JP3443209B2 - Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same - Google Patents
Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the sameInfo
- Publication number
- JP3443209B2 JP3443209B2 JP21986695A JP21986695A JP3443209B2 JP 3443209 B2 JP3443209 B2 JP 3443209B2 JP 21986695 A JP21986695 A JP 21986695A JP 21986695 A JP21986695 A JP 21986695A JP 3443209 B2 JP3443209 B2 JP 3443209B2
- Authority
- JP
- Japan
- Prior art keywords
- hydroxide
- cobalt
- salt
- mixed crystal
- zinc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ニッケル−水素蓄
電池、ニッケル−カドミウム蓄電池等のアルカリ蓄電池
用の非焼結式ニッケル極の活物質粉末及びその作製方
法、並びに、アルカリ蓄電池用非焼結式ニッケル極及び
その作製方法に関する。TECHNICAL FIELD The present invention relates to a non-sintered nickel electrode active material powder for alkaline storage batteries such as nickel-hydrogen storage batteries and nickel-cadmium storage batteries, a method for producing the same, and a non-sintered type for alkaline storage batteries. The present invention relates to a nickel electrode and a method for manufacturing the same.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】従来、
アルカリ蓄電池用のニッケル極としては、ニッケル粉末
を穿孔鋼板等に焼結させて得た基板(焼結基板)に、活
物質を含浸させた、所謂焼結式ニッケル極が知られてい
る。この焼結式ニッケル極は、ニッケル粉末の各粒子間
の結合が弱く、基板の多孔度を大きくすると、ニッケル
粉末の基板からの脱落が生じるため、実用上、基板の多
孔度は80%が限界であった。このように基板の多孔度
を大きくすることができないとともに、穿孔鋼板等の基
板が必要とされるため、焼結式ニッケル極には、活物質
の充填密度が低いという問題がある。2. Description of the Related Art Conventionally, the problems to be solved by the invention
As a nickel electrode for an alkaline storage battery, a so-called sintered nickel electrode is known in which a substrate (sintered substrate) obtained by sintering nickel powder on a perforated steel plate or the like is impregnated with an active material. In this sintered nickel electrode, the bonds between the particles of the nickel powder are weak, and if the porosity of the substrate is increased, the nickel powder will fall off from the substrate. Met. Since the porosity of the substrate cannot be increased in this way and a substrate such as a perforated steel plate is required, the sintered nickel electrode has a problem that the packing density of the active material is low.
【0003】また、焼結により形成される焼結体の細孔
が10μm以下と小さいために、焼結基板に活物質を充
填するためには、煩雑な工程を数サイクル繰り返さなけ
ればならない溶液含浸法に頼らざるを得ないなどの問題
もある。Further, since the pores of the sintered body formed by sintering are as small as 10 μm or less, complicated steps must be repeated for several cycles in order to fill the sintered substrate with the active material. There are also problems such as having to rely on the law.
【0004】これらの問題を解消したものとしては、例
えば、耐アルカリ性の金属繊維焼結体、又は、炭素繊維
不織布などに耐アルカリ性の金属をめっきしたものに、
水酸化ニッケル(活物質)粉末を、結着剤及び溶剤とと
もにスラリー状又はペースト状にして、塗布又は充填す
る、所謂ペースト式ニッケル極(非焼結式ニッケル極の
一種)が知られている。しかしながら、このペースト式
ニッケル極には、結着剤が存在すること、及び、導電性
のネットワークが形成されにくいことなどの理由から、
焼結式ニッケル極に比べて、活物質の利用率が著しく悪
いという問題があった。As a solution to these problems, for example, an alkali resistant metal fiber sintered body or a carbon fiber nonwoven fabric plated with an alkali resistant metal is used.
There is known a so-called paste type nickel electrode (a type of non-sintered nickel electrode) in which a nickel hydroxide (active material) powder is made into a slurry or paste with a binder and a solvent and applied or filled. However, in this paste nickel electrode, because of the presence of a binder, and because it is difficult to form a conductive network,
There is a problem that the utilization rate of the active material is significantly poorer than that of the sintered nickel electrode.
【0005】斯かるペースト式ニッケル極の活物質利用
率を高めるためには、水酸化ニッケル粒子の表面を水酸
化コバルトで被覆して活物質粒子表面の導電性を高めれ
ばよい。アルカリ電解液に水酸化コバルトが溶解して、
イオン価1価のHCoO2 -が生成し、このHCoO2
- が貴な電位において導電性の高いCoOOH(オキシ
水酸化コバルト)となって水酸化ニッケル粒子の表面に
析出するからである。このような水酸化ニッケル粒子の
表面を水酸化コバルトで被覆する方法は、特開昭62−
234867号公報及び特開昭62−237667号公
報に開示されている。その他、特開平3−62457号
公報には、水酸化ニッケルと水酸化コバルトとの固溶体
被膜にて水酸化ニッケル粒子の表面を被覆する方法が提
案されている。In order to increase the utilization rate of the active material of the paste type nickel electrode, the surface of the nickel hydroxide particles may be coated with cobalt hydroxide to enhance the conductivity of the surface of the active material particles. Cobalt hydroxide dissolves in alkaline electrolyte,
HCoO 2 − having an ionic valence of 1 is generated, and this HCoO 2 −
This is because-becomes highly conductive CoOOH (cobalt oxyhydroxide) at a noble potential and deposits on the surface of the nickel hydroxide particles. A method of coating the surface of such nickel hydroxide particles with cobalt hydroxide is disclosed in Japanese Patent Laid-Open No. 62-
It is disclosed in Japanese Patent No. 234867 and Japanese Patent Laid-Open No. 62-237667. In addition, JP-A-3-62457 proposes a method of coating the surface of nickel hydroxide particles with a solid solution coating of nickel hydroxide and cobalt hydroxide.
【0006】しかしながら、上記の従来の各方法では、
水酸化ニッケル粒子の表面を被覆している水酸化コバル
トが、充放電サイクルを重ねるにつれて、水酸化ニッケ
ル粒子の内部に拡散して行くため、電極表面の導電性を
高めるという水酸化コバルトの本来の作用を充放電サイ
クルの長期にわたって維持することができず、このため
充放電サイクルの進行に伴う放電容量の低下が小さい電
池をあたえるペースト式ニッケル極を得ることが困難で
あるという問題があった。However, in each of the above conventional methods,
The cobalt hydroxide coating the surface of the nickel hydroxide particles diffuses inside the nickel hydroxide particles as the charge and discharge cycles are repeated, so that the original conductivity of the cobalt hydroxide is to increase the conductivity of the electrode surface. The action cannot be maintained for a long period of the charging / discharging cycle, and thus there is a problem that it is difficult to obtain a paste-type nickel electrode that gives a battery in which the decrease in discharge capacity with the progress of the charging / discharging cycle is small.
【0007】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、水酸化ニッケル粒
子の表面を被覆する水酸化コバルトの水酸化ニッケル粒
子の内部への拡散が抑制されるため、水酸化コバルトに
よる極板の導電性を高める作用が長期の充放電サイクル
にわたって維持されることを可能にする、アルカリ蓄電
池用の非焼結式ニッケル極の活物質粉末及びその作製方
法、並びに、アルカリ蓄電池用非焼結式ニッケル極及び
その作製方法を提供するにある。The present invention has been made in view of the above circumstances, and an object thereof is to suppress the diffusion of cobalt hydroxide coating the surface of nickel hydroxide particles into the inside of the nickel hydroxide particles. Therefore, it is possible to maintain the effect of increasing the conductivity of the electrode plate by cobalt hydroxide over a long-term charge / discharge cycle, and a non-sintered nickel electrode active material powder for alkaline storage batteries and a method for producing the same. The present invention also provides a non-sintered nickel electrode for alkaline storage batteries and a method for producing the same.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
の本発明に係るアルカリ蓄電池の非焼結式ニッケル極用
活物質粉末(本発明物)は、水酸化ニッケル粒子又は水
酸化ニッケルを主成分とする固溶体粒子の表面を、アル
ミニウム、マグネシウム、インジウム及び亜鉛よりなる
群から選ばれた少なくとも1種の金属(M)の水酸化物
と水酸化コバルトとからなる混晶にて被覆した複合粒子
からなる。The non-sintered nickel electrode active material powder (invention) of the alkaline storage battery according to the present invention for achieving the above object is mainly composed of nickel hydroxide particles or nickel hydroxide. Composite particles obtained by coating the surface of solid solution particles as a component with a mixed crystal composed of a hydroxide of at least one metal (M) selected from the group consisting of aluminum, magnesium, indium and zinc and cobalt hydroxide. Consists of.
【0009】また、本発明に係るアルカリ蓄電池の非焼
結式ニッケル極用活物質粉末の作製方法(本発明方法)
は、水酸化ニッケル粒子又は水酸化ニッケルを主成分と
する固溶体粒子を、アルミニウム、マグネシウム、イン
ジウム及び亜鉛よりなる群から選ばれた少なくとも1種
の金属(M)の塩とコバルト塩とを含有する溶液中に浸
漬し、アルカリを添加して、前記金属(M)の水酸化物
と水酸化コバルトとを共析させて前記水酸化ニッケル粒
子又は前記固溶体粒子の表面を、前記金属(M)の水酸
化物と水酸化コバルトとからなる混晶にて被覆する方法
である。Also, a method for producing a non-sintered nickel electrode active material powder for an alkaline storage battery according to the present invention (method of the present invention)
Contains nickel hydroxide particles or solid solution particles containing nickel hydroxide as a main component, and a salt of at least one metal (M) selected from the group consisting of aluminum, magnesium, indium and zinc, and a cobalt salt. It is dipped in a solution, alkali is added to cause the hydroxide of the metal (M) and cobalt hydroxide to co-deposit, and the surface of the nickel hydroxide particles or the solid solution particles is treated with the metal (M). This is a method of coating with a mixed crystal of hydroxide and cobalt hydroxide.
【0010】本発明に係るアルカリ蓄電池用非焼結式ニ
ッケル極(本発明物)は、水酸化ニッケル粒子又は水酸
化ニッケルを主成分とする固溶体粒子の表面を、アルミ
ニウム、マグネシウム、インジウム及び亜鉛よりなる群
から選ばれた少なくとも1種の金属(M)の水酸化物と
水酸化コバルトとからなる混晶にて被覆した複合粒子か
らなる活物質粉末を用いたものである。The non-sintered nickel electrode for an alkaline storage battery according to the present invention (the present invention) has a surface of nickel hydroxide particles or solid solution particles containing nickel hydroxide as a main component, which is made of aluminum, magnesium, indium and zinc. The active material powder is composed of composite particles coated with a mixed crystal of at least one metal (M) hydroxide selected from the group consisting of and a cobalt hydroxide.
【0011】また、本発明に係るアルカリ蓄電池用非焼
結式ニッケル極の作製方法(本発明方法)は、水酸化ニ
ッケル粒子又は水酸化ニッケルを主成分とする固溶体粒
子を、アルミニウム、マグネシウム、インジウム及び亜
鉛よりなる群から選ばれた少なくとも1種の金属(M)
の塩とコバルト塩とを含有する溶液中に浸漬し、アルカ
リを添加して、前記金属(M)の水酸化物と水酸化コバ
ルトとを共析させて前記水酸化ニッケル粒子又は前記固
溶体粒子の表面を、前記金属(M)の水酸化物と水酸化
コバルトとからなる混晶にて被覆して複合粒子からなる
活物質粉末を作製するステップ1と、前記活物質粉末を
芯体に塗布又は充填し、乾燥してニッケル極を作製する
ステップ2とを備えてなる。Further, in the method for producing a non-sintered nickel electrode for an alkaline storage battery according to the present invention (the method of the present invention), nickel hydroxide particles or solid solution particles containing nickel hydroxide as a main component are treated with aluminum, magnesium or indium. And at least one metal (M) selected from the group consisting of zinc and
Of the nickel hydroxide particles or the solid solution particles by immersing in a solution containing a salt of cobalt and a cobalt salt and adding an alkali to co-deposit the hydroxide of the metal (M) and cobalt hydroxide. Step 1 of producing an active material powder composed of composite particles by coating the surface with a mixed crystal of the metal (M) hydroxide and cobalt hydroxide, and applying the active material powder to a core or Step 2 of filling and drying to produce a nickel electrode.
【0012】本発明物では、水酸化コバルトがアルミニ
ウム、マグネシウム、インジウム及び亜鉛よりなる群か
ら選ばれた少なくとも1種の金属(M)の水酸化物との
混晶として活物質粒子(水酸化ニッケル粒子又は固溶体
粒子)の表面を被覆しているので、活物質粒子の内部へ
拡散しにくい。このため、本発明電極を正極として使用
したアルカリ蓄電池においては、水酸化コバルトの電極
の導電性を高める作用が充放電サイクルの長期にわたっ
て維持され、充放電サイクルの進行に伴う放電容量の低
下が有効に抑制される。本発明方法によれば、斯かる優
れた特定を有する本発明物が容易に得られる。In the present invention, the active material particles (nickel hydroxide) are prepared by mixing cobalt hydroxide with a hydroxide of at least one metal (M) selected from the group consisting of aluminum, magnesium, indium and zinc. Since the surfaces of the particles or solid solution particles are coated, it is difficult for the active material particles to diffuse inside. Therefore, in the alkaline storage battery using the electrode of the present invention as the positive electrode, the action of increasing the conductivity of the electrode of cobalt hydroxide is maintained for a long period of the charge / discharge cycle, and the decrease of the discharge capacity with the progress of the charge / discharge cycle is effective. Suppressed to. According to the method of the present invention, the present invention having such excellent specification can be easily obtained.
【0013】[0013]
【発明の実施の形態】本発明物に於ける複合粒子として
は、水酸化ニッケル粒子又は固溶体粒子の表面を、水酸
化マグネシウムと水酸化コバルトとからなる混晶、水酸
化亜鉛と水酸化コバルトとからなる混晶又は水酸化マグ
ネシウムと水酸化亜鉛と水酸化コバルトとからなる混晶
にて被覆したものが好ましく、なかでも水酸化マグネシ
ウムと水酸化コバルトとからなる混晶で被覆したものが
最も好ましい。BEST MODE FOR CARRYING OUT THE INVENTION As the composite particles in the present invention, the surface of nickel hydroxide particles or solid solution particles is a mixed crystal of magnesium hydroxide and cobalt hydroxide, zinc hydroxide and cobalt hydroxide. A mixed crystal composed of or a mixed crystal composed of magnesium hydroxide, zinc hydroxide and cobalt hydroxide is preferred, and a mixed crystal composed of magnesium hydroxide and cobalt hydroxide is most preferred. .
【0014】本発明物に於ける複合粒子としては、水酸
化マグネシウム及び/又は水酸化亜鉛を、混晶中に、金
属換算で、混晶中のコバルトとマグネシウム及び/又は
亜鉛との総量に基づいて、0.5〜50重量%含有する
ものが好ましい。The composite particles according to the present invention include magnesium hydroxide and / or zinc hydroxide based on the total amount of cobalt and magnesium and / or zinc in the mixed crystal in terms of metal in the mixed crystal. Therefore, those containing 0.5 to 50% by weight are preferable.
【0015】含有量が0.5重量%未満の場合は、活物
質粒子(水酸化ニッケル粒子又は固溶体粒子)内部への
水酸化コバルトの拡散を有効に抑制することが困難にな
り、充放電サイクルの進行に伴う放電容量の低下が小さ
い電池をあたえる電極を得ることが困難になる。一方、
含有量が50重量%を越えた場合は、導電性が低下する
ため、容量の大きい電池をあたえる電極を得ることが困
難となる。また、本発明物に於ける複合粒子としては、
上記混晶(固溶体)を3〜25重量%含有するものが好
ましい。混晶の含有量が3重量%未満の場合は、水酸化
コバルトの量が不十分となり、電極の導電性を十分に高
めることが困難になり、容量の大きい電池をあたえる電
極を得ることが困難となる。一方、混晶の含有量が25
重量%を越えた場合は、活物質たる水酸化ニッケルの量
が少なくなり、これまた容量の大きい電池をあたえる電
極を得ることが困難となる。結局、複合粒子として最も
好ましいものは、水酸化マグネシウム及び/又は水酸化
亜鉛を、混晶中に、金属換算で、混晶中のコバルトとマ
グネシウム及び/又は亜鉛との総量に基づいて、0.5
〜50重量%含有し、且つ上記混晶を3〜25重量%含
有するものである。If the content is less than 0.5% by weight, it becomes difficult to effectively suppress the diffusion of cobalt hydroxide into the active material particles (nickel hydroxide particles or solid solution particles), and the charge-discharge cycle is difficult. It is difficult to obtain an electrode for a battery, which has a small decrease in discharge capacity with the progress of the above. on the other hand,
If the content exceeds 50% by weight, the conductivity will decrease, and it will be difficult to obtain an electrode for a battery with a large capacity. Further, as the composite particles in the present invention,
Those containing 3 to 25% by weight of the above mixed crystal (solid solution) are preferable. When the content of the mixed crystal is less than 3% by weight, the amount of cobalt hydroxide becomes insufficient, it becomes difficult to sufficiently increase the conductivity of the electrode, and it is difficult to obtain an electrode that gives a battery having a large capacity. Becomes On the other hand, the mixed crystal content is 25
When the content exceeds the weight%, the amount of nickel hydroxide as an active material becomes small, and it becomes difficult to obtain an electrode for a battery having a large capacity. After all, the most preferable composite particles are magnesium hydroxide and / or zinc hydroxide in the mixed crystal, in terms of metal, based on the total amount of cobalt and magnesium and / or zinc in the mixed crystal. 5
˜50% by weight and 3 to 25% by weight of the above mixed crystal.
【0016】本発明方法に於ける上記金属(M)の塩と
しては、硫酸塩及び硝酸塩が好ましく、また上記コバル
ト塩としては、硫酸コバルト及び硝酸コバルトが好まし
い。これらの各金属塩を使用すれば、電極特性を低下さ
せる不純物の活物質粒子(水酸化ニッケル粒子又は水酸
化ニッケルを主成分とする固溶体粒子)内への混入が少
なく、活物質粒子が悪影響を受けにくい。硫酸塩及び硝
酸塩は併用してもよく、また硫酸コバルト及び硝酸コバ
ルトも併用してもよい。さらに、硫酸塩及び硝酸塩は、
いずれか一方又は両方を2種以上使用してもよい。In the method of the present invention, the salt of the metal (M) is preferably sulfate and nitrate, and the cobalt salt is preferably cobalt sulfate and cobalt nitrate. When each of these metal salts is used, impurities that deteriorate the electrode characteristics are less mixed into the active material particles (nickel hydroxide particles or solid solution particles containing nickel hydroxide as a main component), and the active material particles have no adverse effect. Hard to receive. Sulfate and nitrate may be used in combination, and cobalt sulfate and cobalt nitrate may be used in combination. In addition, sulfates and nitrates
One or both of them may be used in combination.
【0017】本発明方法に於いて、溶液としてマグネシ
ウム塩とコバルト塩とを含有する溶液、亜鉛塩とコバル
ト塩とを含有する溶液又はマグネシウム塩と亜鉛塩とコ
バルト塩とを含有する溶液を使用する場合は、複合粒子
が、水酸化マグネシウム及び/又は水酸化亜鉛を、混晶
中に、金属換算で、混晶中のコバルトとマグネシウム及
び/又は亜鉛との総量に基づいて、0.5〜50重量%
含有するように、溶液の組成を調節することが好まし
い。通常、溶液中のマグネシウム塩及び/又は亜鉛塩と
コバルト塩の金属換算比が、混晶中のマグネシウム及び
/又は亜鉛とコバルトの比となる。また、複合粒子が、
混晶を3〜25重量%含有するように、活物質粒子の表
面に析出させる混晶の量(被覆量)を調節することが好
ましい。混晶の量(被覆量)は、溶液中の金属(M)の
塩及びコバルト塩の各濃度を調節することにより、調節
することができる。結局、溶液として、マグネシウム塩
とコバルト塩とを含有する溶液、亜鉛塩とコバルト塩と
を含有する溶液又はマグネシウム塩と亜鉛塩とコバルト
塩とを含有する溶液を使用する場合の最も好ましい作製
方法は、上記2種の調節を併せて実施する作製方法であ
る。本発明方法に於いて使用するアルカリとしては、水
酸化ナトリウム、水酸化カリウム、水酸化リチウムが例
示される。In the method of the present invention, a solution containing a magnesium salt and a cobalt salt, a solution containing a zinc salt and a cobalt salt, or a solution containing a magnesium salt, a zinc salt and a cobalt salt is used as the solution. In this case, the composite particles contain magnesium hydroxide and / or zinc hydroxide in the mixed crystal in an amount of 0.5 to 50 based on the total amount of cobalt and magnesium and / or zinc in the mixed crystal in terms of metal. weight%
It is preferred to adjust the composition of the solution to include. Usually, the metal conversion ratio of the magnesium salt and / or zinc salt and the cobalt salt in the solution is the ratio of magnesium and / or zinc and cobalt in the mixed crystal. In addition, the composite particles,
It is preferable to adjust the amount (coating amount) of the mixed crystal deposited on the surface of the active material particles so that the mixed crystal is contained in an amount of 3 to 25% by weight. The amount of the mixed crystal (coating amount) can be adjusted by adjusting the respective concentrations of the metal (M) salt and the cobalt salt in the solution. After all, the most preferable preparation method when using a solution containing a magnesium salt and a cobalt salt, a solution containing a zinc salt and a cobalt salt, or a solution containing a magnesium salt, a zinc salt and a cobalt salt as the solution is The above is a production method in which the above-mentioned two types of adjustment are performed together. Examples of the alkali used in the method of the present invention include sodium hydroxide, potassium hydroxide and lithium hydroxide.
【0018】本発明物及び本発明方法に於ける固溶体粒
子としては、水酸化ニッケルの粒子内部に亜鉛、コバル
ト、カルシウム及びカドミウムから選ばれた少なくとも
1種の元素を固溶させたものが例示される。芯体の具体
例としては、発泡状金属多孔体、金属繊維、炭素繊維、
金属メッシュ、パンチングメタルが挙げられる。Examples of the solid solution particles in the present invention and the method of the present invention include particles of nickel hydroxide in which at least one element selected from zinc, cobalt, calcium and cadmium is dissolved. It Specific examples of the core body include a foamed metal porous body, a metal fiber, a carbon fiber,
Examples include metal mesh and punching metal.
【0019】[0019]
【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.
【0020】(実施例1)
〔活物質の作製〕硫酸コバルト14.3gと、硫酸マグ
ネシウム10.7gとを水に溶かした水溶液1000m
lに、水酸化ニッケル粉末100gを投入し、攪拌しな
がら1M水酸化ナトリウム水溶液をpHが12になるま
で滴下し、1時間保持した。このときのpH測定には、
自動温度補償付きガラス電極pHメータを使用した。次
いで、ろ過し、ろ物を水洗し、真空乾燥して、水酸化ニ
ッケル粒子の表面が水酸化マグネシウムと水酸化コバル
トとからなる混晶にて被覆された複合粒子からなる活物
質粉末を作製した。混晶中の水酸化コバルトと水酸化マ
グネシウムとの比率は、水に溶解させるコバルト塩(硫
酸コバルト)とマグネシウム塩(硫酸マグネシウム)と
の量比を加減して調節した。また、複合粒子の混晶含有
率はコバルト塩及びマグネシウム塩の使用量を加減して
調節した。混晶中の水酸化マグネシウムの割合は、金属
換算で、混晶中のコバルトとマグネシウムとの総量に基
づいて、1重量%〔Mg/(Mg+Co)×100〕で
あった。また、複合粒子の混晶含有率は5重量%であっ
た。いずれも原子吸光分析によって測定した値から求め
たものである。(Example 1) [Preparation of active material] 1000 m of an aqueous solution prepared by dissolving 14.3 g of cobalt sulfate and 10.7 g of magnesium sulfate in water.
100 g of nickel hydroxide powder was added to 1, and a 1M sodium hydroxide aqueous solution was added dropwise to the solution until the pH reached 12, and the mixture was maintained for 1 hour. To measure the pH at this time,
A glass electrode pH meter with automatic temperature compensation was used. Then, the mixture was filtered, the filter cake was washed with water, and vacuum dried to prepare an active material powder composed of composite particles in which the surfaces of nickel hydroxide particles were coated with a mixed crystal of magnesium hydroxide and cobalt hydroxide. . The ratio of cobalt hydroxide and magnesium hydroxide in the mixed crystal was adjusted by adjusting the amount ratio of cobalt salt (cobalt sulfate) and magnesium salt (magnesium sulfate) dissolved in water. The mixed crystal content of the composite particles was adjusted by adjusting the amounts of cobalt salt and magnesium salt used. The ratio of magnesium hydroxide in the mixed crystal was 1 wt% [Mg / (Mg + Co) × 100] in terms of metal, based on the total amount of cobalt and magnesium in the mixed crystal. The mixed crystal content of the composite particles was 5% by weight. Both are obtained from the values measured by atomic absorption spectrometry.
【0021】上記と同様にして、水酸化コバルト−水酸
化亜鉛、水酸化コバルト−水酸化インジウム、水酸化コ
バルト−水酸化アルミニウム、水酸化コバルト−水酸化
マグネシウム−水酸化亜鉛、水酸化コバルト−水酸化マ
グネシウム−水酸化アルミニウム又は水酸化コバルト−
水酸化亜鉛−水酸化インジウムからなる各混晶にて水酸
化ニッケル粒子の表面を被覆した複合粒子からなる活物
質粉末を作製した。コバルト原料、亜鉛原料、インジウ
ム原料、アルミニウム原料、マグネシウム原料として
は、いずれも硫酸塩を使用した。また、いずれの場合
も、混晶中の金属(M)の水酸化物の割合は、金属換算
で、混晶中のコバルトと金属(M)との総量に基づい
て、1重量%であった。また、複合粒子の混晶含有率は
5重量%であった。In the same manner as described above, cobalt hydroxide-zinc hydroxide, cobalt hydroxide-indium hydroxide, cobalt hydroxide-aluminum hydroxide, cobalt hydroxide-magnesium hydroxide-zinc hydroxide, cobalt hydroxide-water. Magnesium oxide-aluminum hydroxide or cobalt hydroxide-
An active material powder composed of composite particles in which the surface of nickel hydroxide particles was coated with each mixed crystal composed of zinc hydroxide-indium hydroxide was prepared. Sulfate was used as the cobalt raw material, zinc raw material, indium raw material, aluminum raw material, and magnesium raw material. In each case, the ratio of the metal (M) hydroxide in the mixed crystal was 1 wt% in terms of metal, based on the total amount of cobalt and metal (M) in the mixed crystal. . The mixed crystal content of the composite particles was 5% by weight.
【0022】〔非焼結式ニッケル極の作製〕上記の活物
質粉末80重量部とメチルセルロースの1重量%水溶液
20重量部とを混練してペーストを作製し、このペース
トをニッケルめっきした発泡メタル(多孔度95、平均
粒径200μm)からなる多孔体に充填した。次いで、
この多孔体を、乾燥し、成形して、非焼結式ニッケル極
を作製した。[Preparation of Non-Sintered Nickel Electrode] 80 parts by weight of the above active material powder and 20 parts by weight of a 1% by weight aqueous solution of methylcellulose were kneaded to prepare a paste, and this paste was nickel-plated metal foam ( It was filled in a porous body having a porosity of 95 and an average particle size of 200 μm). Then
This porous body was dried and molded to prepare a non-sintered nickel electrode.
【0023】〔電池の作製〕上記非焼結式ニッケル極を
正極とし、公知のペースト式カドミウム極を負極とし、
これらとナイロン不織布セパレータ、アルカリ電解液、
金属製の電池容器、金属蓋等の電池部材とを組み合わせ
て、AAサイズのニッケル−カドミウム電池A1〜A7
(電池容量:1100mAh)を作製した。なお、アル
カリ電解液としては、水酸化カリウムと水酸化ナトリウ
ムと水酸化リチウムとの重量比8:1:1の混合物の水
溶液(比重:1.285)を使用した。[Production of Battery] The non-sintered nickel electrode is used as a positive electrode, and a known paste type cadmium electrode is used as a negative electrode.
These and nylon non-woven separator, alkaline electrolyte,
AA size nickel-cadmium batteries A1 to A7 are combined with a battery member such as a metal battery container and a metal lid.
(Battery capacity: 1100 mAh) was produced. As the alkaline electrolyte, an aqueous solution (specific gravity: 1.285) of a mixture of potassium hydroxide, sodium hydroxide and lithium hydroxide in a weight ratio of 8: 1: 1 was used.
【0024】電池A1はコバルト−マグネシウムからな
る混晶にて、電池A2は水酸化コバルト−水酸化亜鉛か
らなる混晶にて、電池A3は水酸化コバルト−水酸化イ
ンジウムからなる混晶にて、電池A4は水酸化コバルト
−水酸化アルミニウムからなる混晶にて、電池A5は水
酸化コバルト−水酸化マグネシウム−水酸化亜鉛からな
る混晶にて、電池A6は水酸化コバルト−水酸化マグネ
シウム−水酸化アルミニウムからなる混晶にて、電池A
7は水酸化コバルト−水酸化亜鉛−水酸化インジウムか
らなる混晶にて、水酸化ニッケル粒子の表面を被覆して
なる複合粒子からなる活物質粉末をそれぞれ使用した電
池である。Battery A1 is a mixed crystal of cobalt-magnesium, battery A2 is a mixed crystal of cobalt hydroxide-zinc hydroxide, and battery A3 is a mixed crystal of cobalt hydroxide-indium hydroxide. Battery A4 is a mixed crystal of cobalt hydroxide-aluminum hydroxide, battery A5 is a mixed crystal of cobalt hydroxide-magnesium hydroxide-zinc hydroxide, and battery A6 is cobalt hydroxide-magnesium hydroxide-water. Battery A with a mixed crystal of aluminum oxide
Reference numeral 7 is a battery using mixed crystal of cobalt hydroxide-zinc hydroxide-indium hydroxide, each of which used active material powder composed of composite particles obtained by coating the surface of nickel hydroxide particles.
【0025】(比較例1)硫酸コバルト14.3gを水
に溶かした水溶液1000mlに、実施例1で使用した
ものと同じ水酸化ニッケル粉末100gを攪拌しながら
投入し、攪拌しながら1M水酸化ナトリウム水溶液をp
Hが12になるまで滴下し、1時間保持した。次いで、
ろ過し、ろ物を水洗し、真空乾燥して、水酸化ニッケル
粒子の表面が水酸化コバルトにて被覆された複合粒子か
らなる活物質粉末を作製した。複合粒子の水酸化コバル
ト含有量は5重量%であった。この活物質粉末を正極に
使用したこと以外は実施例1と同様にして、比較電池X
を作製した。なお、この比較電池Xは、特開昭62−2
34867号公報に開示の方法にほぼ準じて作製した電
池である。(Comparative Example 1) 100 g of the same nickel hydroxide powder as used in Example 1 was added to 1000 ml of an aqueous solution in which 14.3 g of cobalt sulfate was dissolved in water with stirring, and 1 M sodium hydroxide was added with stirring. Aqueous solution p
The solution was dropped until H became 12, and kept for 1 hour. Then
The mixture was filtered, the filter cake was washed with water, and dried in vacuum to prepare an active material powder composed of composite particles in which the surface of nickel hydroxide particles was coated with cobalt hydroxide. The cobalt hydroxide content of the composite particles was 5% by weight. Comparative battery X was prepared in the same manner as in Example 1 except that this active material powder was used for the positive electrode.
Was produced. Incidentally, this comparative battery X is disclosed in JP-A-62-2
This battery was manufactured according to the method disclosed in Japanese Patent No. 34867.
【0026】(比較例2)硫酸コバルト14.3gと硫
酸ニッケル4.52gとを水に溶かした水溶液1000
mlに、実施例1で使用したものと同じ水酸化ニッケル
粉末100gを攪拌しながら投入し、攪拌しながら1M
水酸化ナトリウム水溶液をpHが12になるまで滴下
し、1時間保持した。次いで、ろ過し、ろ物を水洗し、
真空乾燥して、水酸化ニッケル粒子の表面が水酸化コバ
ルトと水酸化ニッケルとからなる混晶にて被覆された複
合粒子からなる活物質粉末を作製した。混晶中の水酸化
ニッケルの割合は、金属換算で、混晶中のコバルトとニ
ッケルとの総量に基づいて、20重量%であった。ま
た、複合粒子の混晶含有率は5重量%であった。この活
物質粉末を正極に使用したこと以外は実施例1と同様に
して、比較電池Yを作製した。なお、この比較電池Y
は、特開平3−62457号公報に開示の方法にほぼ準
じて作製した電池である。Comparative Example 2 Aqueous solution 1000 in which 14.3 g of cobalt sulfate and 4.52 g of nickel sulfate were dissolved in water.
100 ml of the same nickel hydroxide powder as that used in Example 1 was added to ml with stirring, and 1M with stirring.
An aqueous sodium hydroxide solution was added dropwise until the pH reached 12, and the mixture was kept for 1 hour. Then, it is filtered, the filter cake is washed with water,
Vacuum drying was performed to prepare an active material powder composed of composite particles in which the surface of nickel hydroxide particles was coated with a mixed crystal of cobalt hydroxide and nickel hydroxide. The proportion of nickel hydroxide in the mixed crystal was 20% by weight in terms of metal, based on the total amount of cobalt and nickel in the mixed crystal. The mixed crystal content of the composite particles was 5% by weight. Comparative battery Y was produced in the same manner as in Example 1 except that this active material powder was used for the positive electrode. Incidentally, this comparative battery Y
Is a battery manufactured according to the method disclosed in Japanese Patent Application Laid-Open No. 3-62457.
【0027】〈各電池の充放電サイクル特性〉電池A1
〜A7及び比較電池X,Yについて、充電電流0.1C
で160%充電した後、放電電流1Cで終止電圧1.0
Vまで放電する工程を1サイクルとする充放電サイクル
試験を行い、各電池の充放電サイクル特性を調べた。<Charge / Discharge Cycle Characteristics of Each Battery> Battery A1
~ A7 and comparative battery X, Y, charging current 0.1C
After 160% charge with a discharge current of 1C, the final voltage is 1.0
A charging / discharging cycle test in which the process of discharging to V was defined as one cycle was performed to examine the charging / discharging cycle characteristics of each battery.
【0028】図1は、各電池の充放電サイクル特性を、
縦軸に放電容量(1サイクル目の放電容量を100とし
た場合の指数)を、また横軸に充放電サイクル数(回)
をとって示したグラフである。図1に示すように、比較
電池X,Yでは、充放電サイクルの進行に伴い放電容量
が低下しているのに対して、本発明電極を使用した電池
A1〜A7では、容量低下が殆ど認められない。これ
は、電池A1〜A7では、水酸化ニッケル粒子をアルミ
ニウム、マグネシウム、インジウム及び亜鉛よりなる群
から選ばれた少なくとも1種の金属(M)の水酸化物と
水酸化コバルトとからなる混晶にて被覆した複合粒子が
活物質として使用されているので、水酸化コバルトの水
酸化ニッケル粒子の内部への拡散が起こりにくいためで
ある。FIG. 1 shows charge / discharge cycle characteristics of each battery.
The vertical axis represents the discharge capacity (index when the discharge capacity in the first cycle is 100), and the horizontal axis represents the number of charge / discharge cycles (times).
It is the graph which took and showed. As shown in FIG. 1, in Comparative Batteries X and Y, the discharge capacity decreased with the progress of charge / discharge cycles, whereas in Batteries A1 to A7 using the electrodes of the present invention, a decrease in capacity was observed. I can't. This is because, in the batteries A1 to A7, nickel hydroxide particles were formed into a mixed crystal composed of a hydroxide of at least one metal (M) selected from the group consisting of aluminum, magnesium, indium and zinc and cobalt hydroxide. This is because the composite particles coated by the method are used as the active material, so that the diffusion of cobalt hydroxide into the nickel hydroxide particles does not easily occur.
【0029】水酸化ニッケル粒子の内部に亜鉛、コバル
ト、カルシウム及びカドミウムから選ばれた少なくとも
1種の元素を固溶させてなる、水酸化ニッケルを主成分
とする固溶体粒子の表面を上記の混晶にて被覆した場合
においても、電池A1〜A7と同様の優れた充放電サイ
クル特性を有する電池をあたえる非焼結式ニッケル極が
得られることを確認した。The surface of solid solution particles containing nickel hydroxide as a main component, which is obtained by solid-solving at least one element selected from zinc, cobalt, calcium and cadmium inside the nickel hydroxide particles, is mixed with the above mixed crystal. It was confirmed that a non-sintered nickel electrode that gives a battery having the same excellent charge-discharge cycle characteristics as those of the batteries A1 to A7 can be obtained even when it is coated with.
【0030】(実施例2)水酸化ニッケル粒子の表面
を、混晶中の水酸化マグネシウムの割合が、金属換算
で、0.10重量%、0.25重量%、0.5重量%、
1重量%、5重量%、10重量%、25重量%、35重
量%、50重量%、55重量%、60重量%と異なる、
水酸化コバルトと水酸化マグネシウムとからなる混晶に
て被覆してなる複合粒子を活物質として用いてアルカリ
蓄電池用非焼結式ニッケル極を作製し、次いで実施例1
と同様に、これらの各電極を正極として使用して、順に
ニッケル−カドミウム蓄電池B1〜B11を作製した。
なお、複合粒子の混晶含有率は、全て10重量%とし
た。Example 2 The proportion of magnesium hydroxide in the mixed crystal on the surface of nickel hydroxide particles was 0.10% by weight, 0.25% by weight, 0.5% by weight in terms of metal,
Different from 1% by weight, 5% by weight, 10% by weight, 25% by weight, 35% by weight, 50% by weight, 55% by weight, 60% by weight,
A non-sintered nickel electrode for an alkaline storage battery was prepared by using composite particles coated with a mixed crystal of cobalt hydroxide and magnesium hydroxide as an active material, and then Example 1
Similarly, using each of these electrodes as a positive electrode, nickel-cadmium storage batteries B1 to B11 were sequentially manufactured.
The mixed crystal content of the composite particles was 10% by weight.
【0031】上記電池B1〜B11について実施例1と
同じ条件の充放電サイクル試験を行ない、各電池の充放
電サイクル特性を調べた。結果を図1と同じ座標系の図
2及び表1に示す。表1は、300サイクル目の各電池
の放電容量を、電池B4の300サイクル目の放電容量
を100とした指数で示したものである。The batteries B1 to B11 were subjected to a charge / discharge cycle test under the same conditions as in Example 1 to examine the charge / discharge cycle characteristics of each battery. The results are shown in FIG. 2 and Table 1 in the same coordinate system as in FIG. Table 1 shows the discharge capacity of each battery at the 300th cycle as an index with the discharge capacity of the battery B4 at the 300th cycle as 100.
【0032】[0032]
【表1】 [Table 1]
【0033】図2に示すように、混晶中の水酸化マグネ
シウムの金属換算での割合が0.5重量%以上である電
池B3〜B11は、同割合が0.5重量%未満である電
池B1,B2に比べて、優れた充放電サイクル特性を有
している。このことから、同割合を0.5重量%以上と
することが好ましいことが分かる。As shown in FIG. 2, batteries B3 to B11 in which the ratio of magnesium hydroxide in the mixed crystal in terms of metal is 0.5% by weight or more, and the ratio is less than 0.5% by weight. It has excellent charge / discharge cycle characteristics as compared with B1 and B2. From this, it is understood that the same ratio is preferably 0.5% by weight or more.
【0034】一方、表1に示すように、混晶中の水酸化
マグネシウムの金属換算での割合が50重量%を越えた
電池B10,B11は、同割合が50重量%以下の電池
B3〜B9に比べて、300サイクル目の放電容量が小
さい。このことから、同割合を50重量%以下とするこ
とが好ましいことが分かり、結局上記の図2に示す結果
と併せ考慮すれば、混晶中の水酸化マグネシウムの金属
換算での割合は0.5〜50重量%とすることが好まし
いことが分かる。On the other hand, as shown in Table 1, the batteries B10 and B11 in which the ratio of magnesium hydroxide in the mixed crystal in terms of metal exceeds 50% by weight are the batteries B3 to B9 in which the ratio is 50% by weight or less. The discharge capacity at the 300th cycle is smaller than that of. From this, it was found that the same ratio is preferably 50% by weight or less, and in consideration of the results shown in FIG. 2 above, the ratio of magnesium hydroxide in the mixed crystal in terms of metal is 0. It can be seen that the amount is preferably 5 to 50% by weight.
【0035】亜鉛についても、金属換算での混晶中のこ
れらの水酸化物の割合を0.5〜50重量%とすること
が好ましい。With respect to zinc, it is preferable that the proportion of these hydroxides in the mixed crystal in terms of metal is 0.5 to 50% by weight.
【0036】(実施例3)水酸化ニッケル粒子の表面
を、水酸化コバルトと水酸化マグネシウムとからなる混
晶にて被覆してなる、混晶含有率が0重量%、2重量
%、3重量%、5重量%、10重量%、15重量%、2
0重量%、25重量%、26重量%、28重量%、30
重量%と異なる複合粒子を活物質として用いてアルカリ
蓄電池用非焼結式ニッケル極を作製し、次いで実施例1
と同様に、これらの各電極を正極として使用して、順に
ニッケル−カドミウム蓄電池C1〜C11を作製した。
なお、混晶中の水酸化マグネシウムの金属換算での割合
は、全て10重量%とした。(Example 3) The surface of nickel hydroxide particles is coated with a mixed crystal of cobalt hydroxide and magnesium hydroxide, and the mixed crystal content is 0% by weight, 2% by weight and 3% by weight. %, 5% by weight, 10% by weight, 15% by weight, 2
0% by weight, 25% by weight, 26% by weight, 28% by weight, 30
A non-sintered nickel electrode for an alkaline storage battery was prepared by using composite particles different in weight% as an active material, and then, Example 1
Similarly, using each of these electrodes as a positive electrode, nickel-cadmium storage batteries C1 to C11 were sequentially manufactured.
The ratio of magnesium hydroxide in the mixed crystal in terms of metal was 10% by weight.
【0037】上記電池C1〜C11について実施例1と
同じ条件の充放電サイクル試験を行ない、各電池の30
0サイクル目の放電容量を調べた。結果を図3に示す。
図3は、縦軸に各電池の300サイクル目の放電容量
(10サイクル目の電池C4の放電容量を100とした
ときの指数)を、また横軸に複合粒子の混晶含有率(重
量%)をとって示したものである。The batteries C1 to C11 were subjected to a charge / discharge cycle test under the same conditions as in Example 1, and 30 batteries of each battery were tested.
The discharge capacity at the 0th cycle was examined. The results are shown in Fig. 3.
In FIG. 3, the vertical axis represents the discharge capacity at the 300th cycle of each battery (index when the discharge capacity of the battery C4 at the 10th cycle is 100), and the horizontal axis represents the mixed crystal content of the composite particles (% by weight). ) Is shown.
【0038】図3に示すように、混晶含有率が3〜25
重量%の範囲内にある電池C3〜C8は、混晶含有率が
この範囲を外れる電池C1〜C2及びC9〜C11に比
べて、300サイクル目の放電容量が大きい。このこと
から、複合粒子の混晶含有率を3〜25重量%とするこ
とが好ましいことが分かる。As shown in FIG. 3, the mixed crystal content is 3 to 25.
The batteries C3 to C8 in the range of weight% have a larger discharge capacity at the 300th cycle than the batteries C1 to C2 and C9 to C11 in which the mixed crystal content ratio is outside this range. From this, it is understood that the mixed crystal content of the composite particles is preferably 3 to 25% by weight.
【0039】マグネシウム以外の、アルミニウム、イン
ジウム及び亜鉛についても、複合粒子の混晶含有率を3
〜25重量%とすることが好ましい。With respect to aluminum, indium and zinc other than magnesium, the mixed crystal content of the composite particles is 3%.
It is preferably about 25% by weight.
【0040】(実施例4)実施例1と同様にして、水酸
化コバルト−水酸化マグネシウム、水酸化コバルト−水
酸化亜鉛、水酸化コバルト−水酸化インジウム又は水酸
化コバルト−水酸化アルミニウムからなる各混晶にて水
酸化ニッケル粒子の表面を被覆してなる、共沈物の水酸
化マグネシウム、水酸化亜鉛、水酸化インジウム又は水
酸化アルミニウム含有量が種々異なる複合粒子を活物質
として用いてアルカリ蓄電池用非焼結式ニッケル極を作
製し、次いで実施例1と同様に、これらの各電極を正極
として使用して、ニッケル−カドミウム蓄電池を作製し
た。なお、いずれの場合も、複合粒子の共沈物含有量
(混晶含有率ではない)を10重量%とした。(Example 4) In the same manner as in Example 1, each of cobalt hydroxide-magnesium hydroxide, cobalt hydroxide-zinc hydroxide, cobalt hydroxide-indium hydroxide or cobalt hydroxide-aluminum hydroxide. Alkaline storage battery using composite particles having different contents of magnesium hydroxide, zinc hydroxide, indium hydroxide or aluminum hydroxide in the coprecipitate, which are obtained by coating the surface of nickel hydroxide particles with a mixed crystal. A non-sintered nickel electrode was prepared and then, similarly to Example 1, each of these electrodes was used as a positive electrode to prepare a nickel-cadmium storage battery. In any case, the coprecipitate content (not the mixed crystal content) of the composite particles was set to 10% by weight.
【0041】上記の各電池に於ける共沈物の影響を調べ
るべく、次の試験を行った。各電池について、充電電流
0.1Cで160%充電した後、放電電流1Cで終止電
圧1.0Vまで放電する工程を1サイクルとする充放電
を10サイクル行った後、充電電流0.1Cで160%
充電した。この充電状態にある各電池に5Ωの抵抗を接
続し、70°Cの温度に7日間放置した。その後、充電
電流0.1Cで160%充電した後、放電電流1Cで終
止電圧1.0Vまで放電して、放電容量D1を測定し
た。このときの放電容量D1の10サイクル目の放電容
量D2に対する比率(%)を求めた。結果を表2に示
す。この比率の大きいものほど、負荷接続状態での放電
容量の低下が小さいことを示す。The following tests were conducted in order to investigate the influence of coprecipitates in each of the above batteries. For each battery, after charging 160% at a charging current of 0.1 C, 10 cycles of charging / discharging with one cycle of discharging at a discharging current of 1 C to a final voltage of 1.0 V were performed, and then at a charging current of 0.1 C, 160 %
Charged A resistance of 5Ω was connected to each battery in this charged state, and the battery was left at a temperature of 70 ° C for 7 days. After that, the battery was charged at a charging current of 0.1 C by 160% and then discharged at a discharging current of 1 C to a final voltage of 1.0 V, and the discharge capacity D1 was measured. The ratio (%) of the discharge capacity D1 at this time to the discharge capacity D2 at the 10th cycle was determined. The results are shown in Table 2. The larger the ratio, the smaller the decrease in discharge capacity in the load connected state.
【0042】[0042]
【表2】 [Table 2]
【0043】表2より、水酸化コバルト−水酸化マグネ
シウム共沈物又は水酸化コバルト−水酸化亜鉛共沈物に
て水酸化ニッケル粒子の表面を被覆してなる複合粒子を
活物質として用いた非焼結式ニッケル極は、負荷接続状
態での放電容量の低下が小さい電池をあたえることが分
かる。この理由は、水酸化コバルト−水酸化マグネシウ
ム共沈物及び水酸化コバルト−水酸化亜鉛共沈物は、広
い組成範囲で混晶として存在しているためと推察され
る。なかでも、水酸化コバルト−水酸化マグネシウム共
沈物が負荷接続状態での放電容量の低下が最も小さい電
池をあたえている。なお、表2に示すように、インジウ
ム及びアルミニウムについては、共沈物中の水酸化イン
ジウム及び水酸化アルミニウムの量が多い場合、水酸化
インジウム又は水酸化アルミニウムが単離したため、混
晶が得られなかった。As shown in Table 2, composite particles obtained by coating the surface of nickel hydroxide particles with a cobalt hydroxide-magnesium hydroxide coprecipitate or a cobalt hydroxide-zinc hydroxide coprecipitate were used as the active material. It can be seen that the sintered nickel electrode gives a battery in which the decrease in discharge capacity in the load connected state is small. This is presumably because the cobalt hydroxide-magnesium hydroxide coprecipitate and the cobalt hydroxide-zinc hydroxide coprecipitate exist as mixed crystals in a wide composition range. Among them, a cobalt hydroxide-magnesium hydroxide coprecipitate gives a battery having the smallest decrease in discharge capacity under load connection. As shown in Table 2, for indium and aluminum, when the amount of indium hydroxide and aluminum hydroxide in the coprecipitate was large, mixed crystal was not obtained because indium hydroxide or aluminum hydroxide was isolated. .
【0044】上記実施例では、活物質粒子として水酸化
ニッケル粒子を使用したが、固溶体粒子を使用する場合
にも、本発明を適用することにより上記と同様の優れた
効果が得られる。In the above examples, nickel hydroxide particles were used as the active material particles, but even when solid solution particles are used, the same excellent effects as above can be obtained by applying the present invention.
【0045】また、上記実施例では、ニッケル−カドミ
ウム蓄電池を例に挙げて説明したが、本発明はニッケル
−水素蓄電池など、アルカリ蓄電池用として広く適用可
能なものである。Further, in the above embodiment, the nickel-cadmium storage battery was described as an example, but the present invention is widely applicable to alkaline storage batteries such as nickel-hydrogen storage batteries.
【0046】[0046]
【発明の効果】本発明電極を正極として使用したアルカ
リ蓄電池においては、水酸化コバルトの電極の導電性を
高める作用が充放電サイクルの長期にわたって維持さ
れ、そのため充放電サイクルの進行に伴う放電容量の低
下が有効に抑制される。In the alkaline storage battery using the electrode of the present invention as the positive electrode, the action of increasing the conductivity of the cobalt hydroxide electrode is maintained for a long period of the charging / discharging cycle. The drop is effectively suppressed.
【図1】実施例で作製したニッケル−カドミウム蓄電池
の充放電サイクル特性を示すグラフである。FIG. 1 is a graph showing charge / discharge cycle characteristics of nickel-cadmium storage batteries prepared in Examples.
【図2】実施例で作製したニッケル−カドミウム蓄電池
の充放電サイクル特性を示すグラフである。FIG. 2 is a graph showing charge / discharge cycle characteristics of nickel-cadmium storage batteries manufactured in Examples.
【図3】複合粒子の混晶含有率と300サイクル目の放
電容量の関係を示すグラフである。FIG. 3 is a graph showing the relationship between the mixed crystal content of composite particles and the discharge capacity at the 300th cycle.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 近野 義人 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平5−101823(JP,A) 特開 昭62−234867(JP,A) 特開 平3−274666(JP,A) 特開 平6−13075(JP,A) 特開 平5−21064(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/36 - 4/62 H01M 4/32 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshito Konno 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Koji Nishio 2-5 Keihan-hondori, Moriguchi-shi, Osaka No. 5 Sanyo Denki Co., Ltd. (72) Inventor Toshihiko Saito 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Denki Co., Ltd. (56) Reference JP 5-101823 (JP, A) JP 62-234867 (JP, A) JP 3-274666 (JP, A) JP 6-13075 (JP, A) JP 5-21064 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) H01M 4/36-4/62 H01M 4/32
Claims (24)
主成分とする固溶体粒子の表面を、アルミニウム、マグ
ネシウム、インジウム及び亜鉛よりなる群から選ばれた
少なくとも1種の金属(M)の水酸化物と水酸化コバル
トとからなる混晶にて被覆した複合粒子からなるアルカ
リ蓄電池の非焼結式ニッケル極用活物質粉末。1. A hydroxide of at least one metal (M) selected from the group consisting of aluminum, magnesium, indium and zinc on the surface of nickel hydroxide particles or solid solution particles containing nickel hydroxide as a main component. An active material powder for a non-sintered nickel electrode of an alkaline storage battery, which is composed of composite particles coated with a mixed crystal composed of and cobalt hydroxide.
内部に亜鉛、コバルト、カルシウム及びカドミウムから
選ばれた少なくとも1種の元素を固溶させたものである
請求項1記載のアルカリ蓄電池の非焼結式ニッケル極用
活物質粉末。2. The alkaline storage battery according to claim 1, wherein the solid solution particles are nickel hydroxide particles in which at least one element selected from zinc, cobalt, calcium and cadmium is solid-solved. Sintered nickel electrode active material powder.
%含有する請求項1記載のアルカリ蓄電池の非焼結式ニ
ッケル極用活物質粉末。3. The non-sintered nickel electrode active material powder for an alkaline storage battery according to claim 1, wherein the composite particles contain 3 to 25% by weight of the mixed crystal.
水酸化ニッケルを主成分とする固溶体粒子の表面を、水
酸化マグネシウムと水酸化コバルトとからなる混晶、水
酸化亜鉛と水酸化コバルトとからなる混晶又は水酸化マ
グネシウムと水酸化亜鉛と水酸化コバルトとからなる混
晶にて被覆したものである請求項1記載のアルカリ蓄電
池の非焼結式ニッケル極用活物質粉末。4. The mixed particles, wherein the surface of nickel hydroxide particles or solid solution particles containing nickel hydroxide as a main component is mixed crystal of magnesium hydroxide and cobalt hydroxide, zinc hydroxide and cobalt hydroxide. The non-sintered nickel active material powder for an alkaline storage battery according to claim 1, which is coated with a mixed crystal consisting of or a mixed crystal consisting of magnesium hydroxide, zinc hydroxide and cobalt hydroxide.
/又は水酸化亜鉛を、前記混晶中に、金属換算で、前記
混晶中のコバルトとマグネシウム及び/又は亜鉛との総
量に基づいて、0.5〜50重量%含有している請求項
4記載のアルカリ蓄電池の非焼結式ニッケル極用活物質
粉末。5. The composite particles contain magnesium hydroxide and / or zinc hydroxide in the mixed crystal based on the total amount of cobalt and magnesium and / or zinc in the mixed crystal in terms of metal. The non-sintered nickel electrode active material powder for an alkaline storage battery according to claim 4, which contains 0.5 to 50% by weight.
/又は水酸化亜鉛を、前記混晶中に、金属換算で、前記
混晶中のコバルトとマグネシウム及び/又は亜鉛との総
量に基づいて、0.5〜50重量%含有し、且つ前記混
晶を3〜25重量%含有する請求項4記載のアルカリ蓄
電池の非焼結式ニッケル極用活物質粉末。6. The composite particles contain magnesium hydroxide and / or zinc hydroxide in the mixed crystal in terms of metal, based on the total amount of cobalt and magnesium and / or zinc in the mixed crystal, The non-sintered nickel electrode active material powder for an alkaline storage battery according to claim 4, wherein the content of the mixed crystal is 0.5 to 50% by weight and the mixed crystal is 3 to 25% by weight.
水酸化ニッケルを主成分とする固溶体粒子の表面を、水
酸化マグネシウムと水酸化コバルトとからなる混晶にて
被覆したものである請求項1記載のアルカリ蓄電池の非
焼結式ニッケル極用活物質粉末。7. The composite particles are obtained by coating the surface of nickel hydroxide particles or solid solution particles containing nickel hydroxide as a main component with a mixed crystal of magnesium hydroxide and cobalt hydroxide. 2. The non-sintered nickel electrode active material powder for an alkaline storage battery according to 1.
主成分とする固溶体粒子の表面を、アルミニウム、マグ
ネシウム、インジウム及び亜鉛よりなる群から選ばれた
少なくとも1種の金属(M)の水酸化物と水酸化コバル
トとからなる混晶にて被覆した複合粒子からなる活物質
粉末を用いたアルカリ蓄電池用非焼結式ニッケル極。8. A hydroxide of at least one metal (M) selected from the group consisting of aluminum, magnesium, indium and zinc on the surface of nickel hydroxide particles or solid solution particles containing nickel hydroxide as a main component. A non-sintered nickel electrode for an alkaline storage battery, which uses an active material powder composed of composite particles coated with a mixed crystal composed of and cobalt hydroxide.
内部に亜鉛、コバルト、カルシウム及びカドミウムから
選ばれた少なくとも1種の元素を固溶させたものである
請求項8記載のアルカリ蓄電池用非焼結式ニッケル極。9. The non-alkaline battery according to claim 8, wherein the solid solution particles are nickel hydroxide particles in which at least one element selected from zinc, cobalt, calcium and cadmium is dissolved. Sintered nickel electrode.
量%含有する請求項8記載のアルカリ蓄電池用非焼結式
ニッケル極。10. The non-sintered nickel electrode for an alkaline storage battery according to claim 8, wherein the composite particles contain the mixed crystal in an amount of 3 to 25% by weight.
子又は前記固溶体粒子の表面を、水酸化マグネシウムと
水酸化コバルトとからなる混晶、水酸化亜鉛と水酸化コ
バルトとからなる混晶又は水酸化マグネシウムと水酸化
亜鉛と水酸化コバルトとからなる混晶にて被覆したもの
である請求項8記載のアルカリ蓄電池用非焼結式ニッケ
ル極。11. The composite particle comprises, on the surface of the nickel hydroxide particle or the solid solution particle, a mixed crystal of magnesium hydroxide and cobalt hydroxide, a mixed crystal of zinc hydroxide and cobalt hydroxide, or water. The non-sintered nickel electrode for an alkaline storage battery according to claim 8, which is coated with a mixed crystal of magnesium oxide, zinc hydroxide and cobalt hydroxide.
び/又は水酸化亜鉛を、前記混晶中に、金属換算で、前
記混晶中のコバルトとマグネシウム及び/又は亜鉛との
総量に基づいて、0.5〜50重量%含有している請求
項11記載のアルカリ蓄電池用非焼結式ニッケル極。12. The composite particles contain magnesium hydroxide and / or zinc hydroxide in the mixed crystal based on the total amount of cobalt and magnesium and / or zinc in the mixed crystal in terms of metal. The non-sintered nickel electrode for an alkaline storage battery according to claim 11, which contains 0.5 to 50% by weight.
び/又は水酸化亜鉛を、前記混晶中に、金属換算で、前
記混晶中のコバルトとマグネシウム及び/又は亜鉛との
総量に基づいて、0.5〜50重量%含有し、且つ前記
混晶を3〜25重量%含有する請求項11記載のアルカ
リ蓄電池用非焼結式ニッケル極。13. The composite particles contain magnesium hydroxide and / or zinc hydroxide in the mixed crystal, in terms of metal, based on the total amount of cobalt and magnesium and / or zinc in the mixed crystal, The non-sintered nickel electrode for an alkaline storage battery according to claim 11, which contains 0.5 to 50% by weight and 3 to 25% by weight of the mixed crystal.
子又は前記固溶体粒子の表面を、水酸化マグネシウムと
水酸化コバルトとからなる混晶にて被覆したものである
請求項8記載のアルカリ蓄電池用非焼結式ニッケル極。14. The alkaline storage battery according to claim 8, wherein the composite particles are obtained by coating the surfaces of the nickel hydroxide particles or the solid solution particles with a mixed crystal of magnesium hydroxide and cobalt hydroxide. Non-sintered nickel electrode.
を主成分とする固溶体粒子を、アルミニウム、マグネシ
ウム、インジウム及び亜鉛よりなる群から選ばれた少な
くとも1種の金属(M)の塩とコバルト塩とを含有する
溶液中に浸漬し、アルカリを添加して、前記金属(M)
の水酸化物と水酸化コバルトとを共析させて前記水酸化
ニッケル粒子又は前記固溶体粒子の表面を、前記金属
(M)の水酸化物と水酸化コバルトとからなる混晶にて
被覆するアルカリ蓄電池の非焼結式ニッケル極用活物質
粉末の作製方法。15. Nickel hydroxide particles or solid solution particles containing nickel hydroxide as a main component, and a salt of at least one metal (M) selected from the group consisting of aluminum, magnesium, indium and zinc, and a cobalt salt. The metal (M) is dipped in a solution containing
Alkali to co-deposit the hydroxide and cobalt hydroxide to coat the surface of the nickel hydroxide particles or the solid solution particles with a mixed crystal of the metal (M) hydroxide and cobalt hydroxide. A method for producing a non-sintered nickel electrode active material powder for a storage battery.
は硝酸塩であり、且つ前記コバルト塩が硫酸コバルト及
び/又は硝酸コバルトである請求項15記載のアルカリ
蓄電池の非焼結式ニッケル極用活物質粉末の作製方法。16. The non-sintered nickel of an alkaline storage battery according to claim 15, wherein the salt of the metal (M) is a sulfate and / or a nitrate, and the cobalt salt is a cobalt sulfate and / or a cobalt nitrate. A method for producing an active material powder for extraordinary use.
量%含有するように、前記溶液中の前記金属(M)の塩
及び前記コバルト塩の濃度を調節する請求項15記載の
アルカリ蓄電池の非焼結式ニッケル極用活物質粉末の作
製方法。17. The alkali according to claim 15, wherein the concentration of the salt of the metal (M) and the cobalt salt in the solution is adjusted so that the composite particles contain 3 to 25% by weight of the mixed crystal. A method for producing a non-sintered nickel electrode active material powder for a storage battery.
ルト塩とを含有する溶液、亜鉛塩とコバルト塩とを含有
する溶液又はマグネシウム塩と亜鉛塩とコバルト塩とを
含有する溶液を使用し、且つ、前記混晶が、水酸化マグ
ネシウム及び/又は水酸化亜鉛を、金属換算で、前記混
晶中のコバルトとマグネシウム及び/又は亜鉛との総量
に基づいて、0.5〜50重量%含有するように、前記
溶液の組成を調節する請求項15記載のアルカリ蓄電池
の非焼結式ニッケル極用活物質粉末の作製方法。18. A solution containing a magnesium salt and a cobalt salt, a solution containing a zinc salt and a cobalt salt, or a solution containing a magnesium salt, a zinc salt and a cobalt salt is used as the solution, and The mixed crystal contains magnesium hydroxide and / or zinc hydroxide in an amount of 0.5 to 50 wt% in terms of metal, based on the total amount of cobalt and magnesium and / or zinc in the mixed crystal. The method for producing a non-sintered nickel electrode active material powder for an alkaline storage battery according to claim 15, wherein the composition of the solution is adjusted.
ルト塩とを含有する溶液、亜鉛塩とコバルト塩とを含有
する溶液又はマグネシウム塩と亜鉛塩とコバルト塩とを
含有する溶液を使用し、且つ、前記混晶が、水酸化マグ
ネシウム及び/又は水酸化亜鉛を、金属換算で、前記混
晶中のコバルトとマグネシウム及び/又は亜鉛との総量
に基づいて、0.5〜50重量%含有するように、前記
溶液の組成を調節し、且つ前記複合粒子が、前記混晶を
3〜25重量%含有するように、前記溶液中の前記マグ
ネシウム塩及び/又は前記亜鉛塩、及び、前記コバルト
塩の濃度を調節する請求項15記載のアルカリ蓄電池の
非焼結式ニッケル極用活物質粉末の作製方法。19. A solution containing a magnesium salt and a cobalt salt, a solution containing a zinc salt and a cobalt salt, or a solution containing a magnesium salt, a zinc salt and a cobalt salt is used as the solution, and The mixed crystal contains magnesium hydroxide and / or zinc hydroxide in an amount of 0.5 to 50 wt% in terms of metal, based on the total amount of cobalt and magnesium and / or zinc in the mixed crystal. A concentration of the magnesium salt and / or the zinc salt and the cobalt salt in the solution so that the composite particles contain the mixed crystal in an amount of 3 to 25% by weight. 16. The method for producing a non-sintered nickel electrode active material powder for an alkaline storage battery according to claim 15.
を主成分とする固溶体粒子を、アルミニウム、マグネシ
ウム、インジウム及び亜鉛よりなる群から選ばれた少な
くとも1種の金属(M)の塩とコバルト塩とを含有する
溶液中に浸漬し、アルカリを添加して、前記金属(M)
の水酸化物と水酸化コバルトとを共析させて前記水酸化
ニッケル粒子又は前記固溶体粒子の表面を、前記金属
(M)の水酸化物と水酸化コバルトとからなる混晶にて
被覆して複合粒子からなる活物質粉末を作製するステッ
プ1と、前記活物質粉末を芯体に塗布又は充填し、乾燥
してニッケル極を作製するステップ2とを備えるアルカ
リ蓄電池用非焼結式ニッケル極の作製方法。20. Nickel hydroxide particles or solid solution particles containing nickel hydroxide as a main component, and a salt of at least one metal (M) selected from the group consisting of aluminum, magnesium, indium and zinc, and a cobalt salt. The metal (M) is dipped in a solution containing
Of nickel hydroxide particles and cobalt hydroxide are co-deposited to coat the surfaces of the nickel hydroxide particles or the solid solution particles with a mixed crystal of the metal (M) hydroxide and cobalt hydroxide. A non-sintered nickel electrode for an alkaline storage battery, comprising: a step 1 of producing an active material powder composed of composite particles; and a step 2 of applying or filling the active material powder to a core and drying it to produce a nickel electrode. Manufacturing method.
は硝酸塩であり、且つ前記コバルト塩が硫酸コバルト及
び/又は硝酸コバルトである請求項20記載のアルカリ
蓄電池用非焼結式ニッケル極の作製方法。21. The non-sintered nickel for an alkaline storage battery according to claim 20, wherein the salt of the metal (M) is a sulfate and / or a nitrate, and the cobalt salt is a cobalt sulfate and / or a cobalt nitrate. How to make poles.
混晶を3〜25重量%含有するように、前記溶液中の前
記金属(M)の塩及び前記コバルト塩の濃度を調節する
請求項20記載のアルカリ蓄電池用非焼結式ニッケル極
の作製方法。22. The concentration of the metal (M) salt and the cobalt salt in the solution is adjusted so that the composite particle contains 3 to 25% by weight of the mixed crystal. Item 21. A method for producing a non-sintered nickel electrode for an alkaline storage battery according to Item 20.
ルト塩とを含有する溶液、亜鉛塩とコバルト塩とを含有
する溶液又はマグネシウム塩と亜鉛塩とコバルト塩とを
含有する溶液を使用し、且つ、前記混晶が、水酸化マグ
ネシウム及び/又は水酸化亜鉛を、金属換算で、前記混
晶中のコバルトとマグネシウム及び/又は亜鉛との総量
に基づいて、0.5〜50重量%含有するように、前記
溶液の組成を調節する請求項20記載のアルカリ蓄電池
用非焼結式ニッケル極の作製方法。23. A solution containing a magnesium salt and a cobalt salt, a solution containing a zinc salt and a cobalt salt, or a solution containing a magnesium salt, a zinc salt and a cobalt salt is used as the solution, and The mixed crystal contains magnesium hydroxide and / or zinc hydroxide in an amount of 0.5 to 50 wt% in terms of metal, based on the total amount of cobalt and magnesium and / or zinc in the mixed crystal. The method for producing a non-sintered nickel electrode for an alkaline storage battery according to claim 20, wherein the composition of the solution is adjusted.
ルト塩とを含有する溶液、亜鉛塩とコバルト塩とを含有
する溶液又はマグネシウム塩と亜鉛塩とコバルト塩とを
含有する溶液を使用し、且つ、前記混晶が、水酸化マグ
ネシウム及び/又は水酸化亜鉛を、金属換算で、前記混
晶中のコバルトとマグネシウム及び/又は亜鉛との総量
に基づいて、0.5〜50重量%含有するように、前記
溶液の組成を調節し、且つ前記複合粒子が、前記混晶を
3〜25重量%含有するように、前記溶液中の前記マグ
ネシウム塩及び/又は前記亜鉛塩、及び、前記コバルト
塩の濃度を調節する請求項20記載のアルカリ蓄電池用
非焼結式ニッケル極の作製方法。24. A solution containing a magnesium salt and a cobalt salt, a solution containing a zinc salt and a cobalt salt, or a solution containing a magnesium salt, a zinc salt and a cobalt salt is used as the solution, and The mixed crystal contains magnesium hydroxide and / or zinc hydroxide in an amount of 0.5 to 50 wt% in terms of metal, based on the total amount of cobalt and magnesium and / or zinc in the mixed crystal. Adjusting the composition of the solution, and so that the composite particles contain the mixed crystal in an amount of 3 to 25% by weight, the concentration of the magnesium salt and / or the zinc salt and the cobalt salt in the solution. The method for producing a non-sintered nickel electrode for an alkaline storage battery according to claim 20, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21986695A JP3443209B2 (en) | 1994-08-04 | 1995-08-04 | Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-183446 | 1994-08-04 | ||
JP18344694 | 1994-08-04 | ||
JP21986695A JP3443209B2 (en) | 1994-08-04 | 1995-08-04 | Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08102322A JPH08102322A (en) | 1996-04-16 |
JP3443209B2 true JP3443209B2 (en) | 2003-09-02 |
Family
ID=26501876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21986695A Expired - Lifetime JP3443209B2 (en) | 1994-08-04 | 1995-08-04 | Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3443209B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10275631A (en) * | 1996-12-27 | 1998-10-13 | Canon Inc | Powder material, electrode structure, manufacture of them, and secondary battery |
JP4533216B2 (en) * | 1996-12-27 | 2010-09-01 | キヤノン株式会社 | Powder material, electrode structure, manufacturing method thereof, and secondary battery |
DE19939025A1 (en) * | 1998-12-24 | 2000-06-29 | Starck H C Gmbh Co Kg | Nickel mixed hydroxide, process for its production and its use as cathode material in alkaline batteries |
-
1995
- 1995-08-04 JP JP21986695A patent/JP3443209B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08102322A (en) | 1996-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5660952A (en) | Active material powder for non-sintered nickel electrode and non-sintered nickel electrode for alkaline battery | |
US5489314A (en) | Manufacturing method of nickel plate and manufacturing method of alkaline battery | |
KR100454542B1 (en) | Non-Sintered Nickel Electrode For Alkaline Battery | |
JP3443209B2 (en) | Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same | |
JP3490818B2 (en) | Paste nickel electrode for alkaline storage batteries | |
JP3253476B2 (en) | Non-sintered nickel electrode for alkaline storage batteries | |
JP3249366B2 (en) | Paste nickel electrode for alkaline storage batteries | |
JPH07272722A (en) | Paste type nickel positive electrode for alkaline storage battery | |
JP3272151B2 (en) | Non-sintered nickel electrode for alkaline storage battery and method for producing the same | |
JP3204275B2 (en) | Nickel electrode for alkaline storage battery | |
JP3263603B2 (en) | Alkaline storage battery | |
JP3229800B2 (en) | Non-sintered nickel electrode for alkaline storage batteries | |
JP3481068B2 (en) | Method for producing non-sintered nickel electrode for alkaline storage battery | |
JPH1021909A (en) | Non-sintered nickel electrode for alkaline storage battery | |
JP3397216B2 (en) | Nickel plate, method of manufacturing the same, and alkaline storage battery using the same | |
JP3354331B2 (en) | Non-sintered nickel hydroxide positive electrode plate and alkaline storage battery provided with the positive electrode plate | |
JPS6188453A (en) | Nickel positive electrode for alkaline storage battery | |
JPH10188971A (en) | Unsintered nickel electrode for alkaline storage battery | |
JP3234491B2 (en) | Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same | |
JP3369783B2 (en) | Method for producing nickel hydroxide electrode for alkaline storage battery and alkaline storage battery | |
JP3003218B2 (en) | Method for producing nickel electrode plate and method for producing alkaline storage battery | |
JP2589750B2 (en) | Nickel cadmium storage battery | |
JP3433062B2 (en) | Non-sintered nickel electrode for alkaline storage batteries | |
JP3063159B2 (en) | Nickel electrode for alkaline battery and battery using the same | |
JPH05225971A (en) | Manufacture of nickel electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080620 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090620 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090620 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100620 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100620 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100620 Year of fee payment: 7 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100620 Year of fee payment: 7 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100620 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 8 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 8 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |