JPS63170853A - Paste type nickel positive electrode - Google Patents
Paste type nickel positive electrodeInfo
- Publication number
- JPS63170853A JPS63170853A JP62000531A JP53187A JPS63170853A JP S63170853 A JPS63170853 A JP S63170853A JP 62000531 A JP62000531 A JP 62000531A JP 53187 A JP53187 A JP 53187A JP S63170853 A JPS63170853 A JP S63170853A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- paste
- nickel
- nickel hydroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims description 69
- 229910052759 nickel Inorganic materials 0.000 title claims description 34
- 239000011149 active material Substances 0.000 claims abstract description 25
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 claims abstract description 20
- 239000002184 metal Substances 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims abstract description 18
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000000835 fiber Substances 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims description 3
- 239000003792 electrolyte Substances 0.000 abstract description 3
- 108091006149 Electron carriers Proteins 0.000 abstract description 2
- 239000004020 conductor Substances 0.000 abstract description 2
- 238000003860 storage Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 150000002815 nickel Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/32—Nickel oxide or hydroxide electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、ペースト式ニッケル正極の改良に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to improvements in paste-type nickel positive electrodes.
[従来の技術及び問題点]
代表的なアルカリ蓄電池には、正極としてニッケルを使
用し、負極としてカドミウム、亜鉛又は水素を使用した
ものがある。かかるアルカリ蓄電池のニッケル正極とし
ては、従来、例えばカーボニルニッケルを成形、焼結し
て得られた基板にニッケル塩の水溶液を含浸し、つづい
てアルカリ水溶液中でニッケル塩を水酸化ニッケルに転
化せしめることにより製造された、いわゆる焼結式ニッ
ケル極が知られている。しかしながら、前記ニッケル正
極は焼結基板の製造工程及び活物質の含浸、転化工程等
極めて繁雑な操作を必要とするため、量産性が劣るとい
う問題があった。[Prior Art and Problems] Typical alkaline storage batteries include those that use nickel as a positive electrode and cadmium, zinc, or hydrogen as a negative electrode. Conventionally, the nickel positive electrode of such an alkaline storage battery has been prepared by impregnating a substrate obtained by molding and sintering carbonyl nickel with an aqueous solution of nickel salt, and then converting the nickel salt into nickel hydroxide in an aqueous alkaline solution. A so-called sintered nickel electrode manufactured by However, the nickel positive electrode requires extremely complicated operations such as a manufacturing process of a sintered substrate, an impregnation and conversion process of an active material, and thus has a problem of poor mass productivity.
このようなことから、焼結式ニッケル正極に代わるもの
として直接水酸化ニッケルを主成分とするペースト状活
物質を導電性芯体に塗着充填して得られる、いわゆるペ
ースト式ニッケル正極が提案されている。かかるペース
ト式ニッケル正極は、水酸化ニッケル粉末に金属コバル
ト粉末等の添加剤及び適当な導電剤、結着剤と共に水又
は有機溶媒にてペースト化し、これを導電性芯体に塗着
充填した後、乾燥して水又は有機溶媒を除去することに
より製造されている。但し、乾燥処理しただけでは正極
内の空隙率が大きく、充填密度を高められないこと、活
物質同志の粘着度も小さく高い利用率が得られないこと
等の理由から、更にニッケル正極を厚さ方向に加圧して
空隙率を減少させている。For this reason, a so-called paste-type nickel positive electrode, which is obtained by directly coating and filling a conductive core with a paste-like active material mainly composed of nickel hydroxide, has been proposed as an alternative to the sintered-type nickel positive electrode. ing. Such a paste-type nickel positive electrode is made by forming a paste of nickel hydroxide powder together with additives such as metallic cobalt powder and appropriate conductive agents and binders in water or an organic solvent, and then applying and filling the paste onto a conductive core. , by drying to remove water or organic solvents. However, if the nickel cathode is simply dried, the porosity inside the cathode is large and the packing density cannot be increased, and the adhesion between the active materials is also small, making it impossible to obtain a high utilization rate. Pressure is applied in this direction to reduce the porosity.
しかしながら、過度に空隙率を減少させると、充放電時
においてニッケル正極内で良好な電解液の拡散が行われ
ずに分極が大きくなること、しかも充電の際のガス発生
によってニッケル正極内のガス圧が大きくなり活物質の
脱落が発生する等の問題があった。However, if the porosity is reduced excessively, the electrolyte will not diffuse well within the nickel positive electrode during charging and discharging, resulting in increased polarization, and gas generation during charging will increase the gas pressure within the nickel positive electrode. There were problems such as the increase in size and the falling off of the active material.
本発明は、上記従来の問題点を解決するためになされた
もので、活物質の脱落がなく、かつエネルギー密度、つ
まり容量の大きいペースト式ニッケル正極を提供しよう
とするもので−ある。The present invention has been made to solve the above-mentioned conventional problems, and aims to provide a paste-type nickel positive electrode that does not cause active material to fall off and has a high energy density, that is, a high capacity.
[問題点を解決するための手段]
本発明は、少なくとも水酸化ニッケルと金属コバルト粉
末を配合したペースト状活物質を、導電性芯体に充填し
たペースト式ニッケル正極において、電池に組込まれ、
充放電を行なった後の空隙率が18〜35vo 1%で
、かつ前記金属コバルト粉末が水酸化ニッケルに対し5
〜25重量%配合されていることを特徴とするペースト
式ニッケル正極である。[Means for Solving the Problems] The present invention provides a paste type nickel positive electrode in which a conductive core is filled with a paste active material containing at least nickel hydroxide and metal cobalt powder, which is incorporated into a battery.
The porosity after charging and discharging is 18 to 35vo 1%, and the metal cobalt powder is 5% to nickel hydroxide.
This is a paste-type nickel positive electrode characterized by containing ~25% by weight.
上記空隙率及び金属コバルト粉末の水酸化ニッケルへの
配合量を限定した理由は、それらの範囲を逸脱すると水
酸化ニッケルの充填密度と利用率の積に相関するエネル
ギー密度、つまり容量を充分に向上できないからである
。The reason why we limited the above porosity and the amount of metallic cobalt powder mixed into nickel hydroxide is that if it deviates from these ranges, the energy density, which is correlated to the product of the packing density of nickel hydroxide and the utilization rate, that is, the capacity will be sufficiently improved. Because you can't.
上記導電性芯体としては、網、パンチトメタル、エキス
バンドメタル、発泡メタル、焼結金属!I維等を挙げる
ことができる。特に、発泡メタルや焼結金属繊維は三次
元構造を有すため導電性芯体として好適である。The above-mentioned conductive cores include net, punched metal, expanded metal, foamed metal, and sintered metal! I-fi etc. can be mentioned. In particular, foamed metal and sintered metal fibers have a three-dimensional structure and are therefore suitable as the conductive core.
[作用]
しかして、本発明によれば電池に組込まれ、充放電を行
なった後の空隙率及び金属コバルト粉末の水酸化ニッケ
ルに対する配合量を特定の範囲に規制することによって
、水酸化ニッケルの充填密度と、電解液の拡散度及び活
物質同志又は活物質と電子キャリアとしての導電体間の
粘着度に依存する利用率とのバランスが良好となり、こ
れら充填密度と利用率との積に比例するエネルギー密度
、つまり容量を向上でき、しかも導電性芯体からの活物
質の脱落を防止できる。[Function] According to the present invention, the porosity of the nickel hydroxide after being incorporated into the battery and the amount of the metal cobalt powder to be mixed with the nickel hydroxide after being charged and discharged is controlled within a specific range. There is a good balance between the packing density and the utilization rate, which depends on the degree of diffusion of the electrolyte and the degree of adhesion between the active materials or between the active materials and the conductor as an electron carrier, and is proportional to the product of the filling density and the utilization rate. It is possible to improve the energy density, that is, the capacity, and prevent the active material from falling off from the conductive core.
[発明の実施例] 以下、本発明の実施例を詳細に説明する。[Embodiments of the invention] Examples of the present invention will be described in detail below.
実施例
粒子径1〜50μmの分布を持つ水酸化ニッケルに粒子
径1〜10μmの分布を持つ金属コバルト粉末を5重量
%、15重量%、25重量%及び30重量%配合し、こ
れらを溶媒として水及び結着樹脂と共に混練して4種の
ペースト状活物質(A−D)を調製した。また、粒子径
1〜50μmの分布を持つ水酸化ニッケルのみを水及び
結着樹脂と共に混練してペスト状活物質(E)を11製
した。Example 5%, 15%, 25%, and 30% by weight of metallic cobalt powder having a particle size distribution of 1 to 10 μm was blended with nickel hydroxide having a particle size distribution of 1 to 50 μm, and these were used as a solvent. Four types of paste-like active materials (A-D) were prepared by kneading with water and a binder resin. In addition, paste-like active material (E) 11 was prepared by kneading only nickel hydroxide having a particle size distribution of 1 to 50 μm with water and a binder resin.
次いで、前記5種のペースト状活物質を焼結ニッケル繊
維に夫々塗着充填し、乾燥した後、加圧し、更に電池に
組込み、充放電条件を調節して空隙率が10〜60%の
ニッケル正極を有するアルカリ蓄電池を作製した。なお
、金属コバルト粉末を含まないペースト状活物質を用い
たニッケル正極の空隙率の下限は30%であり、それよ
り低い値にはならなかった。Next, each of the five types of paste-like active materials is applied and filled into sintered nickel fibers, dried, pressurized, and then incorporated into a battery, and the charge/discharge conditions are adjusted to form a nickel fiber with a porosity of 10 to 60%. An alkaline storage battery with a positive electrode was fabricated. Note that the lower limit of the porosity of a nickel positive electrode using a paste-like active material that does not contain metal cobalt powder is 30%, and a value lower than that was not found.
しかして、各アルカリ蓄電池について容量試験を行ない
、各蓄電池のニッケル正極の空隙率に対するニッケル正
1の単位体積当りの容量を調べたところ、図に示す特性
図が得られた。なお、図中のaは前記ペースト状活物質
Aを用いて作製されたニッケル正極の容量特性線、bは
前記ペースト状活物質Bを用いて作製されたニッケル正
極の容量特性線、Cは前記ペースト状活物質Cを用いて
作製されたニッケル正極の容量特性線、dは前記ペース
ト状活物質りを用いて作製されたニッケル正極の容量特
性線、eは前記ペースト状活物質Eを用いて作製された
ニッケル正極の容量特性線、を夫々示す。この特性図か
ら明らかなように、水酸化ニッケルに対する金属コバル
ト粉末の配合量が5〜25重層%の範囲から外れるニッ
ケル正極(特性線d、e)では、単位体積当りの容量が
低い。また、水酸化ニッケルに対する金属コバルト粉末
の配合量が5〜25重量%の範囲であるニッケル正極(
特性線a−C)であっても、空隙率が18%未満、35
%を越えたものでは単位体積当りの容量を充分向上でき
ない。これに対し、水酸化ニッケルに対する金属コバル
ト粉末の配合量が5〜25重量%で、かつ空隙率が18
〜35%のニッケル正極は単位体積当りの容量が400
mAH/cc以上と極めて良好な特性をもつことが分る
。Therefore, a capacity test was conducted for each alkaline storage battery, and the capacity per unit volume of nickel positive electrode 1 was investigated with respect to the porosity of the nickel positive electrode of each storage battery, and the characteristic diagram shown in the figure was obtained. Note that in the figure, a is the capacitance characteristic line of the nickel positive electrode made using the paste-like active material A, b is the capacitance characteristic line of the nickel cathode made using the paste-like active material B, and C is the capacitance characteristic line of the nickel cathode made using the paste-like active material B. The capacitance characteristic line of the nickel positive electrode produced using the paste active material C, d is the capacitance characteristic line of the nickel positive electrode produced using the paste active material C, and e is the capacitance characteristic line of the nickel positive electrode produced using the paste active material E. Capacity characteristic lines of the produced nickel positive electrode are shown. As is clear from this characteristic diagram, nickel positive electrodes (characteristic lines d and e) in which the blending ratio of metallic cobalt powder to nickel hydroxide is out of the range of 5 to 25%, have a low capacity per unit volume. In addition, a nickel positive electrode in which the amount of metallic cobalt powder mixed with respect to nickel hydroxide is in the range of 5 to 25% by weight (
Even if the characteristic line a-C), the porosity is less than 18%, 35
%, the capacity per unit volume cannot be sufficiently improved. On the other hand, when the amount of metal cobalt powder mixed with respect to nickel hydroxide is 5 to 25% by weight, and the porosity is 18%,
~35% nickel positive electrode has a capacity per unit volume of 400
It can be seen that it has extremely good characteristics with mAH/cc or higher.
以上詳述した如く、本発明によれば活物質の脱落がなく
、かつエネルギー密度つまり容量の大きい優れた特性を
有するペースト式ニッケル正極を提供できる。As described in detail above, according to the present invention, it is possible to provide a paste-type nickel positive electrode that does not cause shedding of the active material and has excellent characteristics such as high energy density, that is, high capacity.
図面は、水酸化ニッケルに対する金属コバルトる。 The drawing shows cobalt metal versus nickel hydroxide.
Claims (2)
を配合したペースト状活物質を、導電性芯体に充填した
ペースト式ニッケル正極において、電池に組込まれ、充
放電を行なった後の空隙率が18〜35vol%で、か
つ前記金属コバルト粉末が水酸化ニッケルに対し5〜2
5重量%配合されていることを特徴とするペースト式ニ
ッケル正極。(1) In a paste type nickel positive electrode in which a conductive core is filled with a paste active material containing at least nickel hydroxide and metal cobalt powder, the porosity after being incorporated into a battery and charging and discharging is 18. ~35 vol%, and the metal cobalt powder has a content of 5 to 2 vol% relative to nickel hydroxide.
A paste-type nickel positive electrode characterized by containing 5% by weight.
ることを特徴とする特許請求の範囲第1項記載のペース
ト式ニッケル正極。(2) The paste-type nickel positive electrode according to claim 1, wherein the conductive core is a foamed metal or a sintered metal fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62000531A JPS63170853A (en) | 1987-01-07 | 1987-01-07 | Paste type nickel positive electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62000531A JPS63170853A (en) | 1987-01-07 | 1987-01-07 | Paste type nickel positive electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63170853A true JPS63170853A (en) | 1988-07-14 |
Family
ID=11476352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62000531A Pending JPS63170853A (en) | 1987-01-07 | 1987-01-07 | Paste type nickel positive electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63170853A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05211064A (en) * | 1991-01-29 | 1993-08-20 | Shin Kobe Electric Mach Co Ltd | Battery electrode plate |
WO2000030192A1 (en) * | 1998-11-13 | 2000-05-25 | Moltech Power Systems, Inc. | Pasted positive electrode and process for its production |
-
1987
- 1987-01-07 JP JP62000531A patent/JPS63170853A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05211064A (en) * | 1991-01-29 | 1993-08-20 | Shin Kobe Electric Mach Co Ltd | Battery electrode plate |
WO2000030192A1 (en) * | 1998-11-13 | 2000-05-25 | Moltech Power Systems, Inc. | Pasted positive electrode and process for its production |
US6436575B1 (en) | 1998-11-13 | 2002-08-20 | Moltech Power Systems, Inc. | Pasted positive electrode and process for its production |
US6489058B1 (en) | 1998-11-13 | 2002-12-03 | Moltech Power Systems | Pasted positive electrode and process for its production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5366831A (en) | Nickel electrode for alkaline battery | |
US5827494A (en) | Process for producing non-sintered nickel electrode for alkaline battery | |
EP0337029A2 (en) | Nickel electrode for alkaline battery and battery using said nickel electrode | |
JPS63170853A (en) | Paste type nickel positive electrode | |
JP2615538B2 (en) | Nickel positive electrode for alkaline storage batteries | |
JPH0429189B2 (en) | ||
JP3354331B2 (en) | Non-sintered nickel hydroxide positive electrode plate and alkaline storage battery provided with the positive electrode plate | |
JP3095236B2 (en) | Paste nickel positive electrode | |
JP3150546B2 (en) | Hydrogen storage alloy electrode and method for producing the same | |
JP3063159B2 (en) | Nickel electrode for alkaline battery and battery using the same | |
JPH0799693B2 (en) | Paste type nickel positive electrode | |
JPS62229763A (en) | Nonsintered nickel positive electrode | |
JP2525320B2 (en) | Positive electrode for alkaline secondary battery | |
JP2623413B2 (en) | Paste nickel electrode for alkaline storage batteries | |
JPS61124060A (en) | Paste type positive pole plate for alkaline storage battery | |
JPH04262367A (en) | Hydrogen storage electrode | |
JP2889605B2 (en) | Manufacturing method of alkaline storage battery | |
JPH0778613A (en) | Nickel hydrogen battery | |
JPS62222567A (en) | Nonsintered type nickel positive electrode | |
JPH03133059A (en) | Manufacture of paste type cadmium negative electrode | |
JP2019040801A (en) | Hydrogen storage alloy electrode | |
JPS612272A (en) | Positive plate for sealed cylindrical nickel-cadmium battery | |
JPS62176058A (en) | Alkaline secondary battery | |
JPS63218154A (en) | Paste type nickel positive electrode | |
JPH044558A (en) | Manufacture of positive electrode plate for alkaline storage battery |