example was deposited at the same position on the electrode group and the battery internal pressure and intermediate voltage were examined, almost the same results were obtained as with the palladium catalyst. Was.

さらに、触媒保持担体としてはアルミナのほかカーボ
ン成形体を有いることができ、付与させる触媒としては
白金族金属のほか金,銀が使用できた。
Further, as a catalyst holding carrier, a carbon molded body could be used in addition to alumina, and as a catalyst to be provided, gold and silver could be used in addition to a platinum group metal.

前記の実施例および比較例1〜20までの現象は、一般
式A1-xBxCyで示された範囲内で水素吸蔵合金組成を変化
させても同程度の結果を得た。しかし、CaCu5型結晶構
造を有する水素吸蔵合金であるMmNi5を用いると、充放
電サイクルの繰り返しにより、水素吸蔵合金粒子の微粉
化が進行し、電極支持体から脱落する結果、放電容量が
低下しサイクル寿命特性が悪かった。そこで、MmNi5にT
i,Zr,Ca,Y,Hf,Co,Mn,Al,Fe,Cu,Crのうちの少なくとも1
種の金属を添加し、多元合金化すると、充放電サイクル
の繰り返しによる水素吸蔵合金粒子の微粉化の進行が抑
制され、サイクル寿命特性が改善された。しかし、添加
量がそれぞれ原子比でTi,Zr,Ca,Y,Hfは0.2以上、Co,Cu
は1.0以上、Fe,Crは0.3以上、Mは0.6以上、Alは0.5以
上となると水素吸蔵に有効な合金相が減少し、放電容量
が小さくなり好ましくない。逆に、Niの量が原子比で3.
5以下となると、同様に水素吸蔵合金負極の放電容量が
低下する。また、水素吸蔵合金組成がCaCu5型から大き
くずれ、CaCu4.7,CaCu5.3となると同様に水素吸蔵合金
負極の放電容量が好ましくない。以上により水素吸蔵合
金負極に用いる水素吸蔵合金組成としては、一般式A1-x
BxCy(但し、AはLa単独か、希土類元素の混合物か、又
はミッシュメタル、BはTi,Zr,Ca,Y,Hfのうちの一種又
はこれらの混合物からなり、0≦x≦0.2であり、CはN
i,Co,Mn,Al,Fe,Cu,Crのうちの一種又はこれらの混合物
であり、Niの場合y>3.5、Coの場合y≦1.0、Mnの場合
y≦0.6、Alの場合y≦0.5、Feの場合y≦0.3、Cuの場
合y≦1.0、Crの場合y≦0.3,4.7≦y≦5.3である)で
表わされるものが好ましい。
Examples and phenomena to Comparative Examples 1-20 above, even in the general formula shown in A 1-x B x C y ranges by changing the hydrogen absorbing alloy composition to give a result comparable. However, when MmNi 5 , which is a hydrogen storage alloy having a CaCu 5 type crystal structure, is used, the charge / discharge cycle is repeated, the hydrogen storage alloy particles become finer, and fall off from the electrode support, resulting in a lower discharge capacity. The cycle life characteristics were poor. Therefore, T to MmNi 5
at least one of i, Zr, Ca, Y, Hf, Co, Mn, Al, Fe, Cu, and Cr
When a kind of metal was added to form a multi-element alloy, the progress of pulverization of the hydrogen storage alloy particles due to repetition of charge / discharge cycles was suppressed, and the cycle life characteristics were improved. However, the amount of Ti, Zr, Ca, Y, Hf in the atomic ratio is 0.2 or more, Co, Cu
If the ratio is 1.0 or more, Fe and Cr are 0.3 or more, M is 0.6 or more, and Al is 0.5 or more, the alloy phase effective for hydrogen storage decreases, and the discharge capacity is undesirably reduced. Conversely, the amount of Ni is 3.
When it is 5 or less, the discharge capacity of the hydrogen storage alloy negative electrode similarly decreases. Further, when the composition of the hydrogen storage alloy greatly deviates from that of the CaCu 5 type, and becomes CaCu 4.7 or CaCu 5.3 , the discharge capacity of the hydrogen storage alloy negative electrode is also unfavorable. As described above, the hydrogen storage alloy composition used for the hydrogen storage alloy negative electrode has the general formula A 1-x
B x C y (where A is La alone, a mixture of rare earth elements, or a misch metal, B is one of Ti, Zr, Ca, Y, Hf or a mixture thereof, 0 ≦ x ≦ 0.2 And C is N
i, Co, Mn, Al, Fe, Cu, Cr is a kind or a mixture thereof, in the case of Ni, y> 3.5, in the case of Co, y ≦ 1.0, in the case of Mn, y ≦ 0.6, in the case of Al, y ≦ 0.5, y ≦ 0.3 for Fe, y ≦ 1.0 for Cu, y ≦ 0.3, 4.7 ≦ y ≦ 5.3 for Cr).

また、上記の水素吸蔵合金にVを添加した水素吸蔵合
金MmNi3.55Co0.75Mn0.4Al0.30.02を水素吸蔵合金負極
に用いた電池の充電時の内圧は2.8kg/cm2、放電時の中
間電圧は1.158Vとなり、実施例1に比べ向上した。これ
は、Vの添加により、水素吸蔵合金の格子定数が増大
し、水素の水素吸蔵合金固相中の拡散が容易になったた
めである。Vの添加は原子比で0.02以上から効果が認め
られた。しかし、Vが原子比で0.3以上となると、水素
吸蔵に有効な合金相が減少し、放電容量が低下するとい
う不都合が生じた。このことにより、Vの添加は原子比
で0.02〜0.3の範囲内が好ましい。
In addition, the internal pressure during charging of a battery using hydrogen storage alloy MmNi 3.55 Co 0.75 Mn 0.4 Al 0.3 V 0.02 obtained by adding V to the above hydrogen storage alloy as a hydrogen storage alloy negative electrode was 2.8 kg / cm 2 , and the intermediate pressure during discharge was The voltage was 1.158 V, which was improved compared to the first embodiment. This is because the addition of V increases the lattice constant of the hydrogen storage alloy, and facilitates diffusion of hydrogen in the solid phase of the hydrogen storage alloy. The effect of addition of V was recognized from an atomic ratio of 0.02 or more. However, when V becomes 0.3 or more in atomic ratio, there is a disadvantage that the alloy phase effective for hydrogen storage decreases and the discharge capacity decreases. For this reason, the addition of V is preferably in the range of 0.02 to 0.3 in atomic ratio.

また、上記の水素吸蔵合金にInを添加した水素吸蔵合
金MmNi3.55Co0.75Mn0.4Al0.3In0.02を水素吸蔵合金負極
に用いた電池の充電時の内圧は、2.5kg/cm2となり、実
施例1に比べ、充電特性が向上した。これは、Inの添加
により、水素吸蔵合金負極の充電時の水素過電圧が上昇
し、水素発生が抑制されるためである。Inの添加は、原
子比で0.02以上から効果が認められ、逆に0.1を超える
と放電容量の低下という不都合が生じた。このことより
Inの添加は原子比で0.02〜0.1の範囲内が好ましい。な
おInのかわりにTl,Gaを用いても同様の効果が認められ
た。
Further, the internal pressure during charging of the battery using a hydrogen storage alloy MmNi 3.55 Co 0.75 Mn 0.4 Al 0.3 In 0.02 with the addition of In into the hydrogen absorbing alloy in the hydrogen storage alloy negative electrode, 2.5 kg / cm 2, and the embodiment As compared with No. 1, the charging characteristics were improved. This is because the addition of In increases the hydrogen overvoltage at the time of charging the hydrogen storage alloy negative electrode, and suppresses the generation of hydrogen. The effect of addition of In was recognized from an atomic ratio of 0.02 or more. Conversely, if it was more than 0.1, the discharge capacity was disadvantageously reduced. From this
The addition of In is preferably in the range of 0.02 to 0.1 in atomic ratio. The same effect was observed when Tl or Ga was used instead of In.

以上は、ニッケル・水素蓄電池を例として記述した
が、二酸化マンガン・水素蓄電池など水素吸蔵合金負極
を用いた他のアルカリ蓄電池においても同様の効果が認
められることは言うまでもない。
Although the above description has been made with reference to a nickel-hydrogen storage battery as an example, it is needless to say that the same effect can be obtained in other alkaline storage batteries using a hydrogen storage alloy negative electrode such as a manganese dioxide-hydrogen storage battery.

発明の効果 以上のように、本発明によれば気相触媒を配するか、
および/又は水素吸蔵合金負極の内部に親水性樹脂を添
加し、負極表面には撥水性樹脂または主体をなす水素吸
蔵合金よりも水素平衡圧の低い水素吸蔵合金粉末,導電
性材料及び水素ガスの分解反応に対して触媒性能を示す
材料を含む撥水性材料を配した負極を、まず、水素吸蔵
合金粉末と親水性材料との混合物をペースト状にして支
持体に充填,圧入又は塗着したのち、プレス加圧して、
その表面に撥水性樹脂を含む材料を塗布・浸漬又は圧入
して製造することにより、過充電時に電池内圧の上昇を
抑制し、かつ放電時には電池電圧の低下を抑制した密閉
形アルカリ蓄電池の提供を可能にするという効果が得ら
れる。
Effect of the Invention As described above, according to the present invention, a gas phase catalyst is disposed,
And / or adding a hydrophilic resin to the inside of the hydrogen storage alloy negative electrode, and adding a water-repellent resin or a hydrogen storage alloy powder having a lower hydrogen equilibrium pressure than the main hydrogen storage alloy, a conductive material, and a hydrogen gas to the negative electrode surface. A negative electrode provided with a water-repellent material containing a material exhibiting catalytic performance against a decomposition reaction is first filled with a mixture of a hydrogen storage alloy powder and a hydrophilic material into a paste, filled into a support, pressed in, or coated. , Press press,
By providing a material containing a water-repellent resin on the surface and applying and immersing or manufacturing the same, it is possible to provide a sealed alkaline storage battery that suppresses an increase in battery internal pressure during overcharge and suppresses a decrease in battery voltage during discharge. The effect of making it possible is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明で作成したニッケル・水素蓄電池の断面
図、第2図は水素吸蔵合金負極の構成のちがいによる20
℃,1CmAの充電電流での充電電気量と電池内圧との関係
を示す図、第3図は水素吸蔵合金負極の構成のちがいに
よる20℃,3CmAの放電電流での放電電気量と電池電圧と
の関係を示す図、第4図はFEPの添加量と20℃,1CmAの充
電電流での正極容量に対して200%充電時の電池内圧及
び20℃,3CmA放電電流で0.8Vまで放電した際の中間電圧
との関係を示す図、第5図はPVA添加量と20℃,1CmA充電
電流での正極容量に対して200%充電時の電池内圧及び2
0℃,3CmA放電電流で0.8Vまで放電した際の中間電圧との
関係を示す図である。 1……負極、2……正極、3……セパレータ。
FIG. 1 is a cross-sectional view of a nickel-metal hydride storage battery prepared by the present invention, and FIG.
FIG. 3 shows the relationship between the amount of charge and the internal pressure of the battery at a charge current of 1 ° C., and FIG. 3 shows the relationship between the amount of charge and the battery voltage at a discharge current of 3 ° C. at 20 ° C. Fig. 4 shows the relationship between the amount of FEP added and the positive electrode capacity at a charging current of 20 ° C and 1CmA when the battery was discharged to 0.8V at a battery internal pressure of 200% charging and a discharging current of 20 ° C and 3CmA. FIG. 5 shows the relationship between the PVA addition amount and the positive electrode capacity at 20 ° C., 1 CmA charging current and the internal pressure of the battery at 200% charging and 2%.
FIG. 4 is a diagram showing a relationship with an intermediate voltage when discharging to 0.8 V at a discharge current of 0 ° C. and 3 CmA. 1 ... a negative electrode, 2 ... a positive electrode, 3 ... a separator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 収 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 松本 功 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭62−139255(JP,A) 特開 昭63−231882(JP,A) 特開 昭61−214360(JP,A) 特開 昭61−285658(JP,A) 特開 昭60−109183(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/62 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor: Osamu Takahashi 1006, Kadoma, Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-62-139255 (JP, A) JP-A-63-231882 (JP, A) JP-A-61-214360 (JP, A) JP-A-61-285658 (JP, A) JP-A-60-109183 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/24-4/62

Claims (24)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属酸化物を主たる構成材料とする正極
と、活物質である水素を電気化学的に吸蔵・放出するこ
とが可能な平均粒子径が0.1μmよりも大きい水素吸蔵
合金を主たる構成材料とする負極と、アルカリ電解液
と、セパレータとからなり、前記負極は電極表面層にの
み撥水性材料を、電極内部に親水性材料をそれぞれ有す
ることを特徴とするアルカリ蓄電池。
1. A positive electrode comprising a metal oxide as a main constituent material and a hydrogen storage alloy having an average particle diameter larger than 0.1 μm capable of electrochemically storing and releasing hydrogen as an active material. An alkaline storage battery comprising a negative electrode as a material, an alkaline electrolyte, and a separator, wherein the negative electrode has a water-repellent material only in an electrode surface layer and a hydrophilic material inside the electrode.
【請求項2】金属酸化物を主たる構成材料とする正極
と、活物質である水素を電気化学的に吸蔵・放出するこ
とが可能な平均粒子径が0.1μmよりも大きい水素吸蔵
合金を主たる構成材料とする負極と、アルカリ電解液
と、セパレータとからなり、前記負極は電極表面に界面
活性剤を吸着していない撥水性材料を、電極内部に親水
性材料をそれぞれ有することを特徴とするアルカリ蓄電
池。
2. A main structure comprising a positive electrode mainly composed of a metal oxide and a hydrogen storage alloy having an average particle diameter larger than 0.1 μm capable of electrochemically absorbing and releasing hydrogen as an active material. A negative electrode comprising a material, an alkaline electrolyte, and a separator, wherein the negative electrode has a water-repellent material having no surfactant adsorbed on the electrode surface, and a hydrophilic material inside the electrode. Storage battery.
【請求項3】金属酸化物を主たる構成材料とする正極
と、活物質である水素を電気化学的に吸蔵・放出するこ
とが可能な水素吸蔵合金を主たる構成材料とする負極
と、アルカリ電解液と、セパレータとからなり、前記負
極は電極表面に界面活性剤を吸着していないポリエチレ
ン以外の撥水性材料を、電極内部に親水性材料をそれぞ
れ有することを特徴とするアルカリ蓄電池。
3. A positive electrode mainly composed of a metal oxide, a negative electrode mainly composed of a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen as an active material, and an alkaline electrolyte. And a separator, wherein the negative electrode has a water-repellent material other than polyethylene having no surfactant adsorbed on the electrode surface, and a hydrophilic material inside the electrode.
【請求項4】金属酸化物を主たる構成材料とする正極
と、活物質である水素を電気化学的に吸蔵・放出するこ
とが可能な水素吸蔵合金を主たる構成材料とする負極
と、アルカリ電解液と、セパレータとからなり、前記負
極は電極表面層にのみ撥水性材料を、電極内部に親水性
材料をそれぞれ有し、負極の多孔度を15vol%よりも大
きくすることを特徴とするアルカリ蓄電池。
4. A positive electrode mainly composed of a metal oxide, a negative electrode mainly composed of a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen as an active material, and an alkaline electrolyte. And a separator, wherein the negative electrode has a water-repellent material only in the electrode surface layer and a hydrophilic material inside the electrode, and the porosity of the negative electrode is greater than 15 vol%.
【請求項5】金属酸化物を主たる構成材料とする正極
と、活物質である水素を電気化学的に吸蔵・放出するこ
とが可能な水素吸蔵合金を主たる構成材料とする負極
と、アルカリ電解液と、セパレータとからなり、前記負
極は電極表面に界面活性剤を吸着していない撥水性材料
を、電極内部に親水性材料をそれぞれ有し、電池構成時
における負極の多孔度を15vol%よりも大きくすること
を特徴とするアルカリ蓄電池。
5. A positive electrode mainly composed of a metal oxide, a negative electrode mainly composed of a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen as an active material, and an alkaline electrolyte. And a separator, wherein the negative electrode has a water-repellent material on which no surfactant is adsorbed on the electrode surface, and a hydrophilic material inside the electrode, and the porosity of the negative electrode at the time of battery construction is higher than 15 vol%. An alkaline storage battery characterized by being enlarged.
【請求項6】負極の水素吸蔵合金の組成が、一般式A1-x
BxCy(但し、AはLa単独か、希土類元素の混合物、又は
ミッシュメタル、BはTi,Zr,Ca,Y,Hfのうちの一種又は
これらの混合物からなり0≦x≦0.2であり、CはNi,C
o,Mn,Al,Fe,Cu,Crのうちの一種又はこれらの混合物から
なり、Niの場合y>3.5、Coの場合y≦1.0、Mnの場合y
≦0.6、Alの場合y≦0.5、Feの場合y≦0.3、Cuの場合
y≦1.0、Crの場合y≦0.3で示され、4.7≦y≦5.3であ
る)で表わされることを特徴とする請求項1〜5のいず
れかに記載のアルカリ蓄電池。
6. The composition of a hydrogen-absorbing alloy of a negative electrode represented by the general formula A 1-x
B x C y (where A is La alone, a mixture of rare earth elements, or a misch metal, B is one of Ti, Zr, Ca, Y, Hf or a mixture thereof, and 0 ≦ x ≦ 0.2 , C is Ni, C
o, Mn, one of Al, Fe, Cu, Cr or a mixture of these, y> 3.5 for Ni, y ≦ 1.0 for Co, y for Mn
≦ 0.6, y ≦ 0.5 for Al, y ≦ 0.3 for Fe, y ≦ 1.0 for Cu, y ≦ 0.3 for Cr, and 4.7 ≦ y ≦ 5.3). The alkaline storage battery according to claim 1.
【請求項7】負極の水素吸蔵合金の組成が一般式A1-xBx
CyDz(但し、AはLa単独か、希土類元素の混合物、又は
ミッシュメタル、BはTi,Zr,Ca,Y,Hfのうちの一種又は
これらの混合物からなり0≦x≦0.2であり、CはNi,C
o,Mn,Al,Fe,Cu,Crのうちの一種又はこれらの混合物であ
り、Niの場合y>3.5、Coの場合y≦1.0、Mnの場合y≦
0.6、Alの場合y≦0.5、Feの場合y≦0.3、Cuの場合y
≦1.0、Crの場合y≦0.3で示され、DはV,In,Tl,Gaのう
ちの一種又はこれらの混合物であり、Vの場合0.02≦z
≦0.3、Inの場合0.02≦z≦0.1、Tlの場合0.02≦z≦0.
1、Gaの場合0.02≦z≦0.1で示され、4.7≦y+z≦5.3
である)で表わされることを特徴とする請求項1〜5の
いずれかに記載のアルカリ蓄電池。
7. The composition of a hydrogen storage alloy for a negative electrode according to the general formula A 1-x B x
C y D z (where A is La alone, a mixture of rare earth elements, or misch metal, B is one of Ti, Zr, Ca, Y, Hf or a mixture thereof, and 0 ≦ x ≦ 0.2 , C is Ni, C
o, Mn, Al, Fe, Cu, a kind of Cr or a mixture thereof, y> 3.5 for Ni, y ≦ 1.0 for Co, y ≦ 1.0 for Mn
0.6, y ≦ 0.5 for Al, y ≦ 0.3 for Fe, y for Cu
≦ 1.0, Cr is represented by y ≦ 0.3, D is one of V, In, Tl, Ga or a mixture thereof, and V is 0.02 ≦ z
≦ 0.3, 0.02 ≦ z ≦ 0.1 for In, 0.02 ≦ z ≦ 0 for Tl.
1, Ga: 0.02 ≦ z ≦ 0.1, 4.7 ≦ y + z ≦ 5.3
The alkaline storage battery according to any one of claims 1 to 5, wherein
【請求項8】水素吸蔵合金は粉末状態であって、各粒子
の表面が無数の凹凸層を有していることを特徴とする請
求項1〜5のいずれかに記載のアルカリ蓄電池。
8. The alkaline storage battery according to claim 1, wherein the hydrogen storage alloy is in a powder state, and the surface of each particle has an innumerable uneven layer.
【請求項9】水素吸蔵合金は、平均粒子径が1〜50μm
の粉末状態であることを特徴とする請求項1〜5のいず
れかに記載のアルカリ蓄電池。
9. The hydrogen storage alloy has an average particle diameter of 1 to 50 μm.
The alkaline storage battery according to any one of claims 1 to 5, wherein the alkaline storage battery is in a powder state.
【請求項10】水素吸蔵合金負極表面層の撥水性材料
が、フッ素系樹脂であることを特徴とする請求項1〜5
のいずれかに記載のアルカリ蓄電池。
10. The water-repellent material of the hydrogen storage alloy negative electrode surface layer is a fluororesin.
The alkaline storage battery according to any one of the above.
【請求項11】水素吸蔵合金負極表面層の撥水性材料が
ポリ四フッ化エチレン、または四フッ化エチレンと六フ
ッ化プロピレンとの共重合樹脂であることを特徴とする
請求項1〜5のいずれかに記載のアルカリ蓄電池。
11. The method according to claim 1, wherein the water-repellent material of the hydrogen-absorbing alloy negative electrode surface layer is polytetrafluoroethylene or a copolymer resin of ethylene tetrafluoride and propylene hexafluoride. The alkaline storage battery according to any one of the above.
【請求項12】水素吸蔵合金負極表面の撥水性樹脂量
が、負極の単位面積当り0.15mg/cm2〜1.5mg/cm2である
ことを特徴とする請求項1〜5のいずれかに記載のアル
カリ蓄電池。
Water-repellent resin amount of 12. The hydrogen absorbing alloy negative electrode surface, claimed in claim 1, characterized in that the unit area per 0.15mg / cm 2 ~1.5mg / cm 2 of the anode Alkaline storage batteries.
【請求項13】水素吸蔵合金負極表面または負極表面の
撥水層に、該水素吸蔵合金よりも水素平衡圧が低い水素
吸蔵合金粉末を有することを特徴とする請求項1〜5の
いずれかに記載のアルカリ蓄電池。
13. The hydrogen storage alloy negative electrode surface or a water-repellent layer on the negative electrode surface, comprising a hydrogen storage alloy powder having a hydrogen equilibrium pressure lower than that of the hydrogen storage alloy. The alkaline storage battery according to the above.
【請求項14】水素吸蔵合金負極表面または負極表面の
撥水層に、導電性材料が含まれていることを特徴とする
請求項1〜5のいずれかに記載のアルカリ蓄電池。
14. The alkaline storage battery according to claim 1, wherein the hydrogen storage alloy negative electrode surface or the water repellent layer on the negative electrode surface contains a conductive material.
【請求項15】水素吸蔵合金負極中に含まれる親水性樹
脂量が水素吸蔵合金量に対してその0.05〜1.0wt%であ
ることを特徴とする請求項1〜5のいずれかに記載のア
ルカリ蓄電池。
15. The alkali according to claim 1, wherein the amount of the hydrophilic resin contained in the negative electrode of the hydrogen storage alloy is 0.05 to 1.0% by weight based on the amount of the hydrogen storage alloy. Storage battery.
【請求項16】電池構成時における水素吸蔵合金負極の
多孔度が、20〜40vol%であることを特徴とする請求項
1〜5のいずれかに記載のアルカリ蓄電池。
16. The alkaline storage battery according to claim 1, wherein the porosity of the hydrogen-absorbing alloy negative electrode in the battery configuration is 20 to 40 vol%.
【請求項17】水素吸蔵合金粉末と親水性樹脂の水溶液
とを混合してペースト状にする工程と、前記ペーストを
支持体に充填,圧入又は塗着する工程と、前記ペースト
を含有する支持体をプレス加圧する工程と、得られた電
極表面に界面活性剤を吸着していない撥水性材料を塗布
又は圧入する工程とを有することを特徴とするアルカリ
蓄電池用負極の製造法。
17. A step of mixing a hydrogen storage alloy powder and an aqueous solution of a hydrophilic resin to form a paste, filling the support with a paste, press-fitting or applying the paste, and a support containing the paste. And press-fitting a water-repellent material not adsorbing a surfactant to the surface of the obtained electrode.
【請求項18】界面活性剤を吸着していない撥水性材料
と導電性物質との混合物を、水素吸蔵合金負極の表面に
塗布又は圧入する工程を有することを特徴とする請求項
17記載のアルカリ蓄電池用負極の製造法。
18. A process for applying or press-fitting a mixture of a water-repellent material not adsorbing a surfactant and a conductive material to the surface of a negative electrode of a hydrogen storage alloy.
18. The method for producing a negative electrode for an alkaline storage battery according to item 17.
【請求項19】界面活性剤を吸着していない撥水性材料
と、上記水素吸蔵合金よりも水素平衡圧が低い水素吸蔵
合金粉末との混合物を、水素吸蔵合金負極表面に塗布又
は圧入する工程を有することを特徴とする請求項17記載
のアルカリ蓄電池用負極の製造法。
19. A step of applying or press-fitting a mixture of a water repellent material not adsorbing a surfactant and a hydrogen storage alloy powder having a hydrogen equilibrium pressure lower than that of the hydrogen storage alloy to the surface of the hydrogen storage alloy negative electrode. 18. The method for producing a negative electrode for an alkaline storage battery according to claim 17, comprising:
【請求項20】界面活性剤を吸着していない撥水性材料
と親水性材料との混合物を、水素吸蔵合金負極表面に塗
布又は圧入する工程を有することを特徴とする請求項17
記載のアルカリ蓄電池用負極の製造法。
20. The method according to claim 17, further comprising the step of applying or press-fitting a mixture of a water-repellent material to which no surfactant is adsorbed and a hydrophilic material onto the surface of the hydrogen-absorbing alloy negative electrode.
The method for producing a negative electrode for an alkaline storage battery according to the above.
【請求項21】水素吸蔵合金粉末と親水性樹脂の水溶液
とを混合してペースト状にする工程と、前記ペーストを
支持体に充填,圧入又は塗着する工程と、前記ペースト
を含有する支持体をプレス加圧する工程と、得られた電
極を界面活性剤を吸着していない撥水性材料を含むディ
スパージョンに浸漬する工程とを有することを特徴とす
るアルカリ蓄電池用負極の製造法。
21. A step of mixing a hydrogen storage alloy powder and an aqueous solution of a hydrophilic resin to form a paste, a step of filling, press-fitting, or applying the paste to a support, and a support containing the paste. And a step of dipping the obtained electrode in a dispersion containing a water-repellent material not adsorbing a surfactant.
【請求項22】電極を、界面活性剤を吸着していない撥
水性材料と導電性物質との混合物を含むディスパージョ
ンに浸漬する工程を有することを特徴とする請求項21記
載のアルカリ蓄電池用負極の製造法。
22. The negative electrode for an alkaline storage battery according to claim 21, further comprising a step of immersing the electrode in a dispersion containing a mixture of a water-repellent material not adsorbing a surfactant and a conductive substance. Manufacturing method.
【請求項23】電極を、界面活性剤を吸着していない撥
水性材料と上記水素吸蔵合金よりも水素平衡圧が低い水
素吸蔵合金粉末との混合物を含むディスパージョンに浸
漬する工程を有することを特徴とする請求項21記載のア
ルカリ蓄電池用負極の製造法。
23. A method of immersing an electrode in a dispersion containing a mixture of a water-repellent material not adsorbing a surfactant and a hydrogen storage alloy powder having a hydrogen equilibrium pressure lower than that of the hydrogen storage alloy. 22. The method for producing a negative electrode for an alkaline storage battery according to claim 21.
【請求項24】電極を、界面活性剤を吸着していない撥
水性材料と親水性材料との混合物を含むディスパージョ
ンに浸漬する工程を有することを特徴とする請求項21記
載のアルカリ蓄電池用負極の製造法。
24. The negative electrode for an alkaline storage battery according to claim 21, further comprising a step of immersing the electrode in a dispersion containing a mixture of a hydrophilic material and a water-repellent material not adsorbing a surfactant. Manufacturing method.
JP14468789A 1989-02-23 1989-06-07 Manufacturing method of alkaline storage battery and its negative electrode Expired - Lifetime JP3345889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14468789A JP3345889B2 (en) 1989-02-23 1989-06-07 Manufacturing method of alkaline storage battery and its negative electrode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4370989 1989-02-23
JP1-43709 1989-02-23
JP14468789A JP3345889B2 (en) 1989-02-23 1989-06-07 Manufacturing method of alkaline storage battery and its negative electrode

Publications (2)

Publication Number Publication Date
JPH02291665A JPH02291665A (en) 1990-12-03
JP3345889B2 true JP3345889B2 (en) 2002-11-18

Family

ID=26383522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14468789A Expired - Lifetime JP3345889B2 (en) 1989-02-23 1989-06-07 Manufacturing method of alkaline storage battery and its negative electrode

Country Status (1)

Country Link
JP (1) JP3345889B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794477B2 (en) * 1990-04-25 1998-09-03 三洋電機株式会社 Hydrogen storage alloy
JP2961179B2 (en) * 1991-11-18 1999-10-12 工業技術院長 Manufacturing method of hydrogen storage alloy
JP3040041B2 (en) * 1993-04-26 2000-05-08 日東電工株式会社 Alkaline secondary battery and method of manufacturing the same
JPH06338344A (en) * 1993-05-31 1994-12-06 Sanyo Electric Co Ltd Sealed nickel-metal hydride alkaline storage battery
US5527638A (en) * 1993-06-30 1996-06-18 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode and sealed-type nickel-metal hydride storage battery using the same
JP5239111B2 (en) 2000-04-07 2013-07-17 ダイキン工業株式会社 Additive for electrodes
JP2009076430A (en) * 2007-08-28 2009-04-09 Sanyo Electric Co Ltd Negative electrode for alkaline storage battery, and alkaline storage battery
JP5560824B2 (en) * 2010-03-26 2014-07-30 ダイキン工業株式会社 Hydrogen storage alloy electrode and nickel metal hydride battery
WO2014083741A1 (en) * 2012-11-28 2014-06-05 パナソニック株式会社 Nickel-hydrogen storage battery and battery pack
JP7125218B2 (en) 2018-04-13 2022-08-24 Fdk株式会社 Negative electrode for alkaline secondary battery and alkaline secondary battery

Also Published As

Publication number Publication date
JPH02291665A (en) 1990-12-03

Similar Documents

Publication Publication Date Title
EP0552790B1 (en) Hydrogen storage alloy, electrode comprising the same and hydrogen storage alloy cell
EP0386305B1 (en) Alkaline storage battery and method of producing negative electrode thereof
US4994334A (en) Sealed alkaline storage battery and method of producing negative electrode thereof
JP3429741B2 (en) Paste positive electrode for alkaline storage batteries and nickel-metal hydride storage batteries
JP3345889B2 (en) Manufacturing method of alkaline storage battery and its negative electrode
US5434022A (en) Electrodes and electrochemical storage cells utilizing tin-modified active materials
US5346781A (en) Alkaline storage battery
US5250369A (en) Alkaline storage battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP3567021B2 (en) Alkaline secondary battery
EP0641032B1 (en) Hydrogen-occlusion-alloy electrode
JP2808679B2 (en) Formation method of sealed alkaline storage battery using hydrogen storage alloy negative electrode
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2689473B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JPH0810596B2 (en) Metal oxide / hydrogen battery
JP2629807B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPH09115519A (en) Alkaline secondary battery
JP3464717B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery
KR100241864B1 (en) Alkaline secondary battery, paste-type electrode, method for manufacturing paste-type electrode and method for manufacturing alkaline secondary battery
JPH03295177A (en) Sealed alkaline storage battery
JP3742149B2 (en) Alkaline secondary battery
JP3146063B2 (en) Metal oxide / hydrogen secondary batteries
JPH0773876A (en) Nickel electrode for secondary battery and manufacture thereof
JPH0677450B2 (en) Sealed nickel-hydrogen battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7