JP2019040801A - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode Download PDF

Info

Publication number
JP2019040801A
JP2019040801A JP2017163395A JP2017163395A JP2019040801A JP 2019040801 A JP2019040801 A JP 2019040801A JP 2017163395 A JP2017163395 A JP 2017163395A JP 2017163395 A JP2017163395 A JP 2017163395A JP 2019040801 A JP2019040801 A JP 2019040801A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
alloy
present disclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017163395A
Other languages
Japanese (ja)
Inventor
真紀雄 近
Makio Kon
真紀雄 近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017163395A priority Critical patent/JP2019040801A/en
Publication of JP2019040801A publication Critical patent/JP2019040801A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a hydrogen storage alloy electrode with improved cycle characteristics.SOLUTION: The hydrogen storage alloy electrode has a body-centered cubic structure and includes a composite alloy having hydrogen storage alloy particles containing a TiCrV alloy and a Cr coating layer mainly composed of single Cr formed on surfaces of the hydrogen storage alloy particles.SELECTED DRAWING: Figure 1

Description

本願は、水素吸蔵合金電極を開示する。   The present application discloses a hydrogen storage alloy electrode.

水素吸蔵合金は、アルカリ電池の電極等に利用されている。このような水素吸蔵合金に関する技術として、例えば特許文献1には、V、Ti、Cr等から構成され、結晶構造が体心立方構造の水素吸蔵合金粒子からなる水素吸蔵合金電極が開示されている。   Hydrogen storage alloys are used for electrodes of alkaline batteries. As a technique related to such a hydrogen storage alloy, for example, Patent Document 1 discloses a hydrogen storage alloy electrode made of hydrogen storage alloy particles made of V, Ti, Cr, etc. and having a crystal structure of a body-centered cubic structure. .

また、特許文献2には、Tiを含み、体心立方構造を有する水素吸蔵合金の表面にNiを付着させることが開示されている。特許文献3には、急冷凝固法により製造され、結晶粒径が小さく、表面にTi−Ni化合物を主体とするNi付加層を有するTi−Cr−V系水素吸蔵合金が開示されている。   Patent Document 2 discloses that Ni is deposited on the surface of a hydrogen storage alloy containing Ti and having a body-centered cubic structure. Patent Document 3 discloses a Ti—Cr—V hydrogen storage alloy that is manufactured by a rapid solidification method, has a small crystal grain size, and has a Ni addition layer mainly composed of a Ti—Ni compound on the surface.

特開平11−144728号公報JP 11-144728 A 特開2002−141061号公報JP 2002-141061 A 特開平11−80865号公報Japanese Patent Laid-Open No. 11-80865

特許文献1に開示されている水素吸蔵合金電極は、サイクル特性に向上の余地があった。   The hydrogen storage alloy electrode disclosed in Patent Document 1 has room for improvement in cycle characteristics.

そこで本開示は、サイクル特性が向上した水素吸蔵合金電極を提供することを課題とする。   Therefore, an object of the present disclosure is to provide a hydrogen storage alloy electrode with improved cycle characteristics.

上記課題を解決するために、本開示は以下の手段をとる。すなわち、
本開示は、体心立方構造を有し、TiCrV合金を含有する水素吸蔵合金粒子と、水素吸蔵合金粒子の表面に形成された、単体のCrを主体とするCrコート層と、を有する複合合金を備える、水素吸蔵合金電極である。
In order to solve the above problems, the present disclosure takes the following means. That is,
The present disclosure relates to a composite alloy having a body-centered cubic structure and comprising a hydrogen storage alloy particle containing a TiCrV alloy and a Cr coat layer mainly composed of a single Cr formed on the surface of the hydrogen storage alloy particle. A hydrogen storage alloy electrode.

本開示において、「Crを主体とする」とは、Crコート層に含まれる成分のうちCrの割合(mol%)が最も高いことを意味する。   In the present disclosure, “mainly composed of Cr” means that the ratio (mol%) of Cr among the components contained in the Cr coat layer is the highest.

本開示によれば、サイクル特性が向上した水素吸蔵合金電極を提供することができる。   According to the present disclosure, it is possible to provide a hydrogen storage alloy electrode with improved cycle characteristics.

実施例及び比較例で作製した電池について充放電試験のサイクル数と容量維持率との関係を示す図である。It is a figure which shows the relationship between the cycle number of a charging / discharging test, and a capacity | capacitance maintenance factor about the battery produced by the Example and the comparative example.

以下、本開示について説明する。なお、以下に示す形態は本開示の例示であり、本開示は以下に示す形態に限定されない。   Hereinafter, the present disclosure will be described. In addition, the form shown below is an illustration of this indication and this indication is not limited to the form shown below.

本開示の水素吸蔵合金電極(以下、「本開示の電極」ということがある。)は、体心立方構造(BCC構造)を有するTiCrV合金を含有する水素吸蔵合金粒子と、水素吸蔵合金粒子の表面に形成された、単体のCrを主体とするCrコート層と、を有する複合合金を備える。   The hydrogen storage alloy electrode of the present disclosure (hereinafter sometimes referred to as “electrode of the present disclosure”) includes a hydrogen storage alloy particle containing a TiCrV alloy having a body-centered cubic structure (BCC structure), and a hydrogen storage alloy particle. A composite alloy having a Cr coat layer mainly composed of a single Cr formed on the surface is provided.

水素吸蔵合金粒子は、水素吸蔵合金(以下、「MH」ということがある。)として、BCC構造を有するTiCrV合金を含有する。水素吸蔵合金粒子には、BCC構造を有するTiCrV合金に加えて他のMHが含まれていてもよいが、BCC構造を有するTiCrV合金のみから構成されることが好ましい。例えば、本開示の電極をNi−MH二次電池の負極として用いる場合、MHとしてBCC構造を有するTiCrV合金を用いることにより、現行のNi−MH二次電池に使用されているAB系やA系のMHとして用いた場合の2倍を超える容量ポテンシャル(例えば、760mA/g)を備えさせることができる。 The hydrogen storage alloy particles contain a TiCrV alloy having a BCC structure as a hydrogen storage alloy (hereinafter sometimes referred to as “MH”). The hydrogen storage alloy particles may contain other MH in addition to the TiCrV alloy having the BCC structure, but are preferably composed of only the TiCrV alloy having the BCC structure. For example, when the electrode of the present disclosure is used as a negative electrode of a Ni-MH secondary battery, by using a TiCrV alloy having a BCC structure as MH, AB 5 series and A used in current Ni-MH secondary batteries are used. It can be provided with a capacity potential (for example, 760 mA / g) that is more than twice that of 2 B 7- based MH.

水素吸蔵合金粒子の粒子径は、特に限定されないが、電池の入出力の観点から、50μm以下であることが好ましい。   The particle size of the hydrogen storage alloy particles is not particularly limited, but is preferably 50 μm or less from the viewpoint of battery input / output.

水素吸蔵合金粒子の表面には、単体のCrを主体とするCrコート層が形成される。水素吸蔵合金粒子の表面にCrコート層を形成することにより、サイクル劣化(充放電サイクルに伴う電極容量の低下)の一因である、TiCrV合金の表面からのVの溶出を抑制し、サイクル特性を向上させることができる。   On the surface of the hydrogen storage alloy particles, a Cr coat layer mainly composed of simple Cr is formed. By forming a Cr coat layer on the surface of the hydrogen storage alloy particles, the elution of V from the surface of the TiCrV alloy, which is a cause of cycle deterioration (decrease in electrode capacity accompanying charge / discharge cycles), is suppressed, and cycle characteristics Can be improved.

水素吸蔵合金粒子の表面にCrコート層を形成し、複合合金を得る方法としては、例えば、粉末スパッタ法(バレルスパッタ法)により、水素吸蔵合金粒子の表面に、単体のCrを付着させる方法が挙げられる。複合合金の表面全体に占める、Crコート層により被覆されている箇所の割合は、特に限定されず、複合合金の表面の少なくとも一部を被覆していればよい。但し、サイクル特性を向上させ易くする観点から、複合合金の表面全体がCrコート層によって被覆されていることが好ましい。   As a method for obtaining a composite alloy by forming a Cr coat layer on the surface of the hydrogen storage alloy particles, for example, a method of attaching a single Cr to the surface of the hydrogen storage alloy particles by a powder sputtering method (barrel sputtering method). Can be mentioned. The ratio of the portion covered with the Cr coating layer in the entire surface of the composite alloy is not particularly limited, and it is sufficient that at least a part of the surface of the composite alloy is covered. However, from the viewpoint of easily improving the cycle characteristics, it is preferable that the entire surface of the composite alloy is covered with a Cr coat layer.

本開示において、Crコート層の厚さは、特に限定されない。Crコート層は、複合合金の表面を被覆していればよく、数nm程度の厚さであっても、サイクル特性が向上させることが可能と考えられる。同様に、厚さが厚くてもサイクル特性を高めることが可能と考えられるが、厚さがあまりに厚くなると電池の入出力の点で好ましくない。それゆえ、Crコート層の厚さは、10μm以下にすることが好ましい。   In the present disclosure, the thickness of the Cr coat layer is not particularly limited. The Cr coating layer only needs to cover the surface of the composite alloy, and it is considered that the cycle characteristics can be improved even when the thickness is about several nm. Similarly, it is considered that the cycle characteristics can be improved even if the thickness is large. However, if the thickness is too large, it is not preferable in terms of input / output of the battery. Therefore, the thickness of the Cr coat layer is preferably 10 μm or less.

本開示の電極は、上記複合合金を有していればよく、該複合合金に加えて、他の物質が含まれてもよい。本開示の電極に含まれ得る他の物質としては、導電助剤やバインダー等を例示することができる。導電助剤としては、例えば、Ni等の金属粒子を用いることができる。また、バインダーとしては、カルボキシメチルセルロース(CMC)やポリビニルアルコール(PVA)等を用いることができる。本開示の電極を作製する方法としては、複合合金と、導電助剤と、バインダーとが所定の重量比になるように秤量した後、これらを混練することにより作製したペースト状の組成物を、多孔質の導電性部材に塗布し、続いて乾燥させた後、これを所定の圧力でプレスする等の方法を例示することができる。   The electrode of the present disclosure only needs to have the above composite alloy, and may contain other substances in addition to the composite alloy. Examples of other substances that can be included in the electrode of the present disclosure include a conductive additive and a binder. As the conductive assistant, for example, metal particles such as Ni can be used. As the binder, carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), or the like can be used. As a method for producing an electrode of the present disclosure, a composite alloy, a conductive additive, and a binder are weighed so as to have a predetermined weight ratio, and then a paste-like composition produced by kneading these is used. Examples thereof include a method of applying to a porous conductive member and subsequently drying it, and then pressing it at a predetermined pressure.

本開示の電極は、正極、電解質層、及び負極を有するアルカリ蓄電池の、負極としての側面も有する。即ち、本開示の電極は、複合合金を負極活物質とするアルカリ蓄電池の負極としての好適に使用することができる。   The electrode of the present disclosure also has a side surface as a negative electrode of an alkaline storage battery having a positive electrode, an electrolyte layer, and a negative electrode. That is, the electrode of the present disclosure can be suitably used as a negative electrode of an alkaline storage battery using a composite alloy as a negative electrode active material.

アルカリ蓄電池は、例えば、ニッケル水素電池であっても良く、空気電池であっても良く、他の形態であっても良い。アルカリ蓄電池がニッケル水素電池である場合、正極には、例えば、水酸化ニッケル(Ni(OH))を用いることができる。これに対し、アルカリ蓄電池が空気電池である場合、正極には、例えば、LaNiOのようなペロブスカイト構造をもつ酸化物等を用いることができる。 The alkaline storage battery may be, for example, a nickel metal hydride battery, an air battery, or another form. When the alkaline storage battery is a nickel metal hydride battery, for example, nickel hydroxide (Ni (OH) 2 ) can be used for the positive electrode. On the other hand, when the alkaline storage battery is an air battery, an oxide having a perovskite structure such as LaNiO 3 can be used for the positive electrode.

電解質層は、正極及び負極の間に配置され、かつ、アルカリ水溶液を含む。アルカリ水溶液としては、例えば、水酸化カリウム(KOH)水溶液が挙げられる。水溶液の濃度は特に限定されないが、例えば、6mol/Lとすることができる。電解質層は、電解液のみからなるものであってもよく、電解液をセパレータに含浸させたものであってもよい。セパレータとしては、例えば、ポリエチレン・ポリプロピレン製の不織布セパレータを使用することができる。   The electrolyte layer is disposed between the positive electrode and the negative electrode and includes an alkaline aqueous solution. Examples of the alkaline aqueous solution include a potassium hydroxide (KOH) aqueous solution. Although the density | concentration of aqueous solution is not specifically limited, For example, it can be 6 mol / L. The electrolyte layer may be composed only of an electrolytic solution, or may be an impregnated electrolytic solution in a separator. As the separator, for example, a nonwoven fabric separator made of polyethylene / polypropylene can be used.

アルカリ蓄電池を作製する際に、負極として用いる本開示の電極は、例えば、上述した方法によって作製することができる。一方、正極は、例えば、水酸化ニッケルと、酸化コバルトと、バインダーとが所定の重量比になるように秤量した後、これらを混練することにより作製したペースト状の組成物を、多孔質の導電性部材に塗布し、続いて乾燥させた後、これを所定の圧力でプレスする等の方法により、作製することができる。その後、所定の濃度になるように調整したアルカリ性の水溶液を容器に入れ、さらに、アルカリ性の水溶液を入れた容器へ、正極及び負極を入れる過程を経ることにより、アルカリ蓄電池を作製することができる。   When producing the alkaline storage battery, the electrode of the present disclosure used as the negative electrode can be produced, for example, by the method described above. On the other hand, for example, a positive electrode is prepared by weighing a paste composition prepared by kneading nickel hydroxide, cobalt oxide, and a binder so as to have a predetermined weight ratio, and then kneading them. It can be produced by a method such as applying to an adhesive member and subsequently drying it, and then pressing it at a predetermined pressure. Thereafter, an alkaline storage battery can be produced by putting an alkaline aqueous solution adjusted to a predetermined concentration into a container, and further putting a positive electrode and a negative electrode into a container containing the alkaline aqueous solution.

以下、実施例を参照しつつ、本開示の水素吸蔵合金電極について説明を続ける。   Hereinafter, the description of the hydrogen storage alloy electrode of the present disclosure will be continued with reference to Examples.

<実施例>
(水素吸蔵合金電極及び電池の作製)
狙いの組成となるよう計量した原料をアーク溶解し、粉砕・分級(<50μm)して、水素吸蔵合金粒子であるTiCrV合金(Ti20Cr1070)粒子を得た。粉末スパッタ法にて、TiCrV合金粒子の表面に10nmの厚みになるように均一にCrコート層を形成し、複合合金を得た。さらに、充放電活性を付与する目的で、粉末スパッタ法にて、複合合金の表面に10nmの厚みになるようにPdを均一にコートし、Pdコート層を形成した。このように作製したPdコート層を備える複合合金を負極活物質とし、導電助剤(Ni粉末)並びにバインダーと混練し、発泡Niに充填した後、乾燥及びロールプレスすることで、実施例に係る水素吸蔵合金電極を得た。以上のように作製した水素吸蔵合金電極をMH負極とし、Ni(OH)電極を対極として組み合せ、電解液に6M−KOHを用いて、実施例に係る電池を作製した。
(充放電試験)
充放電条件を25℃、定電流充放電とし、充電終止条件を電極容量の150%の電気量とし、放電終止条件を−0.5V vs Hg/HgOとして、30サイクルの充放電を行った。1サイクル目の放電容量を100%としたときの30サイクル後の放電容量から容量維持率を算出した。サイクル数と容量維持率との関係を図1に示す。
<Example>
(Production of hydrogen storage alloy electrode and battery)
The raw materials weighed to achieve the target composition were arc-melted and pulverized and classified (<50 μm) to obtain TiCrV alloy particles (Ti 20 Cr 10 V 70 ) as hydrogen storage alloy particles. A Cr coating layer was uniformly formed on the surface of the TiCrV alloy particles so as to have a thickness of 10 nm by a powder sputtering method to obtain a composite alloy. Further, for the purpose of imparting charge / discharge activity, Pd was uniformly coated on the surface of the composite alloy so as to have a thickness of 10 nm by a powder sputtering method to form a Pd coating layer. The composite alloy provided with the Pd coat layer thus prepared is used as a negative electrode active material, kneaded with a conductive additive (Ni powder) and a binder, filled in foamed Ni, and then dried and roll-pressed. A hydrogen storage alloy electrode was obtained. The hydrogen storage alloy electrode produced as described above was used as the MH negative electrode, the Ni (OH) 2 electrode was used as the counter electrode, and the battery according to the example was produced using 6M-KOH as the electrolyte.
(Charge / discharge test)
The charge / discharge conditions were 25 ° C., constant current charge / discharge, the charge termination condition was 150% of the electrode capacity, the discharge termination condition was −0.5 V vs Hg / HgO, and 30 cycles of charge / discharge were performed. The capacity retention rate was calculated from the discharge capacity after 30 cycles when the discharge capacity at the first cycle was 100%. The relationship between the number of cycles and the capacity maintenance rate is shown in FIG.

<比較例>
水素吸蔵合金粒子であるTiCrV合金粒子の表面にCrコート層を形成しなかった以外は、実施例と同様にして、比較例に係る水素吸蔵合金電極及び電池を作製し、充放電試験を行った。結果を図1に示す。
<Comparative example>
A hydrogen storage alloy electrode and a battery according to a comparative example were produced and subjected to a charge / discharge test in the same manner as in the example, except that the Cr coat layer was not formed on the surface of the TiCrV alloy particle which is a hydrogen storage alloy particle. . The results are shown in FIG.

[結果]
図1に示すように、水素吸蔵合金粒子の表面にCrコート層を形成して作製した実施例に係る電池は、30サイクル後の容量維持率が78%であった。一方、水素吸蔵合金粒子の表面にCrコート層を形成せずに作製した比較例に係る電池は、30サイクル後の容量維持率が64%であった。よって、本開示によれば、水素吸蔵合金粒子の表面にCrコート層を形成することにより、水素吸蔵合金電極のサイクル特性を向上させることが可能であることが確認された。
[result]
As shown in FIG. 1, the battery according to the example manufactured by forming the Cr coat layer on the surface of the hydrogen storage alloy particles had a capacity retention rate of 78% after 30 cycles. On the other hand, the battery according to the comparative example manufactured without forming the Cr coat layer on the surface of the hydrogen storage alloy particles had a capacity retention rate of 64% after 30 cycles. Therefore, according to the present disclosure, it was confirmed that the cycle characteristics of the hydrogen storage alloy electrode can be improved by forming a Cr coat layer on the surface of the hydrogen storage alloy particles.

Claims (1)

体心立方構造を有し、TiCrV合金を含有する水素吸蔵合金粒子と、
前記水素吸蔵合金粒子の表面に形成された、単体のCrを主体とするCrコート層と、を有する複合合金を備える、
水素吸蔵合金電極。
Hydrogen storage alloy particles having a body-centered cubic structure and containing a TiCrV alloy;
A composite alloy having a Cr coating layer mainly composed of a single Cr formed on the surface of the hydrogen storage alloy particles;
Hydrogen storage alloy electrode.
JP2017163395A 2017-08-28 2017-08-28 Hydrogen storage alloy electrode Pending JP2019040801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017163395A JP2019040801A (en) 2017-08-28 2017-08-28 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017163395A JP2019040801A (en) 2017-08-28 2017-08-28 Hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JP2019040801A true JP2019040801A (en) 2019-03-14

Family

ID=65726338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017163395A Pending JP2019040801A (en) 2017-08-28 2017-08-28 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP2019040801A (en)

Similar Documents

Publication Publication Date Title
US5660952A (en) Active material powder for non-sintered nickel electrode and non-sintered nickel electrode for alkaline battery
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JP2017091673A (en) Lithium ion battery
JP2019040801A (en) Hydrogen storage alloy electrode
KR20180046353A (en) Anode material and battery
JP2015130249A (en) Positive electrode for alkali storage batteries and alkali storage battery using the same
JPH0429189B2 (en)
JPS6137733B2 (en)
JPS64787B2 (en)
US20040219427A1 (en) Non-sintered electrode for an electrochemical generator with an alkaline electrolyte
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3114160B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JPH0412455A (en) Electrode for alkaline storage battery
JPH08102322A (en) Active material powder for alkaline storage battery non-sintered nickel electrode, its manufacture, alkaline storage battery non-sintered nickel electrode, and its manufacture
JPS63170853A (en) Paste type nickel positive electrode
JPH06295727A (en) Sealed alkaline storage battery
JP5895937B2 (en) Negative electrode for alkaline storage battery, outer can for alkaline storage battery, and alkaline storage battery
JP3306058B2 (en) Hydrogen storage alloy electrode and nickel metal hydride secondary battery
JP3095236B2 (en) Paste nickel positive electrode
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JPS62229763A (en) Nonsintered nickel positive electrode
JPH08203517A (en) Non-sintered type nickel hydroxide positive electrode plate and alkaline storage battery having this positive electrode plate
JPH02162648A (en) Paste type electrode for storage battery
JPS62252072A (en) Manufacture of negative electrode for alkaline storage battery
JPS61124060A (en) Paste type positive pole plate for alkaline storage battery