JPH10188971A - Unsintered nickel electrode for alkaline storage battery - Google Patents

Unsintered nickel electrode for alkaline storage battery

Info

Publication number
JPH10188971A
JPH10188971A JP8355332A JP35533296A JPH10188971A JP H10188971 A JPH10188971 A JP H10188971A JP 8355332 A JP8355332 A JP 8355332A JP 35533296 A JP35533296 A JP 35533296A JP H10188971 A JPH10188971 A JP H10188971A
Authority
JP
Japan
Prior art keywords
nickel
alkaline storage
active material
storage battery
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8355332A
Other languages
Japanese (ja)
Inventor
Mitsunori Tokuda
光紀 徳田
Katsuhiko Niiyama
克彦 新山
Kousuke Satoguchi
功祐 里口
Mutsumi Yano
睦 矢野
Mitsuzo Nogami
光造 野上
Ikuro Yonezu
育郎 米津
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8355332A priority Critical patent/JPH10188971A/en
Publication of JPH10188971A publication Critical patent/JPH10188971A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an unsintered nickel pole with the usage factor of active material being less decreased after overdischarge. SOLUTION: In an unsintered nickel pole for an alkaline storage battery, cobalt compound powder is added to active material powder formed of nickel hydroxide particles or nickel hydroxide mainly contained solid solution particles or composite particle powder with cobalt compound layers formed on the surfaces of nickel hydroxide particles or nickel hydroxide mainly contained solid solution particles in used as active material powder. To the active material powder, at least one type of element selected out of ruthenium, rhodium, palladium, iridium, boron, gallium and scandium is added in simple substance or compound configuration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池の
正極として用いられる非焼結式ニッケル極に関する。
[0001] The present invention relates to a non-sintered nickel electrode used as a positive electrode of an alkaline storage battery.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ニッケ
ル−水素蓄電池、ニッケル−カドミウム蓄電池等のアル
カリ蓄電池の正極としては、ニッケル粉末を穿孔鋼板等
の基板に焼結させて得た焼結基板に活物質(水酸化ニッ
ケル)を含浸させてなる焼結式ニッケル極がよく知られ
ている。
2. Description of the Related Art As a positive electrode of an alkaline storage battery such as a nickel-hydrogen storage battery or a nickel-cadmium storage battery, a nickel powder is sintered on a substrate such as a perforated steel plate. A sintered nickel electrode impregnated with an active material (nickel hydroxide) is well known.

【0003】焼結式ニッケル極において活物質の充填量
を多くするためには、多孔度の大きい焼結基板を用いる
必要がある。しかし、焼結によるニッケル粒子間の結合
は弱いので、焼結基板の多孔度を大きくするとニッケル
粒子が焼結基板から脱落し易くなる。従って、実用上
は、焼結基板の多孔度を80%より大きくすることがで
きず、それゆえ焼結式ニッケル極には、活物質の充填可
能な量が少ないという問題がある。また、一般に、ニッ
ケル粉末の焼結体の孔径は10μm以下と小さいため、
活物質の焼結基板への充填を、煩雑な含浸工程を数回繰
り返し行う必要がある溶液含浸法により行わなければな
らないという問題もある。
In order to increase the amount of active material to be filled in a sintered nickel electrode, it is necessary to use a sintered substrate having high porosity. However, since the bond between the nickel particles due to sintering is weak, if the porosity of the sintered substrate is increased, the nickel particles are likely to fall off the sintered substrate. Therefore, in practice, the porosity of the sintered substrate cannot be made larger than 80%, and therefore, the sintered nickel electrode has a problem that the amount of the active material that can be filled is small. Further, generally, since the pore size of the sintered body of nickel powder is as small as 10 μm or less,
There is also a problem that the filling of the active material into the sintered substrate must be performed by a solution impregnation method in which a complicated impregnation step needs to be repeated several times.

【0004】このようなことから、近年、非焼結式ニッ
ケル極が提案されている。非焼結式ニッケル極は、活物
質(水酸化ニッケル)と結着剤(メチルセルロース水溶
液など)との混練物(ペースト乃至スラリー)を多孔度
の大きい基板(耐アルカリ性金属でメッキした発泡メタ
ルなど)に充填することにより作製される。非焼結式ニ
ッケル極では、多孔度の大きい基板を用いることができ
るので(多孔度95%以上の基板を用いることができ
る)、活物質の充填量を多くすることができるととも
に、活物質の基板への充填が容易である。
[0004] For these reasons, non-sintered nickel electrodes have been proposed in recent years. A non-sintered nickel electrode is made of a kneaded material (paste or slurry) of an active material (nickel hydroxide) and a binder (aqueous methylcellulose solution) with a high porosity substrate (foamed metal plated with an alkali-resistant metal). It is produced by filling into. In the case of the non-sintered nickel electrode, a substrate having a high porosity can be used (a substrate having a porosity of 95% or more can be used). Filling the substrate is easy.

【0005】しかしながら、結着剤を使用するため、及
び、充分な導電性ネットワークが形成されにくいため、
非焼結式ニッケル極は、焼結式ニッケル極に比べて、活
物質利用率が低い。
However, because of the use of a binder and the difficulty in forming a sufficient conductive network,
The non-sintered nickel electrode has a lower active material utilization rate than the sintered nickel electrode.

【0006】この欠点を解決した非焼結式ニッケル極と
しては、水酸化ニッケル粉末に水酸化コバルト粉末を添
加したもの(特開昭61−74261号公報参照)及び
水酸化ニッケル粒子の表面を水酸化コバルト層やβ−C
oOOH層で被覆したものが先に提案されている(特開
昭62−234867号公報及び特公平8−24041
号公報参照)。いずれも、水酸化コバルトの添加又は被
覆により、水酸化ニッケル粒子間の導電性を高めたもの
である。
[0006] As a non-sintered nickel electrode which solves this drawback, a nickel hydroxide powder to which cobalt hydroxide powder is added (see JP-A-61-74261) and a method in which the surface of nickel hydroxide particles is water Cobalt oxide layer and β-C
One coated with an oOOH layer has been previously proposed (Japanese Patent Application Laid-Open No. 62-234867 and Japanese Patent Publication No. 8-24041).
Reference). In each case, the conductivity between nickel hydroxide particles is enhanced by the addition or coating of cobalt hydroxide.

【0007】しかしながら、これらの従来の非焼結式ニ
ッケル極には、過放電すると、その後の活物質利用率が
大きく低下するという問題があった。
[0007] However, these conventional non-sintered nickel electrodes have a problem in that, when overdischarged, the active material utilization after that is greatly reduced.

【0008】本発明は、この問題を解決するべくなされ
たものであって、過放電してもその後の活物質利用率の
低下が小さいアルカリ蓄電池用非焼結式ニッケル極を提
供することを目的とする。
The present invention has been made to solve this problem, and an object of the present invention is to provide a non-sintered nickel electrode for an alkaline storage battery in which a reduction in the active material utilization rate is small even after overdischarging. And

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明に係
るアルカリ蓄電池用非焼結式ニッケル極は、水酸化ニッ
ケル粒子又は水酸化ニッケルを主成分とする固溶体粒子
からなる活物質粉末に、コバルト化合物の粉末が添加さ
れているアルカリ蓄電池用非焼結式ニッケル極におい
て、前記コバルト化合物の粉末とともに、ルテニウム、
ロジウム、パラジウム、イリジウム、ホウ素、ガリウム
及びスカンジウムから選ばれた少なくとも1種の元素
が、単体又は化合物の形態で添加されている。
The non-sintered nickel electrode for an alkaline storage battery according to the present invention is characterized in that an active material powder comprising nickel hydroxide particles or solid solution particles containing nickel hydroxide as a main component is used. In a non-sintered nickel electrode for an alkaline storage battery to which a cobalt compound powder is added, together with the cobalt compound powder, ruthenium,
At least one element selected from rhodium, palladium, iridium, boron, gallium, and scandium is added in the form of a simple substance or a compound.

【0010】また、請求項2記載の発明に係るアルカリ
蓄電池用非焼結式ニッケル極は、水酸化ニッケル粒子又
は水酸化ニッケルを主成分とする固溶体粒子の表面にコ
バルト化合物の層が形成された複合体粒子粉末を活物質
粉末とするアルカリ蓄電池用非焼結式ニッケル極におい
て、前記複合体粒子粉末に、ルテニウム、ロジウム、パ
ラジウム、イリジウム、ホウ素、ガリウム及びスカンジ
ウムから選ばれた少なくとも1種の元素が、単体又は化
合物の形態で添加されている。
In the non-sintered nickel electrode for an alkaline storage battery according to the second aspect of the present invention, a layer of a cobalt compound is formed on surfaces of nickel hydroxide particles or solid solution particles containing nickel hydroxide as a main component. In the non-sintered nickel electrode for an alkaline storage battery using the composite particle powder as an active material powder, the composite particle powder contains at least one element selected from ruthenium, rhodium, palladium, iridium, boron, gallium, and scandium. Is added in the form of a simple substance or a compound.

【0011】水酸化ニッケルを主成分とする固溶体粒子
としては、水酸化ニッケルに、コバルト、亜鉛、カドミ
ウム、カルシウム、マンガン、マグネシウム、ビスマ
ス、アルミニウム及びイットリウムから選ばれた少なく
とも1種の元素を固溶させたものが例示される。かかる
固溶体粒子を使用することにより、充放電サイクル時の
水酸化ニッケルの膨化を抑制することができる。
As the solid solution particles containing nickel hydroxide as a main component, at least one element selected from cobalt, zinc, cadmium, calcium, manganese, magnesium, bismuth, aluminum and yttrium is dissolved in nickel hydroxide. An example is shown below. By using such solid solution particles, swelling of nickel hydroxide during a charge / discharge cycle can be suppressed.

【0012】コバルト化合物としては、水酸化コバル
ト、β−CoOOH及びβ−CoOOHに水酸化ナトリ
ウム水溶液を添加し、酸素の存在下において加熱処理し
て作製したナトリウム含有コバルト化合物が挙げられ
る。ナトリウム含有コバルト化合物を合成する際の加熱
処理温度は、50〜200°Cが好ましい。加熱処理温
度が50°C未満の場合は、電導度が高いナトリウム含
有コバルト化合物が充分に生成せず、一方加熱処理温度
が200°Cを超えた場合は、電導度が低い四酸化三コ
バルト(Co3 4)が生成する。加熱処理時間は、使
用する水酸化ナトリウム水溶液の量、濃度、加熱処理温
度などによって異なるが、一般的には0.5〜10時間
である。
Examples of the cobalt compound include a sodium hydroxide-containing cobalt compound prepared by adding an aqueous solution of sodium hydroxide to cobalt hydroxide, β-CoOOH, and β-CoOOH, and performing a heat treatment in the presence of oxygen. The heat treatment temperature when synthesizing the sodium-containing cobalt compound is preferably from 50 to 200 ° C. When the heat treatment temperature is lower than 50 ° C., the sodium-containing cobalt compound having a high electric conductivity is not sufficiently formed, while when the heat treatment temperature exceeds 200 ° C., tricobalt tetroxide having a low electric conductivity is used. Co 3 O 4 ) is produced. The heat treatment time varies depending on the amount and concentration of the aqueous sodium hydroxide used, the heat treatment temperature, and the like, but is generally 0.5 to 10 hours.

【0013】ルテニウム化合物としてはRuO2 が、ロ
ジウム化合物としてはRh2 3 が、パラジウム化合物
としてはPdOが、イリジウム化合物としてはIrO2
及びIr2 3 が、ホウ素化合物としてはB2 3 が、
ガリウム化合物としてはGa2 3 、Ga(OH)3
びGaF3 が、スカンジウム化合物としてはSc2 3
及びScF3 が、それぞれ例示される。
RuO 2 is used as a ruthenium compound, Rh 2 O 3 is used as a rhodium compound, PdO is used as a palladium compound, and IrO 2 is used as an iridium compound.
And Ir 2 O 3 , B 2 O 3 as a boron compound,
Ga 2 O 3 , Ga (OH) 3 and GaF 3 are used as gallium compounds, and Sc 2 O 3 is used as scandium compounds.
And ScF 3 are each exemplified.

【0014】ルテニウム、ロジウム、パラジウム、イリ
ジウム、ホウ素、ガリウム及びスカンジウムから選ばれ
た少なくとも1種の元素の添加量は、活物質粉末中の水
酸化ニッケル100重量部に対して、0.05〜5重量
部に規制される。同添加量が0.05重量部未満の場合
は過放電後の活物質利用率の低下を充分に抑制すること
が困難となり、一方同添加量が5重量部を超えた場合は
活物質の量が減少して電極容量の低下を招く。
The amount of at least one element selected from ruthenium, rhodium, palladium, iridium, boron, gallium and scandium is 0.05 to 5 parts by weight based on 100 parts by weight of nickel hydroxide in the active material powder. Regulated by weight. When the addition amount is less than 0.05 part by weight, it is difficult to sufficiently suppress the decrease in the utilization rate of the active material after overdischarge, while when the addition amount exceeds 5 parts by weight, the amount of the active material becomes To decrease the electrode capacity.

【0015】本発明電極は、過放電しても活物質利用率
が低下しにくい。この理由は、次の如く推察される。す
なわち、放電時に、β−CoOOH(水酸化コバルトは
充電後β−CoOOHになる)は、水酸化コバルトに還
元される。そして、活物質粉末にルテニウムなどを添加
しない場合は、過放電すると、生成した水酸化コバルト
と水酸化ニッケルの結晶構造が近似しているため、水酸
化コバルトが活物質粒子の内部へ拡散して、活物質粒子
の表面に付着する水酸化コバルトの量が希薄になり、活
物質粒子間の導電性が低下して、活物質利用率が低下す
る。これに対して、活物質粉末にルテニウムなどの添加
剤が添加されている本発明電極の場合は、添加剤が過放
電時の水酸化コバルトの内部拡散を抑制するため、活物
質利用率が低下しにくくなる。
In the electrode of the present invention, the active material utilization rate hardly decreases even when overdischarge occurs. The reason is presumed as follows. That is, at the time of discharging, β-CoOOH (cobalt hydroxide becomes β-CoOOH after charging) is reduced to cobalt hydroxide. When ruthenium or the like is not added to the active material powder, over-discharge causes the generated cobalt hydroxide and nickel hydroxide to have similar crystal structures, so that cobalt hydroxide diffuses into the active material particles. In addition, the amount of cobalt hydroxide adhering to the surface of the active material particles is reduced, the conductivity between the active material particles is reduced, and the utilization rate of the active material is reduced. On the other hand, in the case of the electrode of the present invention in which an additive such as ruthenium is added to the active material powder, the additive suppresses internal diffusion of cobalt hydroxide during overdischarge, so that the active material utilization rate decreases. It becomes difficult to do.

【0016】[0016]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.

【0017】(実験1)この実験では、ルテニウムなど
の元素を添加した場合の過放電後の放電容量の低下率
と、無添加の場合のそれとを求めて、比較した。
(Experiment 1) In this experiment, the rate of decrease in discharge capacity after overdischarge in the case where an element such as ruthenium was added was compared with that in the case where no element was added.

【0018】平均粒径10μmの水酸化ニッケル粉末1
00重量部と、水酸化コバルト粉末5重量部と、酸化ル
テニウム(RuO2 )、酸化ロジウム(Rh2 3 )、
酸化パラジウム(PdO)、酸化イリジウム(Ir
2 )、酸化ホウ素(B2 3 )、酸化ガリウム(Ga
2 3 )、酸化スカンジウム(Sc2 3 )、ガリウム
(Ga)、水酸化ガリウム(Ga(OH)3 )、フッ化
ガリウム(GaF3 )、フッ化スカンジウム(Sc
3 )又は三酸化二イリジウム(Ir2 3 )を元素換
算でそれぞれ2重量部と、1重量%メチルセルロース水
溶液20重量部とを、混練してペーストを調製した。こ
れらのペーストをニッケルめっきを施した発泡メタル
(多孔度95%;平均孔径200μm)からなる多孔性
の基板に充填し、乾燥し、加圧成形して、順に非焼結式
ニッケル極(本発明電極)a〜lを作製した。
Nickel hydroxide powder 1 having an average particle size of 10 μm
00 parts by weight, 5 parts by weight of cobalt hydroxide powder, ruthenium oxide (RuO 2 ), rhodium oxide (Rh 2 O 3 ),
Palladium oxide (PdO), iridium oxide (Ir
O 2 ), boron oxide (B 2 O 3 ), gallium oxide (Ga
2 O 3 ), scandium oxide (Sc 2 O 3 ), gallium (Ga), gallium hydroxide (Ga (OH) 3 ), gallium fluoride (GaF 3 ), scandium fluoride (Sc
And F 3) or trioxide iridium (Ir 2 O 3), respectively 2 parts by weight in terms of an element and a 1 wt% aqueous solution of methyl cellulose 20 parts by weight, was kneaded to prepare a paste. These pastes are filled in a porous substrate made of nickel-plated foamed metal (porosity: 95%; average pore diameter: 200 μm), dried, and press-molded. Electrodes) a to l were prepared.

【0019】また、平均粒径10μmの水酸化ニッケル
粉末100重量部と、水酸化コバルト粉末5重量部と、
1重量%メチルセルロース水溶液20重量部とを、混練
してペーストを調製し、これらのペーストをニッケルめ
っきを施した発泡メタル(多孔度95%;平均孔径20
0μm)からなる多孔性の基板に充填し、乾燥し、加圧
成形して、非焼結式ニッケル極(比較電極)xを作製し
た。この比較電極は、特開昭61−74261号公報に
開示されている従来公知の電極である。
Further, 100 parts by weight of nickel hydroxide powder having an average particle size of 10 μm, 5 parts by weight of cobalt hydroxide powder,
A paste was prepared by kneading 20 parts by weight of a 1% by weight aqueous solution of methylcellulose to prepare a paste, and the paste was nickel-plated into a foamed metal (porosity: 95%; average pore diameter: 20%).
A non-sintered nickel electrode (comparative electrode) x was prepared by filling a porous substrate having a thickness of 0 μm), drying and pressing. This comparative electrode is a conventionally known electrode disclosed in JP-A-61-74261.

【0020】上記の各非焼結式ニッケル極(正極)、公
知のペースト式カドミウム極(負極)、ポリアミド不織
布(セパレータ)、30重量%水酸化カリウム水溶液
(電解液)、金属製の電池缶及び電池蓋などを用いて、
AAサイズのニッケル−カドミウムアルカリ蓄電池A〜
L(順に本発明電極a〜lを使用)及びX(比較電極x
を使用)を作製した。なお、電池容量が正極容量に律さ
れるようにするために、正極と負極との電気化学的容量
比を1:1.8とした。
Each of the above-mentioned non-sintered nickel electrodes (positive electrodes), known paste-type cadmium electrodes (negative electrodes), polyamide nonwoven fabric (separator), 30% by weight potassium hydroxide aqueous solution (electrolyte solution), metal battery cans, Using a battery lid,
AA size nickel-cadmium alkaline storage battery A ~
L (using the electrodes a to l of the present invention in order) and X (comparative electrode x
Was used. The electrochemical capacity ratio between the positive electrode and the negative electrode was set to 1: 1.8 so that the battery capacity was limited by the positive electrode capacity.

【0021】これらの各電池について、0.1Cで16
0%充電した後、1Cで1.0Vまで放電する工程を1
サイクルとする充放電サイクルを10サイクル行い、各
電池の10サイクル目の放電容量D1を求めた。次い
で、各電池を、0.1Cで160%充電した後、5Ωの
抵抗を接続し、70°Cの温度に7日間保持して、過放
電させた。過放電後、0.1Cで160%充電した後、
1Cで1.0Vまで放電して、過放電後の放電容量D2
を求めた。放電容量D1及びD2を下式に代入して、各
電池の過放電後の容量維持率(%)を求めた。結果を表
1に示す。過放電後の容量維持率の値が大きいものほ
ど、過放電後の活物質利用率の低下が小さいことを示
す。
For each of these batteries, at 0.1 C
After charging 0%, the process of discharging to 1.0 V at 1 C is one step.
10 charge / discharge cycles were performed, and the discharge capacity D1 at the 10th cycle of each battery was determined. Next, each battery was charged 160% at 0.1 C, connected to a resistance of 5Ω, and maintained at a temperature of 70 ° C. for 7 days to be over-discharged. After overdischarge, after charging 160% at 0.1C,
Discharge to 1.0 V at 1C, and discharge capacity D2 after overdischarge
I asked. By substituting the discharge capacities D1 and D2 into the following formula, the capacity retention rate (%) after overdischarge of each battery was obtained. Table 1 shows the results. The larger the value of the capacity retention ratio after overdischarge, the smaller the decrease in the active material utilization rate after overdischarge.

【0022】過放電後の容量維持率(%)=(D2/D
1)×100
Capacity retention after overdischarge (%) = (D2 / D
1) x 100

【0023】[0023]

【表1】 [Table 1]

【0024】表1に示すように、アルカリ蓄電池A〜L
は、アルカリ蓄電池Xに比べて、過放電後の容量維持率
が高い。この事実から、ルテニウムなどの本発明で規定
する添加剤を添加することにより、過放電後の活物質利
用率の低下が小さい非焼結式ニッケル極を得ることがで
きることが分かる。
As shown in Table 1, the alkaline storage batteries A to L
Has a higher capacity retention ratio after overdischarge than the alkaline storage battery X. From this fact, it is understood that a non-sintered nickel electrode with a small decrease in the active material utilization rate after overdischarge can be obtained by adding an additive specified in the present invention such as ruthenium.

【0025】〈実験2〉この実験では、酸化ルテニウム
を添加する場合を例にして、水酸化ニッケルに対する添
加剤の量と過放電後の活物質利用率の関係を調べた。
<Experiment 2> In this experiment, the relationship between the amount of the additive to nickel hydroxide and the utilization rate of the active material after overdischarge was examined, taking as an example the case of adding ruthenium oxide.

【0026】水酸化ニッケル粉末100重量部に対する
酸化ルテニウムのルテニウム元素換算での添加量を、2
重量部に代えて、0.01重量部、0.05重量部、
0.1重量部、0.5重量部、1重量部、3重量部、5
重量部、6重量部又は7重量部としたこと以外は実験1
と同様にして、順に、非焼結式ニッケル極m〜uを作製
した。次いで、各非焼結式ニッケル極を使用して、順に
アルカリ蓄電池M〜Uを作製し、各電池の過放電後の容
量維持率を、実験1と同様にして求めた。結果を表2に
示す。表2には、アルカリ蓄電池A(酸化ルテニウムの
ルテニウム元素換算での添加量:2重量部)についての
データも示してある。
The addition amount of ruthenium oxide in terms of ruthenium element per 100 parts by weight of nickel hydroxide powder is 2
Parts by weight, 0.01 parts by weight, 0.05 parts by weight,
0.1 parts by weight, 0.5 parts by weight, 1 part by weight, 3 parts by weight, 5 parts by weight
Experiment 1 except that the weight parts were 6 parts by weight or 7 parts by weight.
In the same manner as in the above, non-sintered nickel electrodes m to u were produced in order. Next, alkaline storage batteries MU were sequentially manufactured using each non-sintered nickel electrode, and the capacity retention ratio after overdischarge of each battery was determined in the same manner as in Experiment 1. Table 2 shows the results. Table 2 also shows data on alkaline storage battery A (addition amount of ruthenium oxide in terms of ruthenium element: 2 parts by weight).

【0027】[0027]

【表2】 [Table 2]

【0028】表2に示すように、アルカリ蓄電池M,T
は、アルカリ蓄電池N〜S及びAに比べて、過放電後の
容量維持率が低い。また、アルカリ蓄電池Uは、過放電
後の活物質利用率はアルカリ蓄電池N〜S及びAと同じ
く高いものの、アルカリ蓄電池N〜S及びAに比べて、
放電容量D1が低い。この事実から、電極容量が大き
く、過放電後の活物質利用率の低下が小さい非焼結式ニ
ッケル極を得るためには、水酸化ニッケル粉末100重
量部に対する酸化ルテニウムのルテニウム元素換算での
添加量を0.05〜5重量部とすることが好ましいこと
が分かる。
As shown in Table 2, the alkaline storage batteries M and T
Has a lower capacity retention ratio after overdischarge than the alkaline storage batteries N to S and A. In addition, the alkaline storage battery U has a high utilization rate of active material after overdischarge, as high as the alkaline storage batteries N to S and A.
The discharge capacity D1 is low. From this fact, in order to obtain a non-sintered nickel electrode having a large electrode capacity and a small decrease in the active material utilization after overdischarge, it is necessary to add ruthenium oxide in terms of ruthenium element to 100 parts by weight of nickel hydroxide powder. It is understood that the amount is preferably 0.05 to 5 parts by weight.

【0029】実験2では、酸化ルテニウムを添加する場
合について調べたが、本発明で規定する他の元素又は化
合物を添加する場合も、それらの元素換算での添加量は
0.05〜5重量部が好ましいことを確認した。
In Experiment 2, the case where ruthenium oxide was added was examined, but when other elements or compounds specified in the present invention were added, the addition amount in terms of those elements was 0.05 to 5 parts by weight. Was confirmed to be preferable.

【0030】上記の実験1及び実験2では、活物質粉末
として水酸化ニッケル粉末を使用したが、水酸化ニッケ
ル粒子に、コバルト、亜鉛、カドミウム、カルシウム、
マンガン、マグネシウム、ビスマス、アルミニウム及び
イットリウムから選ばれた少なくとも1種の元素が固溶
した固溶体粒子粉末を用いた場合にも上記と同様の結果
が得られることを確認した。
In Experiments 1 and 2 described above, nickel hydroxide powder was used as the active material powder. However, the nickel hydroxide particles contained cobalt, zinc, cadmium, calcium,
It was confirmed that the same result as described above was obtained also when a solid solution particle powder in which at least one element selected from manganese, magnesium, bismuth, aluminum and yttrium was dissolved was used.

【0031】また、上記の実験1及び実験2では、活物
質粉末として水酸化ニッケル粉末を、また導電剤として
水酸化コバルト粉末を使用したが、活物質粉末として、
水酸化ニッケル粒子又は水酸化ニッケルを主成分とする
固溶体粒子の表面に導電層としてのコバルト化合物の層
が形成された複合体粒子粉末を用いた場合にも上記と同
様の結果が得られることも確認した。
In the above Experiments 1 and 2, nickel hydroxide powder was used as the active material powder and cobalt hydroxide powder was used as the conductive agent.
The same result as described above can be obtained even when a composite particle powder in which a layer of a cobalt compound as a conductive layer is formed on the surface of nickel hydroxide particles or solid solution particles containing nickel hydroxide as a main component is used. confirmed.

【0032】[0032]

【発明の効果】本発明によれば、過放電後の活物質利用
率の低下が小さい非焼結式ニッケル極が提供される。
According to the present invention, there is provided a non-sintered nickel electrode with a small decrease in the active material utilization after overdischarge.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢野 睦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 野上 光造 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mutsumi Yano 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Kozo Nogami 2-5-5 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Ikuro Yonezu 2-5-5 Keihanhondori 2-chome, Moriguchi-shi, Osaka Prefecture (72) Inventor Koji Nishio 2 Keihanhondori, Moriguchi-shi, Osaka 5-5, Sanyo Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】水酸化ニッケル粒子又は水酸化ニッケルを
主成分とする固溶体粒子からなる活物質粉末に、コバル
ト化合物の粉末が添加されているアルカリ蓄電池用非焼
結式ニッケル極において、前記コバルト化合物の粉末と
ともに、ルテニウム、ロジウム、パラジウム、イリジウ
ム、ホウ素、ガリウム及びスカンジウムから選ばれた少
なくとも1種の元素が、単体又は化合物の形態で添加さ
れていることを特徴とするアルカリ蓄電池用非焼結式ニ
ッケル極。
1. A non-sintered nickel electrode for an alkaline storage battery in which a cobalt compound powder is added to an active material powder comprising nickel hydroxide particles or solid solution particles containing nickel hydroxide as a main component. Non-sintering type for alkaline storage batteries, characterized in that at least one element selected from ruthenium, rhodium, palladium, iridium, boron, gallium and scandium is added in a form of a simple substance or a compound together with the powder of Nickel pole.
【請求項2】水酸化ニッケル粒子又は水酸化ニッケルを
主成分とする固溶体粒子の表面にコバルト化合物の層が
形成された複合体粒子粉末を活物質粉末とするアルカリ
蓄電池用非焼結式ニッケル極において、前記複合体粒子
粉末に、ルテニウム、ロジウム、パラジウム、イリジウ
ム、ホウ素、ガリウム及びスカンジウムから選ばれた少
なくとも1種の元素が、単体又は化合物の形態で添加さ
れていることを特徴とするアルカリ蓄電池用非焼結式ニ
ッケル極。
2. A non-sintered nickel electrode for an alkaline storage battery using, as an active material powder, a composite particle powder having a cobalt compound layer formed on the surface of nickel hydroxide particles or solid solution particles containing nickel hydroxide as a main component. In the alkaline storage battery, wherein at least one element selected from ruthenium, rhodium, palladium, iridium, boron, gallium, and scandium is added to the composite particle powder in the form of a simple substance or a compound. For non-sintered nickel electrode.
【請求項3】ルテニウム、ロジウム、パラジウム、イリ
ジウム、ホウ素、ガリウム及びスカンジウムから選ばれ
た少なくとも1種の元素が、単体又は化合物の形態で、
活物質粉末中の水酸化ニッケル100重量部に対して、
0.05〜5重量部添加されている請求項1又は2記載
のアルカリ蓄電池用非焼結式ニッケル極。
(3) at least one element selected from ruthenium, rhodium, palladium, iridium, boron, gallium and scandium, in the form of a simple substance or a compound;
For 100 parts by weight of nickel hydroxide in the active material powder,
The non-sintered nickel electrode for an alkaline storage battery according to claim 1, wherein 0.05 to 5 parts by weight is added.
【請求項4】水酸化ニッケルを主成分とする固溶体粒子
が、水酸化ニッケルに、コバルト、亜鉛、カドミウム、
カルシウム、マンガン、マグネシウム、ビスマス、アル
ミニウム及びイットリウムから選ばれた少なくとも1種
の元素を固溶させたものである請求項1〜3のいずれか
に記載のアルカリ蓄電池用非焼結式ニッケル極。
4. A solid solution particle comprising nickel hydroxide as a main component, wherein cobalt hydroxide, zinc, cadmium,
The non-sintered nickel electrode for an alkaline storage battery according to any one of claims 1 to 3, wherein at least one element selected from the group consisting of calcium, manganese, magnesium, bismuth, aluminum and yttrium is dissolved.
【請求項5】コバルト化合物が、水酸化コバルト又はβ
−CoOOH又はβ−CoOOHに水酸化ナトリウム水
溶液を添加し、酸素の存在下において50〜200°C
で加熱処理して作製したナトリウム含有コバルト化合物
である請求項1〜4のいずれかに記載のアルカリ蓄電池
用非焼結式ニッケル極。
5. The method according to claim 1, wherein the cobalt compound is cobalt hydroxide or β.
-CoOOH or β-CoOOH by adding an aqueous solution of sodium hydroxide, in the presence of oxygen at 50 to 200 ° C.
The non-sintered nickel electrode for an alkaline storage battery according to any one of claims 1 to 4, which is a sodium-containing cobalt compound produced by a heat treatment.
JP8355332A 1996-12-20 1996-12-20 Unsintered nickel electrode for alkaline storage battery Pending JPH10188971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8355332A JPH10188971A (en) 1996-12-20 1996-12-20 Unsintered nickel electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8355332A JPH10188971A (en) 1996-12-20 1996-12-20 Unsintered nickel electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH10188971A true JPH10188971A (en) 1998-07-21

Family

ID=18443324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8355332A Pending JPH10188971A (en) 1996-12-20 1996-12-20 Unsintered nickel electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH10188971A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216752A (en) * 2000-11-15 2002-08-02 Matsushita Electric Ind Co Ltd Cobalt compound, method for manufacturing the same, positive electrode plate for alkaline storage battery using the same and alkaline storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216752A (en) * 2000-11-15 2002-08-02 Matsushita Electric Ind Co Ltd Cobalt compound, method for manufacturing the same, positive electrode plate for alkaline storage battery using the same and alkaline storage battery
JP4608128B2 (en) * 2000-11-15 2011-01-05 パナソニック株式会社 Cobalt compound, method for producing the same, positive electrode plate for alkaline storage battery and alkaline storage battery using the same

Similar Documents

Publication Publication Date Title
US5660952A (en) Active material powder for non-sintered nickel electrode and non-sintered nickel electrode for alkaline battery
JPH117950A (en) Non-sintered nickel electrode for alkali storage battery
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3443209B2 (en) Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same
JPH10188971A (en) Unsintered nickel electrode for alkaline storage battery
JP3263603B2 (en) Alkaline storage battery
JP3234492B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3272151B2 (en) Non-sintered nickel electrode for alkaline storage battery and method for producing the same
JPH117949A (en) Non-sintered nickel electrode for alkali storage battery
JP3249398B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH11176432A (en) Non-sintered nickel electrode for alkaline storage battery
JP3369783B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and alkaline storage battery
JP3234491B2 (en) Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same
JP3354331B2 (en) Non-sintered nickel hydroxide positive electrode plate and alkaline storage battery provided with the positive electrode plate
JP3097238B2 (en) Anode plate for alkaline storage battery
JP2589750B2 (en) Nickel cadmium storage battery
JPH1021909A (en) Non-sintered nickel electrode for alkaline storage battery
JPH10270040A (en) Non-sintered nickel electrode for alkaline storage battery
JPH11238507A (en) Alkaline storage battery
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JPH0773876A (en) Nickel electrode for secondary battery and manufacture thereof
JPH09245827A (en) Manufacture of alkaline storage battery