JP3354331B2 - Non-sintered nickel hydroxide positive electrode plate and alkaline storage battery provided with the positive electrode plate - Google Patents

Non-sintered nickel hydroxide positive electrode plate and alkaline storage battery provided with the positive electrode plate

Info

Publication number
JP3354331B2
JP3354331B2 JP01431195A JP1431195A JP3354331B2 JP 3354331 B2 JP3354331 B2 JP 3354331B2 JP 01431195 A JP01431195 A JP 01431195A JP 1431195 A JP1431195 A JP 1431195A JP 3354331 B2 JP3354331 B2 JP 3354331B2
Authority
JP
Japan
Prior art keywords
nickel hydroxide
compound layer
weight
positive electrode
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01431195A
Other languages
Japanese (ja)
Other versions
JPH08203517A (en
Inventor
豊茂 武藤
茂和 安岡
雅行 寺坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP01431195A priority Critical patent/JP3354331B2/en
Publication of JPH08203517A publication Critical patent/JPH08203517A/en
Application granted granted Critical
Publication of JP3354331B2 publication Critical patent/JP3354331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル−カドミウム
蓄電池やニッケル−水素蓄電池等のアルカリ蓄電池に関
し、特に水酸化ニッケル正極板の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery such as a nickel-cadmium storage battery and a nickel-hydrogen storage battery, and more particularly to an improvement of a nickel hydroxide positive electrode plate.

【0002】[0002]

【従来の技術】従来、アルカリ蓄電池用水酸化ニッケル
正極板としては、ニッケル粉末をパンチングメタル等に
焼結させて得た基板に活物質を含浸させて使用する、所
謂焼結式極板が知られている。この方式の電極は、基板
を高多孔度とした場合には強度が弱く、ニッケル粉末の
脱落を生じるために、実用上基板の多孔度を80%とす
るのが限界であり、また、パンチングメタル等の芯体を
必要とすることから活物質の充填密度が小さく、高エネ
ルギー密度を図る上では不利であるという欠点を有して
いる。
2. Description of the Related Art Conventionally, as a nickel hydroxide positive electrode plate for an alkaline storage battery, there is known a so-called sintered electrode plate in which a substrate obtained by sintering nickel powder into a punching metal or the like is impregnated with an active material. ing. This type of electrode has a low strength when the substrate has a high porosity, and the nickel powder falls off. Therefore, the porosity of the substrate is limited to 80% for practical use. Since such a core body is required, the packing density of the active material is small, which is disadvantageous in achieving a high energy density.

【0003】更に、焼結基板の細孔は10μm以下と小
さく、活物質の充填方法は、煩雑な工程を必要とする溶
液含浸法や電着含浸法に限定される欠点がある。
Further, the pores of the sintered substrate are as small as 10 μm or less, and the method of filling the active material has a drawback that it is limited to a solution impregnation method or an electrodeposition impregnation method that requires complicated steps.

【0004】これらの欠点を改良する試みとして、例え
ば芯体を持たない多孔度約95%の発泡ニッケルに水酸
化ニッケル活物質をペースト状として直接充填する、所
謂非焼結式水酸化ニッケル正極板がある。しかし、この
方式の極板は焼結式極板に比べて導電性に劣るため、活
物質利用率が低いという欠点を有していた。
As an attempt to remedy these drawbacks, for example, a so-called non-sintered nickel hydroxide positive plate, in which a nickel hydroxide active material is directly filled into a foamed nickel having no core and having a porosity of about 95% as a paste. There is. However, this type of electrode plate is inferior in conductivity to a sintered type electrode plate, and thus has a drawback that the active material utilization rate is low.

【0005】そこで、活物質の利用率を向上させるため
に、特開昭62−222566号公報及び特開昭62−
234867号公報には水酸化ニッケル粒子表面または
水酸化ニッケルを主成分とする粒子表面にコバルト化合
物層を被覆する方法が提案されている。
[0005] In order to improve the utilization rate of the active material, Japanese Patent Application Laid-Open Nos.
Japanese Patent No. 234867 proposes a method of coating the surface of nickel hydroxide particles or the surface of particles mainly composed of nickel hydroxide with a cobalt compound layer.

【0006】この方法によると、コバルト化合物の添加
量が少なくても高利用率を得ることが可能であるが、電
池での充放電サイクル経過に伴い、表面を被覆している
コバルトが水酸化ニッケル粒子内に拡散していく。その
ため、コバルトの添加による水酸化ニッケル粒子表面の
導電性向上効果を長期にわたって維持することができ
ず、充放電サイクルの進行に伴い電池容量の低下が大き
くなるという問題があった。
According to this method, a high utilization rate can be obtained even with a small addition amount of a cobalt compound. However, as the charge / discharge cycle in a battery progresses, the cobalt coating on the surface becomes nickel hydroxide. Diffusion into particles. Therefore, there is a problem that the effect of improving the conductivity of the nickel hydroxide particles by the addition of cobalt cannot be maintained for a long period of time, and the battery capacity greatly decreases as the charge / discharge cycle progresses.

【0007】一方、特開平3−192657号公報に
は、水酸化ニッケル粒子表面にカドミウム化合物層を設
けてその上にコバルト化合物層を設けたり、水酸化ニッ
ケル粒子表面にコバルト化合物層を設けてその上にカド
ミウム化合物層を設ける方法等が開示されている。
On the other hand, JP-A-3-192657 discloses that a cadmium compound layer is provided on the surface of nickel hydroxide particles and a cobalt compound layer is provided thereon, or a cobalt compound layer is provided on the surface of nickel hydroxide particles. A method of providing a cadmium compound layer thereon is disclosed.

【0008】しかしながら、これらの方法においても、
表面を被覆しているコバルトの水酸化ニッケル粒子内へ
の拡散を充分に防ぐことができないため、充放電サイク
ルの進行に伴い電池容量の低下が大きくなるという問題
があった。
However, even in these methods,
Since the diffusion of cobalt coating the surface into the nickel hydroxide particles cannot be sufficiently prevented, there has been a problem that a decrease in battery capacity increases as the charge / discharge cycle progresses.

【0009】[0009]

【発明が解決しようとする課題】本発明は、前記問題点
に鑑みてなされたものであり、コバルトの水酸化ニッケ
ル粒子内への拡散を抑え、サイクル長期にわたってコバ
ルト化合物の添加効果が発揮される非焼結式水酸化ニッ
ケル正極板及びその正極板を備えたアルカリ蓄電池を提
供しようとすることを本発明の課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and suppresses the diffusion of cobalt into nickel hydroxide particles, thereby exhibiting the effect of adding a cobalt compound for a long cycle. An object of the present invention is to provide a non-sintered nickel hydroxide positive electrode plate and an alkaline storage battery provided with the positive electrode plate.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するため
に、本発明の非焼結式水酸化ニッケル正極板は、水酸化
ニッケル粒子または水酸化ニッケルを主成分とする粒子
表面を亜鉛、マグネシウム、アルミニウム、インジウム
からなる群より選択された少なくとも1種の化合物を主
成分とする第1化合物層で被覆し、前記第1化合物層の
表面をコバルト化合物を主成分とする第2化合物層で被
覆した粒子を活物質として用いることを特徴とする。
In order to solve the above-mentioned problems, a non-sintered nickel hydroxide positive electrode plate according to the present invention is characterized in that nickel or magnesium hydroxide particles are coated with zinc or magnesium. , A first compound layer mainly containing at least one compound selected from the group consisting of aluminum and indium, and a surface of the first compound layer covered with a second compound layer mainly containing a cobalt compound. Characterized in that the particles obtained are used as an active material.

【0011】本発明のアルカリ蓄電池は、正極と負極と
アルカリ電解液を備えたものであって、前記正極の活物
質として、水酸化ニッケル粒子または水酸化ニッケルを
主成分とする粒子表面を亜鉛、マグネシウム、アルミニ
ウム、インジウムからなる群より選択された少なくとも
1種の化合物を主成分とする第1化合物層で被覆し、前
記第1化合物層の表面をコバルト化合物を主成分とする
第2化合物層で被覆した粒子を用いることを特徴とす
る。
The alkaline storage battery of the present invention comprises a positive electrode, a negative electrode, and an alkaline electrolyte. The active material of the positive electrode is nickel hydroxide particles or particles having nickel hydroxide as a main component. A first compound layer mainly containing at least one compound selected from the group consisting of magnesium, aluminum and indium, and a surface of the first compound layer covered with a second compound layer mainly containing a cobalt compound; It is characterized by using coated particles.

【0012】[0012]

【作用】水酸化ニッケル粒子とコバルト化合物層の間に
亜鉛、マグネシウム、アルミニウム、インジウムより選
択された少なくとも1種の元素の化合物層を設けること
により、コバルトの水酸化ニッケル粒子または水酸化ニ
ッケルを主成分とする粒子内への拡散を防止できる。そ
のため、コバルトの添加による水酸化ニッケル粒子表面
の導電性向上効果が長期にわたって発揮でき、充放電サ
イクルの進行に伴う容量の低下を防止できる。
By providing a compound layer of at least one element selected from zinc, magnesium, aluminum and indium between the nickel hydroxide particles and the cobalt compound layer, the nickel hydroxide particles or nickel hydroxide of cobalt can be mainly used. Diffusion into particles as a component can be prevented. Therefore, the effect of improving the conductivity of the surface of the nickel hydroxide particles due to the addition of cobalt can be exhibited over a long period of time, and a decrease in capacity due to the progress of the charge / discharge cycle can be prevented.

【0013】[0013]

【実施例】【Example】

(実験1)第1化合物層と電池性能の関係について評価
を行った。
(Experiment 1) The relationship between the first compound layer and the battery performance was evaluated.

【0014】(実施例1) 〔活物質の作製〕硝酸ニッケル水溶液を、水酸化ナトリ
ウム水溶液とアンモニア水との混合溶液に加え、撹拌混
合を行い、ろ過、水洗、乾燥を行い、水酸化ニッケル粒
子を作製した。
(Example 1) [Preparation of active material] An aqueous solution of nickel nitrate was added to a mixed solution of an aqueous solution of sodium hydroxide and aqueous ammonia, followed by stirring and mixing, followed by filtration, washing with water, and drying. Was prepared.

【0015】この時、混合溶液全体のPH値が約11に
保持されるように硝酸ニッケル水溶液、水酸化ナトリウ
ム水溶液及びアンモニア水の添加量を調整した。
At this time, the addition amounts of the aqueous nickel nitrate solution, the aqueous sodium hydroxide solution and the aqueous ammonia were adjusted so that the PH value of the whole mixed solution was maintained at about 11.

【0016】この水酸化ニッケル粒子を硝酸亜鉛水溶液
に浸漬した後、水酸化ナトリウム水溶液に浸漬して、水
酸化ニッケル粒子表面上を亜鉛化合物を主成分とする第
1化合物層で被覆する。更に、この粒子を硝酸コバルト
水溶液に浸漬した後、水酸化ナトリウム水溶液に浸漬し
て前記亜鉛化合物を主成分とする第1化合物層上にコバ
ルト化合物を主成分とする第2化合物層を析出させ、そ
の後、水洗、乾燥を行い本発明活物質粉末を得、これを
1と称する。
After immersing the nickel hydroxide particles in an aqueous solution of zinc nitrate, the particles are immersed in an aqueous solution of sodium hydroxide to coat the surface of the nickel hydroxide particles with a first compound layer containing a zinc compound as a main component. Furthermore, after immersing the particles in an aqueous solution of cobalt nitrate, immersing the particles in an aqueous solution of sodium hydroxide to deposit a second compound layer mainly containing a cobalt compound on the first compound layer mainly containing the zinc compound, Thereafter, washing with water, drying was carried out to give the present invention the active material powder is referred to as a 1.

【0017】尚、全表面層量を水酸化ニッケル粒子に対
して10重量%とし、コバルト化合物量に対する亜鉛化
合物量を20重量%とした。
The total surface layer amount was 10% by weight based on the nickel hydroxide particles, and the zinc compound amount was 20% by weight based on the cobalt compound amount.

【0018】[非焼結式水酸化ニッケル正極板の作製]
前記活物質粉末a180重量%とメチルセルロース(1
重量%含有)水溶液20重量%とを混練してスラリー状
とし、発泡ニッケルに充填、乾燥、圧延して非焼結式水
酸化ニッケル正極板A1を作製した。
[Preparation of non-sintered nickel hydroxide positive electrode plate]
80% by weight of the active material powder a 1 and methyl cellulose (1
And the weight% content) aqueous solution of 20 wt% and kneaded a slurry, filling the foamed nickel, dried, and rolled to prepare a non-sintered nickel hydroxide positive electrode plate A 1.

【0019】[電池の作製]前記正極板A1と、この正
極板に対して充分大きな電気化学容量を持つ公知の焼結
式カドミウム負極板及び水酸化カリウム水溶液を主とす
るアルカリ電解液を用いて、公称容量1000mAhの
AAサイズのニッケル−カドミウム蓄電池(A1)を作
製した。
[0019] The positive electrode plate A 1 [Fabrication of Battery], using the alkaline electrolyte to a known sintered cadmium negative electrode plate and an aqueous solution of potassium hydroxide having a large enough electrochemical capacity for the positive electrode plate and the main Thus, an AA-size nickel-cadmium storage battery (A 1 ) having a nominal capacity of 1000 mAh was manufactured.

【0020】(実施例2)前記実施例1の活物質の作製
において、水酸化ニッケル粒子を硝酸亜鉛水溶液の代わ
りに硝酸マグネシウム水溶液に浸漬することによって、
マグネシウム化合物を主成分とする第1化合物層で水酸
化ニッケル粒子表面を被覆した以外は、前記実施例1と
同様にして本発明活物質粉末a2、本発明正極板A2、本
発明電池(A2)を作製した。
Example 2 In the preparation of the active material of Example 1, the nickel hydroxide particles were immersed in an aqueous solution of magnesium nitrate instead of the aqueous solution of zinc nitrate.
Except that the surface of the nickel hydroxide particles was coated with the first compound layer containing a magnesium compound as a main component, the active material powder a 2 of the present invention, the positive electrode plate A 2 of the present invention, the battery of the present invention ( to produce a a 2).

【0021】(実施例3)前記実施例1の活物質の作製
において、水酸化ニッケル粒子を硝酸亜鉛水溶液の代わ
りに硝酸アルミニウム水溶液に浸漬することによって、
アルミニウム化合物を主成分とする第1化合物層で水酸
化ニッケル粒子表面を被覆した以外は、前記実施例1と
同様にして本発明活物質粉末a3、本発明正極板A3、本
発明電池(A3)を作製した。
Example 3 In the preparation of the active material of Example 1, nickel hydroxide particles were immersed in an aqueous solution of aluminum nitrate instead of an aqueous solution of zinc nitrate.
Except that the surface of the nickel hydroxide particles was coated with the first compound layer containing an aluminum compound as a main component, the active material powder a 3 of the present invention, the positive electrode plate A 3 of the present invention, the battery of the present invention ( to produce a a 3).

【0022】(実施例4)前記実施例1の活物質の作製
において、水酸化ニッケル粒子を硝酸亜鉛水溶液の代わ
りに硝酸インジウム水溶液に浸漬することによって、イ
ンジウム化合物を主成分とする第1化合物層で水酸化ニ
ッケル粒子表面を被覆した以外は、前記実施例1と同様
にして本発明活物質粉末a4、本発明正極板A4、本発明
電池(A4)を作製した。
Example 4 In the preparation of the active material of Example 1, the nickel hydroxide particles were immersed in an aqueous solution of indium nitrate instead of an aqueous solution of zinc nitrate to form a first compound layer mainly containing an indium compound. In the same manner as in Example 1 except that the surface of the nickel hydroxide particles was coated with the above, an active material powder a 4 of the present invention, a positive electrode plate A 4 of the present invention, and a battery (A 4 ) of the present invention were produced.

【0023】(比較例1)前記実施例1の活物質の作製
において、水酸化ニッケル粒子を硝酸亜鉛水溶液の代わ
りに硝酸カドミウム水溶液に浸漬することによって、カ
ドミウム化合物を主成分とする第1化合物層で水酸化ニ
ッケル粒子表面を被覆した以外は、前記実施例1と同様
にして、比較活物質粉末x、比較正極板X及び比較電池
(X)を作製した。
Comparative Example 1 In the preparation of the active material of Example 1, the nickel hydroxide particles were immersed in an aqueous solution of cadmium nitrate instead of an aqueous solution of zinc nitrate to form a first compound layer mainly composed of a cadmium compound. Comparative Active Material Powder x, Comparative Positive Electrode Plate X, and Comparative Battery (X) were prepared in the same manner as in Example 1 except that the surface of the nickel hydroxide particles was coated with.

【0024】(比較例2)水酸化ニッケル粒子表面に、
コバルト化合物層のみを形成した比較活物質粉末yを作
製した。この活物質粉末を用いた以外は前記実施例1と
同様にして、比較正極板Y及び比較電池(Y)を作製し
た。
(Comparative Example 2) On the surface of nickel hydroxide particles,
Comparative active material powder y having only a cobalt compound layer was prepared. A comparative positive electrode plate Y and a comparative battery (Y) were produced in the same manner as in Example 1 except that this active material powder was used.

【0025】[電池のサイクル特性の測定]前記各電池
を100mAの電流で16時間充電を行い、1000m
Aの電流で1.0Vになるまで放電するというサイクル
を繰り返し、電池容量を測定し、その結果を図1に示
す。図1の横軸はサイクル数、縦軸は電池容量を示して
いる。
[Measurement of Cycle Characteristics of Batteries] Each of the batteries was charged at a current of 100 mA for 16 hours,
The cycle of discharging until the current A reaches 1.0 V was repeated, and the battery capacity was measured. The result is shown in FIG. The horizontal axis in FIG. 1 indicates the number of cycles, and the vertical axis indicates the battery capacity.

【0026】尚、電池容量は各電池とも1サイクル目の
放電容量を100とした指数で示した。
The battery capacity of each battery was indicated by an index when the discharge capacity at the first cycle was 100.

【0027】図1より明らかなように、水酸化ニッケル
粒子表面にコバルト化合物層のみを形成したものを活物
質として用いた比較電池(Y)の充放電サイクルの進行
に伴う容量低下が最も大きい。
As is clear from FIG. 1, the capacity of the comparative battery (Y) using the material having only the cobalt compound layer formed on the surface of the nickel hydroxide particles as the active material has the greatest reduction in charge-discharge cycle.

【0028】これは、活物質表面へ添加したコバルトが
水酸化ニッケル粒子内へ拡散していることに起因する。
This is because cobalt added to the surface of the active material diffuses into the nickel hydroxide particles.

【0029】また、水酸化ニッケル粒子表面をカドミウ
ム化合物を主成分とする第1化合物層で被覆し、その第
1化合物層をコバルト化合物を主成分とする第2化合物
層で被覆したものを活物質として用いた比較電池(X)
については、比較電池(Y)よりは充放電サイクルの進
行に伴う容量低下が小さいものの、本発明電池(A1
〜(A4)に比べるとその電池容量の低下は大きい。こ
れは、水酸化ニッケル粒子表面をカドミウム化合物を主
成分とする層で被覆するよりも、亜鉛、マグネシウム、
アルミニウム、インジウムより選択された少なくとも1
種の元素の化合物を主成分とする層で被覆したほうが、
活物質表面へ添加したコバルトの水酸化ニッケル粒子内
への拡散防止効果がより発揮されるためであると考えら
れる。
Further, the surface of the nickel hydroxide particles is coated with a first compound layer mainly containing a cadmium compound, and the first compound layer is coated with a second compound layer mainly containing a cobalt compound. Battery (X) used as a battery
As for the battery of the present invention (A 1 ), although the decrease in capacity with the progress of the charge / discharge cycle is smaller than that of the comparative battery (Y),
(A 4 ), the decrease in the battery capacity is large. This is, rather than coating the surface of the nickel hydroxide particles with a layer mainly containing a cadmium compound, zinc, magnesium,
At least one selected from aluminum and indium
It is better to coat with a layer mainly composed of compounds of the various elements
It is considered that this is because the effect of preventing cobalt added to the active material surface from diffusing into the nickel hydroxide particles is more exhibited.

【0030】(実験2)水酸化ニッケル粒子を被覆して
いる第2化合物層に対する第1化合物層の比率と電池性
能の関係について評価を行った。
(Experiment 2) The relationship between the ratio of the first compound layer to the second compound layer covering the nickel hydroxide particles and the battery performance was evaluated.

【0031】[活物質の作製]前記実施例1と同様の方
法で、全表面層量を水酸化ニッケル粒子に対して10重
量%と固定し、コバルト化合物量(第2化合物層)に対
する亜鉛化合物量(第1化合物層)を0.3、0.5、
10、30、50、70重量%に変化させた活物質粉末
を作製し、各々a5、a6、a7、a8、a9、a10と称す
る。
[Preparation of Active Material] In the same manner as in Example 1, the total surface layer amount was fixed at 10% by weight with respect to the nickel hydroxide particles, and the zinc compound relative to the cobalt compound amount (second compound layer) was used. Amount (first compound layer) 0.3, 0.5,
To prepare an active material powder was varied 10,30,50,70 wt%, referred to respectively a 5, a 6, a 7 , a 8, a 9, a 10.

【0032】[非焼結式水酸化ニッケル正極板の作製]
前記各活物質粉末80重量%とメチルセルロース(1重
量%含有)水溶液20重量%とを混練してスラリー状と
し、発泡ニッケルに充填、乾燥、圧延して非焼結式水酸
化ニッケル正極板を作製した。
[Preparation of non-sintered nickel hydroxide positive electrode plate]
80% by weight of each of the active material powders and 20% by weight of an aqueous solution of methylcellulose (containing 1% by weight) are kneaded to form a slurry. did.

【0033】また、前記各活物質粉末a5〜a10をそれ
ぞれ用いた正極板を、それぞれA5、A6、A7、A8、A
9、A10と称する。
A positive plate using each of the above-mentioned active material powders a 5 to a 10 was prepared as A 5 , A 6 , A 7 , A 8 , A
9, referred to as the A 10.

【0034】[電池の作製]前記各正極板A5〜A
10と、この正極板に対して充分大きな電気化学容量を持
つ公知の焼結式カドミウム負極板及び水酸化カリウム水
溶液を主とするアルカリ電解液を用いて、各々公称容量
1000mAhのAAサイズのニッケル−カドミウム蓄
電池を作製し、各正極板と対応させて各々(A5)、
(A6)、(A7)、(A8)、(A9)、(A10)と称す
る。また、比較として活物質粉末yを用いた電池(Y)
を作製した。
[Preparation of Battery] Each of the positive plates A 5 to A 5
10 and a known sintered cadmium negative electrode plate having a sufficiently large electrochemical capacity with respect to this positive electrode plate and an alkaline electrolyte mainly composed of an aqueous solution of potassium hydroxide. A cadmium storage battery is manufactured, and each (A 5 )
(A 6 ), (A 7 ), (A 8 ), (A 9 ) and (A 10 ). Also, as a comparison, a battery (Y) using the active material powder y
Was prepared.

【0035】[電池のサイクル特性の測定]前記実験1
と同様の方法で電池のサイクル特性を測定し、その結果
を図2に示す。図2の横軸はサイクル数、縦軸は電池容
量を示している。
[Measurement of Cycle Characteristics of Battery] Experiment 1
The cycle characteristics of the battery were measured in the same manner as described above, and the results are shown in FIG. The horizontal axis in FIG. 2 indicates the number of cycles, and the vertical axis indicates the battery capacity.

【0036】尚、電池容量は各電池とも1サイクル目の
放電容量を100とした指数で示した。
The battery capacity of each battery was indicated by an index with the discharge capacity at the first cycle being 100.

【0037】図2より、コバルト化合物量に対する亜鉛
化合物量が0.3重量%である活物質を備えた電池(A
5)は、比較電池(Y)よりは充放電サイクルの進行に
伴う電池容量の低下は小さいが、コバルト化合物量に対
する亜鉛化合物量が0.5重量%以上の電池(A6)〜
(A10)に比べると充放電サイクルの進行に伴い電池容
量の低下が大きくなっている。
FIG. 2 shows that the battery (A) provided with the active material in which the amount of the zinc compound relative to the amount of the cobalt compound was 0.3% by weight.
5 ) The batteries (A 6 ) to which the amount of the zinc compound is 0.5% by weight or more with respect to the amount of the cobalt compound are smaller than those of the comparative battery (Y), although the decrease in the battery capacity with the progress of the charge and discharge cycle is smaller.
Compared with (A 10 ), the decrease in battery capacity increases with the progress of the charge / discharge cycle.

【0038】このことから、コバルト化合物量に対する
亜鉛化合物量が0.5重量%以上である活物質を用いる
ことが好ましいことが分かる。
This shows that it is preferable to use an active material in which the amount of the zinc compound is 0.5% by weight or more based on the amount of the cobalt compound.

【0039】[活物質利用率の測定]また、図3に10
サイクル目の電池容量から活物質粉末a5〜a10、yの
利用率を算出した結果を示す。図3の横軸はコバルト化
合物量に対する亜鉛化合物量の比率、縦軸は利用率を示
している。
[Measurement of Active Material Utilization Rate] FIG.
Shows the result of calculating the utilization of the active material powder a 5 ~a 10, y from the battery capacity cycle. The horizontal axis in FIG. 3 shows the ratio of the zinc compound amount to the cobalt compound amount, and the vertical axis shows the utilization.

【0040】尚、利用率は活物質粉末yを100とした
指数で示した。
The utilization rate is indicated by an index with the active material powder y being 100.

【0041】図3より、コバルト化合物量に対する亜鉛
化合物量が50重量%を越えると利用率の低下が見られ
ることから、50重量%以下であることが好ましい。
FIG. 3 shows that when the amount of the zinc compound exceeds 50% by weight with respect to the amount of the cobalt compound, the utilization factor decreases. Therefore, the amount is preferably 50% by weight or less.

【0042】以上の結果から、亜鉛化合物量(第1化合
物層)がコバルト化合物量(第2化合物層)に対して
0.5重量%以上50重量%以下の範囲が適切であるこ
とがわかる。
From the above results, it is found that the range of the zinc compound amount (first compound layer) is preferably 0.5% by weight or more and 50% by weight or less with respect to the cobalt compound amount (second compound layer).

【0043】(実験3)水酸化ニッケル粒子に対する全
表面層量と電池特性の関係について評価を行った。
(Experiment 3) The relationship between the total surface layer amount for nickel hydroxide particles and the battery characteristics was evaluated.

【0044】[活物質の作製]前記実施例1と同様の方
法で、コバルト化合物量(第2化合物層)に対する亜鉛
化合物量(第1化合物層)を20重量%と固定し、全表
面層量を水酸化ニッケル粒子に対して1、3、5、1
0、25、30重量%に変化させた活物質を各々作製し
た。
[Preparation of Active Material] In the same manner as in Example 1, the amount of zinc compound (first compound layer) was fixed at 20% by weight based on the amount of cobalt compound (second compound layer), and the total surface layer amount was fixed. With respect to the nickel hydroxide particles
The active materials were changed to 0, 25, and 30% by weight, respectively.

【0045】[非焼結式水酸化ニッケル正極板の作製]
前記各活物質粉末80重量%とメチルセルロース(1重
量%含有)水溶液20重量%と混練してスラリー状と
し、発泡ニッケルに充填、乾燥、圧延して非焼結式水酸
化ニッケル正極板を各々作製した。
[Preparation of non-sintered nickel hydroxide positive electrode plate]
80% by weight of each of the active material powders and 20% by weight of an aqueous solution of methylcellulose (containing 1% by weight) are kneaded to form a slurry. did.

【0046】[電池の作製]前記各正極板と、この正極
板に対して充分大きな電気化学容量を持つ公知の焼結式
カドミウム負極板及び水酸化カリウム水溶液を主とする
アルカリ電解液を用いて、各々公称容量1000mAh
のAAサイズのニッケル−カドミウム蓄電池を作製し
た。
[Preparation of Battery] Each of the above positive electrode plates, a known sintered cadmium negative electrode plate having a sufficiently large electrochemical capacity for the positive electrode plate, and an alkaline electrolyte mainly composed of a potassium hydroxide aqueous solution were used. , Each with a nominal capacity of 1000 mAh
AA size nickel-cadmium storage battery was manufactured.

【0047】[活物質利用率の測定]図4に10サイク
ル目の電池容量から各活物質粉末の利用率を算出した結
果を示す。図4の横軸は水酸化ニッケル粒子に対する全
表面層量の比率、縦軸は利用率を示している。
[Measurement of Active Material Utilization] FIG. 4 shows the result of calculating the utilization of each active material powder from the battery capacity at the 10th cycle. The horizontal axis of FIG. 4 indicates the ratio of the total surface layer amount to the nickel hydroxide particles, and the vertical axis indicates the utilization.

【0048】図4から明らかなように、全表面層量が水
酸化ニッケル粒子に対して3重量%以上で利用率向上の
効果が現れ、25重量%を越えると水酸化ニッケルの割
合の低下に伴う利用率低下が見られることから、全表面
層量は3〜25重量%が適切である。
As is clear from FIG. 4, the effect of improving the utilization factor appears when the total surface layer amount is 3% by weight or more with respect to the nickel hydroxide particles, and when the total surface layer amount exceeds 25% by weight, the ratio of nickel hydroxide decreases. Since the accompanying reduction in utilization is observed, the total surface layer amount is suitably 3 to 25% by weight.

【0049】尚、本実験2及び3では、第1化合物層と
して亜鉛化合物層にて行ったが、マグネシウム化合物
層、アルミニウム化合物層、インジウム化合物層または
これらの混合化合物層においても同様の効果が得られ
る。
In Experiments 2 and 3, a zinc compound layer was used as the first compound layer. However, a similar effect can be obtained in a magnesium compound layer, an aluminum compound layer, an indium compound layer, or a mixed compound layer thereof. Can be

【0050】また、本実施例では、亜鉛、コバルト、カ
ドミウム、マグネシウム、アルミニウム等を含まない水
酸化ニッケル粒子を用いたが、亜鉛、コバルト、カドミ
ウム、マグネシウム、アルミニウム等の群から選択され
た少なくとも1種を粒子内部に固溶させた水酸化ニッケ
ルを主成分とする粒子を用いた場合も、同様の効果が得
られる。
In the present embodiment, nickel hydroxide particles containing no zinc, cobalt, cadmium, magnesium, aluminum, etc. were used. The same effect can be obtained when using particles mainly composed of nickel hydroxide in which seeds are dissolved in the particles.

【0051】更に、本実施例では、水酸化ニッケル粒子
表面を亜鉛化合物層−コバルト化合物層等の2層で構成
したものについて示したが、これに限らず、例えば亜鉛
化合物層−マグネシウム化合物層−コバルト化合物層等
の3層以上についても同様の効果が期待できる。
In this embodiment, the surface of the nickel hydroxide particles is composed of two layers such as a zinc compound layer and a cobalt compound layer. However, the present invention is not limited to this. For example, a zinc compound layer-a magnesium compound layer- Similar effects can be expected for three or more layers such as a cobalt compound layer.

【0052】[0052]

【発明の効果】以上から明らかなように、水酸化ニッケ
ル粒子表面を亜鉛、マグネシウム、アルミニウム、イン
ジウムからなる群より選択された少なくとも1種の化合
物を主成分とする第1化合物層で被覆し、前記第1化合
物層の表面をコバルト化合物を主成分とする第2化合物
層で被覆することにより、高容量で且つ、表面に添加し
たコバルトの水酸化ニッケル粒子内部への拡散を抑制
し、長期のサイクルにわたってコバルトの添加効果が発
揮できるのでサイクル特性に優れたアルカリ蓄電池を提
供することができる。
As is apparent from the above, the surface of the nickel hydroxide particles is coated with a first compound layer containing at least one compound selected from the group consisting of zinc, magnesium, aluminum and indium as a main component, By coating the surface of the first compound layer with a second compound layer containing a cobalt compound as a main component, it has a high capacity and suppresses the diffusion of cobalt added to the surface into the nickel hydroxide particles, thereby providing a long-term treatment. Since the effect of adding cobalt can be exerted over a cycle, an alkaline storage battery having excellent cycle characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電池のサイクル特性図である。FIG. 1 is a cycle characteristic diagram of a battery.

【図2】電池のサイクル特性図である。FIG. 2 is a cycle characteristic diagram of a battery.

【図3】コバルト化合物に対する亜鉛化合物の重量比率
と利用率との関係図である。
FIG. 3 is a graph showing the relationship between the weight ratio of a zinc compound to a cobalt compound and utilization.

【図4】水酸化ニッケル粒子に対する全表面層の重量比
率と利用率との関係図である。
FIG. 4 is a graph showing the relationship between the weight ratio of the entire surface layer to nickel hydroxide particles and the utilization.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−242886(JP,A) 特開 平3−78965(JP,A) 特開 昭50−136645(JP,A) 特開 平3−77273(JP,A) 特開 平3−274666(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/32 H01M 4/52 H01M 10/30 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-242886 (JP, A) JP-A-3-78965 (JP, A) JP-A-50-136645 (JP, A) 77273 (JP, A) JP-A-3-274666 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/32 H01M 4/52 H01M 10/30

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水酸化ニッケル粒子または水酸化ニッケ
ルを主成分とする粒子表面を亜鉛、マグネシウム、アル
ミニウム、インジウムからなる群より選択された少なく
とも1種の化合物を主成分とする第1化合物層で被覆
し、前記第1化合物層の表面をコバルト化合物を主成分
とする第2化合物層で被覆した粒子を活物質として用い
ることを特徴とする非焼結式水酸化ニッケル正極板。
1. A surface of a nickel hydroxide particle or a particle mainly containing nickel hydroxide as a first compound layer mainly containing at least one compound selected from the group consisting of zinc, magnesium, aluminum and indium. A non-sintered nickel hydroxide positive electrode plate, characterized in that particles coated and coated on the surface of the first compound layer with a second compound layer containing a cobalt compound as a main component are used as an active material.
【請求項2】 前記第1化合物層の重量が、前記第2化
合物層の重量に対して0.5重量%以上50重量%以下
であることを特徴とする請求項1記載の非焼結式水酸化
ニッケル正極板。
2. The non-sintering method according to claim 1, wherein the weight of the first compound layer is 0.5% by weight or more and 50% by weight or less based on the weight of the second compound layer. Nickel hydroxide positive electrode plate.
【請求項3】 前記第1化合物層と第2化合物層の全重
量が、前記水酸化ニッケル粒子または水酸化ニッケルを
主成分とする粒子に対して3重量%以上25重量%以下
であることを特徴とする請求項1記載の非焼結式水酸化
ニッケル正極板。
3. The total weight of the first compound layer and the second compound layer is not less than 3% by weight and not more than 25% by weight based on the nickel hydroxide particles or particles containing nickel hydroxide as a main component. 2. The non-sintered nickel hydroxide positive electrode plate according to claim 1, wherein:
【請求項4】 正極と負極とアルカリ電解液を備えたア
ルカリ蓄電池において、前記正極の活物質として、水酸
化ニッケル粒子または水酸化ニッケルを主成分とする粒
子表面を亜鉛、マグネシウム、アルミニウム、インジウ
ムからなる群より選択された少なくとも1種の化合物を
主成分とする第1化合物層で被覆し、前記第1化合物層
の表面をコバルト化合物を主成分とする第2化合物層で
被覆した粒子を用いることを特徴とするアルカリ蓄電
池。
4. An alkaline storage battery provided with a positive electrode, a negative electrode, and an alkaline electrolyte, wherein, as an active material of the positive electrode, nickel hydroxide particles or particles containing nickel hydroxide as a main component are made of zinc, magnesium, aluminum, or indium. Particles coated with a first compound layer containing at least one compound selected from the group consisting of a main component and the surface of the first compound layer coated with a second compound layer containing a cobalt compound as a main component are used. An alkaline storage battery characterized by the following.
【請求項5】 前記第1化合物層の重量が、前記第2化
合物層の重量に対して0.5重量%以上50重量%以下
であることを特徴とする請求項4記載のアルカリ蓄電
池。
5. The alkaline storage battery according to claim 4, wherein the weight of the first compound layer is 0.5% by weight or more and 50% by weight or less based on the weight of the second compound layer.
【請求項6】 前記第1化合物層と第2化合物層の全重
量が、前記水酸化ニッケル粒子または水酸化ニッケルを
主成分とする粒子に対して3重量%以上25重量%以下
であることを特徴とする請求項4記載のアルカリ蓄電
池。
6. The total weight of the first compound layer and the second compound layer is not less than 3% by weight and not more than 25% by weight based on the nickel hydroxide particles or particles containing nickel hydroxide as a main component. The alkaline storage battery according to claim 4, characterized in that:
JP01431195A 1995-01-31 1995-01-31 Non-sintered nickel hydroxide positive electrode plate and alkaline storage battery provided with the positive electrode plate Expired - Fee Related JP3354331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01431195A JP3354331B2 (en) 1995-01-31 1995-01-31 Non-sintered nickel hydroxide positive electrode plate and alkaline storage battery provided with the positive electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01431195A JP3354331B2 (en) 1995-01-31 1995-01-31 Non-sintered nickel hydroxide positive electrode plate and alkaline storage battery provided with the positive electrode plate

Publications (2)

Publication Number Publication Date
JPH08203517A JPH08203517A (en) 1996-08-09
JP3354331B2 true JP3354331B2 (en) 2002-12-09

Family

ID=11857560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01431195A Expired - Fee Related JP3354331B2 (en) 1995-01-31 1995-01-31 Non-sintered nickel hydroxide positive electrode plate and alkaline storage battery provided with the positive electrode plate

Country Status (1)

Country Link
JP (1) JP3354331B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042753A (en) * 1996-10-06 2000-03-28 Matsushita Electric Industrial Co., Ltd. Active materials for the positive electrode in alkaline storage batteries

Also Published As

Publication number Publication date
JPH08203517A (en) 1996-08-09

Similar Documents

Publication Publication Date Title
US5827494A (en) Process for producing non-sintered nickel electrode for alkaline battery
JP2993886B2 (en) Anode and cathode for alkaline storage battery and method for producing the same
JP3354331B2 (en) Non-sintered nickel hydroxide positive electrode plate and alkaline storage battery provided with the positive electrode plate
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3369783B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and alkaline storage battery
JP3443209B2 (en) Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same
JP3515251B2 (en) Method for producing positive electrode active material for alkaline storage battery
JP3156485B2 (en) Nickel electrode for alkaline storage battery
JP3204275B2 (en) Nickel electrode for alkaline storage battery
JP2930331B2 (en) Paste nickel positive electrode and alkaline storage battery
JP3097238B2 (en) Anode plate for alkaline storage battery
JP2589750B2 (en) Nickel cadmium storage battery
JP3272151B2 (en) Non-sintered nickel electrode for alkaline storage battery and method for producing the same
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP2735887B2 (en) Zinc active material for alkaline storage battery and method for producing the same
JP3095236B2 (en) Paste nickel positive electrode
JPH10188971A (en) Unsintered nickel electrode for alkaline storage battery
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JPH0773876A (en) Nickel electrode for secondary battery and manufacture thereof
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JPS63170853A (en) Paste type nickel positive electrode
JPH09245827A (en) Manufacture of alkaline storage battery
JPH0422065A (en) Manufacture of cadmium negative electrode for alkaline storage battery
JPH08148143A (en) Amorphous sintered nickel hydroxide positive electrode plate alkaline storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070927

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130927

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees